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Abstract 
 

The global temperature is exceeding 1.5°C above pre-industrial levels due to the 

increasing carbon emissions, and developing renewable energy is expected to be 

one of the most effective solutions. However, whether the development of 

renewable energy contributes to curbing the carbon emissions while maintaining 

economic development is still under investigation. Using the total-factor carbon 

emission efficiency (TFCEE), this paper first measures the carbon emission 

abatement and economic development of 30 provinces in China from 2005 to 2019. 

Then, based on the super-efficiency slacks-based measure (SE-SBM) model, the 

panel threshold models and spatial Durbin models are established to 

comprehensively investigate the impact of RED on TFCEE. The findings reveal that: 

(1) RED significantly improves TFCEE. For every 1% increase in RED, TFCEE 

experiences a rise ranging from 0.020% to 0.035%. (2) The beneficial effect of RED 

on TFCEE increases with economic restructuring and technological progress. (3) 

The indirect impact of RED on TFCEE through spatial spillover is significantly 

greater than its direct effect. Potential transmission mechanisms for this spatial 

spillover effect are the cross-regional mobilization of renewable electricity and the 

diffusion and absorption of low-carbon knowledge and technologies. The above 

conclusions provide empirical evidence for China and other developing countries 

to formulate appropriate energy transformation strategies. 
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1. Introduction  

The global temperature is temporarily exceeding 1.5°C above pre-industrial levels 

due to the increasing carbon emissions for at least one of the next five years 

according to WMO (World Meteorological Organization). The adverse effects of 

climate change are multifaceted, including causing sea-level rise, destroying 

agriculture and ecosystems, aggravating flooding, and drought, and increasing 

human disease risk and mortality. The primary drivers of climate change remain 

the significant rise in greenhouse gas emissions, particularly carbon dioxide 

(Manabe, 2019). Fossil fuel usage persists as the predominant contributor to these 

emissions. According to the World Resources Institute (WRI), fossil energy 

consumption produces about 90% of all carbon emissions in 2022. Therefore, 

countries around the world still need to achieve deep decarbonization of energy 

systems. 

The modern economic-energy system is complicated. Linkages between energy 

consumption and economic development are often multi-folded and non-linear 

because of the unclear but surely complex interactions. To effectively decarbonize 

carbon emissions while maintaining sustainable economic development, the shift 

from a fossil-based energy system to a renewable energy system may trigger the 

pattern of transition of resource utilization, economic development, and behavioral 

changes. Specifically, the linkages may be influenced by structural changes in the 

economic system and technological advances. While the development of renewable 

energy development has been regarded as one of the most effective solutions to 

decarbonize carbon emission from energy systems, exploring how the relationship 

between RED and TFCEE changes with the structure of the economy and 

technological advances is important for emerging economies undergoing energy 

transitions. This can provide insights for these economies to choose appropriate 

economic restructuring strategies and technological progress paths. In addition, due 

to the development of renewable energy, resource redistribution in geographical 

space may occur, thereby influencing the distribution of carbon emissions, leading 

to a strong spatial correlation between the carbon emission efficiencies of different 

regions. This correlation is stronger between regions within a country.  

Carbon emission efficiency, as a measure of the correlations between economy and 

energy, implies a balance between carbon emissions and economic development. 

However, many scholars (Zhang et al., 2022; Wang et al., 2022; Lee et al., 2023) 

point out that the carbon emission efficiency does not play an effective way to 

reflect the comprehensive relations between carbon investment and economic 

output because factors including economic quality, technology innovation are often 

neglected. Thus, Yao et al. (2015) include the carbon emissions in the Total-Factor 

Productivity (TFP) framework and propose the total-factor carbon emissions 

efficiency. In comparison, traditional single-factor carbon efficiency indicators 

such as carbon intensity take into account only one factor. The integration provides 

a more accurate assessment of whether the economic development mode aligns 

with the low-carbon growth objectives. Thus, TFCEE offers a superior means of 
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evaluating the alignment of economic development with these objectives. 

Therefore, this paper concentrates on investigating the influence of RED on TFCEE. 

Therefore, it is imperative to analyze the comprehensive effect of RED on TFCEE 

based on the perspective of spatial spillovers.  

The greatest carbon dioxide emitter in the world is now China. According to IEA, 

China's CO2 emissions in 2022 reached 12.1GT, representing 31.72% of the total 

global emissions. As a responsible major nation, China has set an ambitious target 

of peaking carbon by 2030 and becoming carbon neutral by 2060. One of China’s 

biggest obstacles to lowering carbon emissions is wildly using fossil fuels like coal. 

Therefore, the energy transition has been an inevitable choice to achieve the goals. 

To advance the energy transition, Chinese government introduced a renewable 

energy bill in 2005 going for renewable energy. After ten years rapid development, 

China’s installed capacity of wind power generation increased from more than 76 

million kilowatts to more than 440 million kilowatts, an increase of nearly five 

times, and the installed capacity of photovoltaic power generation increased from 

more than 19 million kilowatts to more than 600 million kilowatts, an increase of 

more than 30 times. By 2023, more than half of the world's renewable energy power 

generation was installed, and the cumulative installed capacity accounted for nearly 

40% of the world. Meanwhile, as the biggest developing nation in the world, China 

is also facing severe economic growth stress. Although in 2021 China has fully 

lifted itself out of poverty and its GDP per capita exceeds the world average, it still 

needs to make efforts to achieve SDG8. Therefore, it holds immense significance 

to study how to achieve carbon emission targets while ensuring economic growth.  

This paper aims to make possible contributions in the following areas: (1) 

Considering the rapid economic structural changes and technological 

advancements occurring in China, this paper uncovers the dynamic nonlinear 

influence of renewable energy development on TFCEE from the viewpoints of 

structural changes and technological advances. (2) Considering the possible 

spillover influence of carbon emission efficiency between different regions, this 

paper adopts the spatial Durbin model (SDM) to study the spatial spillover effects 

of renewable energy development on TFCEE and further reveals its potential 

influence mechanism. 

The remainder of this paper is structured as follows. The extant literature is 

reviewed succinctly in Section 2. The methods and data are introduced in Section 

3. The empirical findings are reported and discussed in Section 4. The empirical 

findings are outlined in Section 5 along with specific policy suggestions. 

 

2. Literature review 

2.1 Impact of renewable energy development on economic growth 

There is currently no consensus among available studies regarding the influence of 

renewable energy development (RED) on both economic growth and carbon 

emissions. Some scholars believe that RED can help economic growth. This enables 

industrial production to utilize renewable energy for electricity generation rather 
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than relying on conventional fossil fuels. Moreover, the RED may assist energy-

importing nations lessen their reliance on oil and natural gas and increase the 

capacity of their economies to withstand political threats. Inglesi-Lotz (2016) used 

a panel fixed effect model to investigate the effects of RED on economic growth in 

OECD nations and discovered that RED can promote economic growth. Koçak and 

Şarkgüneşi (2017) also observed the same results in 9 Black Sea and Balkan 

countries. Le et al. (2020) demonstrated that RED has a beneficial influence on the 

economic development of various income nations. However, some scholars argue 

that the expense associated with renewables surpasses that of traditional fossil fuels 

due to the substantial investment required for renewable energy infrastructure 

construction, potentially impeding economic growth. As Bhattacharya et al. (2016), 

RED exerts a negative impact on the economic growth of four out of the top 38 

renewable energy consumers. In a similar study, Shahbaz et al. (2020) found that 

the economic development of seven nations is adversely affected by RED.  

Moreover, the impact of RED on economic growth may also depend on the 

proportion of renewable energy in total energy. Bulut and Muratoglu (2018) 

discovered that RED has no substantial influence on Turkey’s economic 

development, they attribute this to the low proportion of renewable energy in the 

total energy mix. Given these contradictory results, the linkage between economic 

growth and RED is likely to be nonlinear. Therefore, Chen et al. (2020) investigated 

the nonlinear influence of RED on economic growth using a panel threshold model. 

They discovered that in developing nations when RED falls below a certain 

threshold, it hinders economic development; when RED rises over the threshold, it 

fosters it. Wang et al. (2022) investigated the nonlinear impact of RED on economic 

growth in OECD countries. Their findings indicate that the beneficial effect of RED 

on economic growth intensifies when compound risk and political risk reach a 

certain threshold. Given the prevalence of economic linkages across regions, Li et 

al. (2022) applied the spatial Durbin model to explore the spatial spillover effects 

of RED on economic growth. They found that this spillover effect first shifts from 

positive to negative and then to positive as the RED increases. 

 

2.2 Impact of renewable energy development on carbon emission reduction 

Regarding the carbon emission reduction effect of RED, some scholars believe that 

RED can improve the energy structure, so RED can help reduce carbon emissions. 

Dong et al. (2018) discovered that RED lowers China’s carbon emissions by 

utilizing the auto-regressive distribution lag (ARDL) model. Hasanov et al. (2021) 

also found the same evidence in BRICS countries. Khan et al. (2020) investigated 

the impact of RE usage on consumption-based carbon emissions in G7 countries. 

Their findings revealed that RED has an adverse effect on carbon emissions. By 

applying advanced panel estimation technology, Sun et al. (2022) affirmed that 

RED can constrain the rise of carbon emissions in 14 Middle Eastern and North 

African economies.  
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However, according to Dong et al. (2020), RED demonstrates no significant impact 

on carbon emissions in upper-middle income, lower-middle income, or low-income 

nations. In addition, Apergis et al. (2010) found that RED causes a long-term rise 

in the carbon emissions of selected 19 developed and developing countries. Their 

conclusion was corroborated in five North African countries (Ben Jebli and Ben 

Youssef, 2017) and Turkey (Yurtkuran, 2021). Recently, the potential nonlinear 

influence of RED on carbon emissions has attracted scholars’ interest. The pooled 

mean group (PMG) estimator was used by Li et al. (2020) to determine the impact 

of RED on the carbon emissions of China. The findings unveiled an inverted "U" 

connection between RED and carbon emissions. Chen et al. (2022) emphasized that 

for developed countries, only when the consumption of RED exceeds the threshold 

can the increase of RED reduce the per capita carbon emissions.  

In addition, some scholars have also directed their attention towards investigating 

the spatial spillover effect of RED on carbon emissions. Chen et al. (2022) argue 

that the fossil energy savings resulting from the utilization of renewable energy in 

the power generation sector within a local region are transferred to spatially related 

regions, indicating a CO2 transfer effect. Therefore, the spatial spillover effect of 

RED on reducing carbon emissions is negative. However, Liu et al. (2023) showed 

that RED has a positive spatial spillover effect on carbon emission reduction due to 

the presence of demonstration effects and cross-regional co-operation.  

 

2.3 Combined impact of renewable energy development on economic growth 

and carbon reduction 

Compared to a single economic growth indicator or carbon emission indicator, Total 

Factor Carbon Emission Efficiency (TFCEE) provides a more precise assessment 

of growth sustainability (Wu et al., 2020; Hao et al., 2022). Despite this, there is 

limited research on the effects of RED on TFCEE. Several studies have instead 

focused on exploring the impact of RED on energy intensity. The effect of RED on 

the energy intensity of 82 major nations was investigated by Yu et al. (2022). These 

studies revealed that the impact of RED) on energy intensity is notably negative, 

and this effect intensifies as RED surpasses a certain threshold. Liu et al. (2022) 

analyzed how RED affects China’s energy intensity, and they found that this 

influence changes with the change in income level.  

Some studies have also examined the influence of RED on the carbon intensity. Yu 

et al. (2020) utilized a panel quantile regression model to investigate the carbon 

reduction effect of RED. Their findings indicated that the negative influence of RED 

on carbon intensity is least pronounced in regions with moderate carbon intensity. 

Han et al. (2020) demonstrated the importance of technical innovation capability in 

the nonlinear influence of RED on carbon intensity. Lee et al. (2023) revealed the 

external mechanism that RED reduces carbon emission intensity. Their findings 

suggest that RED diminishes carbon emission intensity through enhancements in 

energy efficiency and optimization of industrial and energy structures.  

In general, these studies have established a foundational theoretical framework for 



298                                           Zeng and Mu 

 

 

investigating the impact of RED on TFCEE, but the selected indicators only reflect 

one aspect of TFCEE. Lin and Li (2022) contend that RED serves as a mediating 

factor in the association between R&D and TFCEE. Dong et al. (2022) evaluated 

the non-linear effect of RED on TFCEE. They discovered that RED has a favorable 

influence on TFCEE in developed nations and that this impact diminishes when 

energy consumption intensity rises but improves as TFCEE and financial 

development levels improve. Based on a study of 114 countries, Wang et al. (2022) 

showed that the contribution of RED to TFCEE is negatively affected by income 

inequality and urbanization.  

         

2.4 Literature gap 

To summarize, limited research has explored the impact of RED on TFCEE, 

revealing the following deficiencies: (1) China and many other developing countries 

around the world have been experiencing rapid economic restructuring and 

technological change. This dynamic environment may result in a non-linear impact 

of RED on TFCEE, which current studies have not adequately addressed. The 

evolving economic landscape and technological advancements introduce 

complexities that necessitate a more nuanced analysis to understand how RED 

influences TFCEE over time. (2) The majority of existing studies have overlooked 

the potential spatial dependence characteristic of TFCEE. This means they have 

failed to consider how changes in TFCEE in one region might be influenced by 

developments in neighboring regions. Consequently, these studies have not 

elucidated the role of RED in the trajectory of TFCEE evolution from the standpoint 

of spatial spillover effects. Spatial spillover effects refer to the impact that policy 

measures and technological advancements in one area can have on surrounding 

areas. Ignoring these effects limits the understanding of the full impact of RED on 

TFCEE, particularly how improvements in one region might propagate and 

influence other regions. 

In conclusion, the current body of research on the impact of RED on TFCEE is 

deficient in addressing the dynamic non-linearity and spatial dependence aspects. 

These gaps highlight the need for more comprehensive studies that take into account 

the complex, evolving nature of economic and technological landscapes, as well as 

the interconnectedness of regions, to fully understand the implications of RED on 

TFCEE.  
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3. Methods and data  

3.1 Model setting 

In this study, an econometric model is formulated to investigate the effect of RED 

on TFCEE: 

 
𝑙𝑛𝑇𝐹𝐶𝐸𝐸𝑖𝑡 = 𝛼0 + 𝛼1𝑙𝑛𝑅𝐸𝐷𝑖𝑡 + 𝛼𝑘 ∑ 𝑙𝑛𝑋𝑘𝑖𝑡

7
𝑘=2 + 𝜇𝑖 + 𝜈𝑡 + 𝜀𝑖𝑡          (1) 

 

Where i denotes the province, t denotes the year. TFCEEit is the independent 

variable and denotes the total factor carbon emission efficiency (TFCEE) of i 

province at time t, REDit is the key explanatory variable that indicates the level of 

renewable energy development in province i at time t, Xkit refers to the other control 

variables, 𝑙𝑛 refers to the natural logarithm. α0, α1, and αk represent coefficients to 

be estimated, μi represents individual fixed effect, νt represents time fixed effect, 

and εit represents residual terms.  

Acknowledging the potential for a non-linear association between renewable energy 

development and TFCEE, following Hansen's methodology (1999), this study 

constructs a panel threshold regression model refer to Equation (1) in the following 

form: 

𝑙𝑛𝑇𝐹𝐶𝐸𝐸 = 𝛽0 + 𝛽1𝑙𝑛𝑅𝐸𝐷𝑖𝑡 • 𝐼(𝑞𝑖𝑡 ≤ 𝛾) + 𝛽2𝑙𝑛𝑅𝐸𝐷𝑖𝑡 • 𝐼(𝑞𝑖𝑡 > 𝛾) + 𝛽𝑘∑ 𝑙𝑛𝑋𝑘𝑖𝑡

8

𝑘=3

 

+𝜇𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡                                             (2) 
 

Where, qit represents the threshold variable, γ is the estimated threshold, and I(∙) 

denotes an instruction function. When a double threshold exists, the above equation 

can be further extended to Equation (3): 

 
𝑙𝑛𝑇𝐹𝐶𝐸𝐸 = 𝛽0 + 𝛽1𝑙𝑛𝑅𝐸𝐷𝑖𝑡 • 𝐼(𝑞𝑖𝑡 ≤ 𝛾1) + 𝛽2𝑙𝑛𝑅𝐸𝐷𝑖𝑡 • 𝐼(𝛾1 < 𝑞𝑖𝑡 ≤ 𝛾2) + 𝛽1𝑙𝑛𝑅𝐸𝐷𝑖𝑡 •

𝐼(𝑞𝑖𝑡 > 𝛾2) + 𝛽𝑘 ∑ 𝑙𝑛𝑋𝑘𝑖𝑡
9
𝑘=4 + 𝜇𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡                         (3) 

 

3.2 Variable definition 

3.2.1 Explained variables 

Most studies employ the DEA approach to measure TFCEE, which has emerged as 

the primary indicator for gauging the degree of coordination between the economy 

and the environment. Tone (2002) suggested a super-efficiency slacks-based 

measure (SE-SBM) model to address the drawbacks of the conventional DEA 

technique. Compared with the traditional DEA method, this method has three 

advantages: (1) It can deal with unexpected output. (2) Allowing input and output 

to change in different proportions is more realistic. (3) The decision-making unit’s 

efficiency value is permitted to be greater than 1, ensuring that the efficiency values 

of all decision-making units may be compared. Nevertheless, the SE-SBM model is 

unsuitable for panel-type data due to the model constructs a different frontier in 
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each period, resulting in a lack of comparability of measured efficiency in the 

temporal dimension. So this study introduces the global SE-SBM model using the 

global reference technique suggested by Pastor and Lovell (2005): 

 

𝑇𝐹𝐶𝐸𝐸 = 𝑚𝑖𝑛
𝑠𝑖
−,𝑠𝑦+,𝑠𝑏

−,𝜆

1+∑
𝑠𝑖
−

𝑥𝑖𝑜

𝑚
𝑖=1

1−
1

𝑠1+𝑠2
(∑

𝑠𝑦
+

𝑦𝑟𝑜
+∑

𝑠𝑏
−

𝑏𝑘𝑜

𝑠2
𝑘=1

𝑠1
𝑟=1 )

              (4) 

 

𝑠. 𝑡.

{
  
 

  
 
∑ ∑ 𝜆𝑗

𝑡𝑥𝑖𝑗
𝑡 − 𝑠𝑖

− ≤ 𝑥𝑖𝑜
𝑛
𝑗=1,𝑗≠𝑜

𝑇
𝑡=1

∑ ∑ 𝜆𝑗
𝑡𝑦𝑟𝑗

𝑡 − 𝑠𝑦
+ ≤ 𝑦𝑟𝑜

𝑛
𝑗=1,𝑗≠𝑜

𝑇
𝑡=1

∑ ∑ 𝜆𝑗
𝑡𝑏𝑖𝑗
𝑡 − 𝑠𝑏

− ≤ 𝑏𝑘𝑜
𝑛
𝑗=1,𝑗≠𝑜

𝑇
𝑡=1

∑ ∑ 𝜆𝑗
𝑡 = 1𝑛

𝑗=1,𝑗≠𝑜
𝑇
𝑡=1

𝜆 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑦

+ ≥ 0, 𝑠𝑏
− ≥ 0

                (5) 

Where TFCEE is the objective function and efficiency value; The vectors x ,y and 

b represent input, desirable output and undesirable output. m, s1 and s2 denote the 

amount of inputs, desirable and undesirable outputs of each DMU; si
−, sy

+ and sb
− 

are the slack variables of input, desirable output, and undesirable output. λj is the 

weight vector and T, n represents the year and province.  

Based on previous scholars' studies (Zhang et al.,2022;Song et al.,2018), the input 

variables used in this study are capital, labor and energy, with carbon emissions as 

non-desired outputs and economic outputs as desired outputs.The base period in this 

research is 2000, and adoption of the perpetual inventory method for the calculation 

of capital stock. The labor force is measured by total employment, and total energy 

consumption serves as a measure of energy. In addition, consistent with most 

previous studies, this paper uses the variable returns to scale assumption in 

constructing the global SE-SBM model. Figure 1 illustrates the computed results of 

TFCEE. 

From Figure 1, it can be seen that there are significant spatial disparities in TFCEE 

among provinces in China. TFCEE is generally higher in the eastern coastal 

provinces and lower in the western provinces, which is consistent with China's basic 

national conditions. While the eastern regions are experiencing rapid economic 

development, they are also undergoing a clean energy revolution, transitioning from 

the previous high-energy consumption, high-pollution, and high-emission 

development model. However, from a global perspective, most provinces remain in 

a stage of relatively low efficiency, with great potential and space for improvement. 

For example, Shanxi Province, as a typical resource-based province, relies mainly 

on coal as its primary energy source and economic pillar. Its industrial structure is 

dominated by heavy industry, with a focus on the secondary sector. Coupled with 

its relatively low level of technological development and a lack of advanced clean 

production technologies and equipment, it has fallen into a vortex of low carbon 

emission efficiency. 
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Figure 1: Average total factor carbon emissions efficiency of 30 provinces 

from 2005 to 2019 

 

3.2.2 Key explanatory variables and control variables 

In this study, renewable energy development (RED) serves as the main explanatory 

variable, measured by renewable energy generation concerning Yu et.al. (2020). 

Additionally, in the robustness testing phase, the paper substitutes the installed 

capacity of renewable energy (REI) for renewable energy generation to gauge 

renewable energy development. 

Several control variables are further included to lower the deviation of missing 

variables: (1) Economic development level (PGDP), quantified by real GDP per 

capita. (2) Population (P), representing the population at the end of a year. (3) 

Research and Development input (RD), calculated as the proportion of R&D 

expenditure to GDP. (4) Environmental regulation intensity (ER), determined by 

the ratio of investment in industrial pollution prevention to GDP. (5) Economic 

openness (OPEN), assessed by the fraction of import and export volume in GDP. 

(6) Human capital level (HC), quantified as the average number of years of studying 

for workers. 
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3.2.3 Threshold variables 

This study chooses seven threshold variables to examine the nonlinear impact of 

RED on TFCEE, containing five economic structure variables and three 

technological progress variables: (1) Industrial structure (IS) is defined as the 

contribution of tertiary value added to GDP. (2) Population structure (URB) is 

determined by the urbanization rate. (3) Energy consumption structure (ES) is 

determined by the share of coal usage in overall energy consumption. (4) Factor 

structure (KL) is quantified by the ratio of the real capital stock to the average 

annual number of workers. (5) Ownership structure (OS) is the proportion of non-

state-owned fixed asset investment to total fixed investment. (6) Green technology 

(GT) is quantified by the amount of green patent grants and is log-transformed in 

regression. (7) Energy Technology (EE) is measured by GDP per unit of energy 

consumption. (8) Information and communication technology (ICT) is measured by 

the amount of internet users as a share of the total population. 

 

3.3 Data 

The majority of the data utilized in this paper is sourced from various authoritative 

publications including the China Statistical Yearbook, China Energy Statistical 

Yearbook, China Power Statistical Yearbook, China Water Resources Review 

Results, China Wind and Solar Energy Resources Annual Bulletin, Statistical 

Report on Internet Development in China, as well as databases such as the World 

Intellectual Property Organization (WIPO) and CEADS. Renewable energy 

generation data is derived by subtracting the electricity generated from thermal 

power and nuclear power from the total primary energy generation. Due to data 

limitations, Hong Kong, Macao, Taiwan, and Tibet are excluded from the study. 

We finally have gathered data from all 30 provinces in China spanning the years 

2005 to 2019. All price-related data has been adjusted to constant prices in 2000. 

The descriptive statistical analysis of each variable is included in Appendix Table 

A1. 
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4. Empirical results  

4.1 Basic regression results and robustness test 

Columns (1)-(4) in Table 1 show the estimation outcomes for the pooled ordinary 

least squares (POLS), random effects (RE), fixed effects (FE) and two-way fixed 

effects (TWFE) models. On the key explanatory variable, the findings illustrated in 

Table 1 reveal that the coefficient of RED is notably positive at the 5% significance 

level. This suggests the advancement of renewable energy can foster low-carbon 

growth. 

 
Table 1: Benchmark model regression results 

 (1) (2) (3) (4) 

 POLS RE FE TWFE 

lnRED 0.002 

(0.006) 

0.018** 

(0.008) 

0.034*** 

(0.008) 

0.035*** 

(0.008) 

Control variables Yes Yes Yes Yes 

Province fixed effect NO NO Yes Yes 

Year fixed effect NO NO NO Yes 

Cons -2.751*** 

(0.307) 

-2.955*** 

(0.423) 

-6.150*** 

(0.943) 

-5.538*** 

(1.253) 

R2 0.808 0.495 0.547 0.574 

Notes: The figures in () are standard errors. *** and ** indicate statistical significance at the 1% and 

5% levels, respectively.  

 

This paper performed several robustness tests to validate the robustness of the 

regression results of the benchmark model. First, we removed the control variables 

from the model. The results are shown in the column (1) of Table 2. This effect 

coefficient of RED on TFCEE remains significantly positive at the level of 1% after 

the control variables have been removed, which again proves that RED can improve 

TFCEE.  

Second, we recalculated the standard errors using the Driscoll-Kraay approach 

(Driscoll and Kraay, 1998) to mitigate potential heteroscedasticity, autocorrelation, 

and cross-sectional dependency, thereby reducing the deviation. The outcomes are 

displayed in column (2) of Table 2. Despite employing the Driscoll-Kraay method, 

the impact of RED on TFCEE remains significantly positive at the 1% level. 

Consequently, there is no substantial evidence of autocorrelation or cross-

sectional dependence in the basic model.  

Thirdly, conducting indicator substitution. The installed capacity of renewable 
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energy is utilized as a substitute for renewable energy generation to gauge the 

RED. The findings in Column (3) of Table 2 indicate that RED continues to 

significantly enhance TFCEE after the measurable indicator is replaced. 
 

Table 2: Robustness test results. 

 

 (1) (2) (3) (4) (5) 

 lnTFCEE lnTFCEE lnTFCEE lnRED lnTFCEE 

lnRED 0.026*** 

(0.008) 

0.035*** 

(0.005) 

  0.020* 

(0.011) 

lnREI   0.012** 

(0.005) 

  

IV    0.085*** 

(0.004) 

 

Control variables No Yes Yes Yes Yes 

Province fixed effect Yes Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes Yes 

Cons -1.301*** 

(0.035) 

-5.538** 

(2.682) 

-5.753*** 

(2.741) 

-20.469*** 

(6.874) 

-2.428 

(1.507) 

Kleibergen 

Paap rk Wald F statistic 

    414.919 

{16.38} 

Kleibergen 

Paap rk LM statistic 

    86.997 

[0.0000] 

R2 0.518 0.574 0.558 0.980 0.529 

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The 

figures in () are standard errors, the figures in {} are 10% critical values at of Kleibergen-Paap rk 

Wald F test, and the figures in [] are P values of Kleibergen-Paap rk LM test. 

 

Finally, to overcome potential endogeneity, a two-stage least squares (2SLS) 

approach is used to estimate the benchmark model. Drawing inspiration from 

Aragón and Rud (2016), this study incorporates renewable energy endowment, 

defined as the economically exploitable quantity of renewable energy, as an 

instrumental variable for assessing the development of renewable energy. This 

variable satisfies the exogeneity requirement, given that the endowment of 

renewable energy resources is solely determined by natural conditions. 

Moreover, it meets strong correlation and exclusivity criteria.On one hand, 

regions endowed with greater access to renewable energy resources are better 

positioned to advance renewable energy development and are more likely to 
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establish comprehensive and scalable industrial chains. On the other hand, it is 

unlikely that renewable energy resources would impact economic and social 

development through channels other than RED. 

It's worth noting that the original data of the chosen instrumental variable is 

cross-sectional, which cannot be directly utilized for panel data econometric 

analysis. Following the approach of Nunn and Qian (2014), a time-varying 

variable is introduced to create a panel instrumental variable. Specifically, a 

multiplication term is constructed by combining renewable energy generation 

from the previous year with the economically exploitable amount of renewable 

energy. This term serves as the instrumental variable for RED in that specific 

year. 

The positive effect of the instrumental variable on RED is still positive at the 1% 

level of significance, as seen in column (4) of Table 2, which supports the idea 

that instrumental variable is strongly correlated. Furthermore, for testing the null 

hypothesis of "insufficient identification of instrumental variables," the p-value 

is 0.000, indicating strong evidence against the null hypothesis. Moreover, the Wald 

F-statistic of Kleibergen-Paap rk exceeds the critical value at the 10% level of the 

Stock-Yogo weak identification test, suggesting the absence of weak identification 

of IV. The experiments mentioned above show that the instrumental variables 

chosen were reasonable in general. After taking endogeneity into account, the 

outcomes in column (5) demonstrates the promotion effect of RED on TFCEE is 

still true. 

 

4.2 Nonlinear effect analysis 

4.2.1 Threshold effect test 

This study utilizes the bootstrap approach to derive the F-statistic, for the 

threshold effect test through duplicate sampling (as shown in Appendix Table A2). 

The findings demonstrate a double threshold effect exists when using lnURB as a 

thresholding variable. Single and double thresholds in both significant at the 1% 

level. There is only single threshold effect when lnIS, lnGT, and lnEE are taken 

into consideration as threshold variables, and the threshold values are significant 

at the significance levels of 1% and 5%. 

In addition, the validity of the estimated thresholds was examined using the LR test. 

The estimated threshold outcomes are shown in Appendix Table A3. The first 

threshold and second threshold are 4.129 and 4.456, respectively, when lnURB is 

set as the threshold variable. When lnIS, lnGTE and lnEE are used as threshold 

variables, the thresholds are 4.151, 7.573 and 0.168, respectively.  

 

4.2.2 Threshold effect analysis 

The outcomes of the threshold model are displayed in Table 3. According to column 

(1), when the share of the tertiary sector in GDP is less than 63.50%, the effect of 

RED on TFCEE is weak. Specifically, a 1% increase in RED raises TFCEE by only 

0.02%. When the contribution of tertiary value added to GDP exceeds 63.50%, the 
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impact of the RED on TFCEE expands nearly sevenfold. Due to the lower elasticity 

of energy demand in the third sector compared to the other sector, regions with a 

high share of the tertiary sector are more favorable for renewable energy to replace 

fossil energy. In these regions, it is less economically costly for firms to make the 

energy transition and easier to maintain an optimal scale of production. In addition, 

firms in the tertiary sector are more inclined to introduce or develop new low-carbon 

technologies to adapt to changes in the energy mix because of the lower cost of 

energy transition compared to firms in the secondary sector. 

Column (2) indicates that the effect of RED on TFCEE is relatively small 

when the urbanization rate is less than 62.12%. When the urbanization rate is higher 

than 62.12% and lower than 86.14%, TFCEE is significantly benefited by the RED. 

TFCEE increases by 0.047% for each 1% rise in the level of RED. When the 

urbanization rate is higher than 86.14%, the beneficial effect of RED on TFCEE is 

significantly enhanced, and the increase of RED level by 1% leads to an increase of 

0.203% in TFCEE. The following three aspects may be used to explain the findings 

above: First, with the improvement of urbanization level, many people migrate from 

rural areas to cities, which leads to the improvement of the electrification degree of 

the residential sector. Second, urbanization provides infrastructure for the usage of 

new energy vehicles, which increases the electrification of the transportation sector. 

Therefore, urbanization creates conditions for energy transition. Finally, the 

establishment of smart grids and smart energy communities in urban areas can 

enhance the integration of renewable electricity into the grid and optimize energy 

utilization efficiency. 

Columns (3) and (4) show that both green technology advances and energy 

technology advances will enhance the contribution of RED to TFCEE. Green and 

energy technology advances will reduce the elasticity of firms’ demand for fossil 

energy, thereby increasing their ability to optimize the allocation of factors of 

production. In addition, technological advances may have improved the innovative 

capacity of firms. Therefore, RED is better able to promote low-carbon 

technological advances to enhance TFCEE. 
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Table 3: Results of threshold model regression 

 Threshold variable 

 (1) (2) (3) (4) 

 lnIS lnURB lnGT lnEE 

lnRED·I(q≤λ1) 0.020** 

(0.008) 

0.017** 

(0.007) 

0.037*** 

(0.008) 

0.047*** 

(0.007) 

lnRED·I(λ1<q≤λ2) 0.146*** 

(0.016) 

0.047*** 

(0.007) 

0.061*** 

(0.008) 

0.077*** 

(0.008) 

lnRED·I(q>λ2)  0.203*** 

(0.014) 

  

Cons -5.038*** 

(1.163) 

-2.466** 

(1.028) 

-4.849*** 

(1.153) 

-5.254*** 

(1.096) 

Control variables Yes Yes Yes Yes 

Province fixed 

effect 

Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes 

R2 0.635 0.729 0.642 0.675 
Notes: *** and ** indicate statistical significance at the 1% and 5% levels, respectively. The figures 

in () are standard errors. 

 

4.3 Spatial spillover effects 

There may be spatial correlations between TFCEE in different provinces due to 

economic and technological linkages. The Moran’s I index is employed here to test 

whether a spatial correlation exists. Table 4 shows the test outcomes of Moran’s I 

index with three different spatial weighting matrices (neighborhood matrix, 

geographic distance matrix and economic distance matrix). We can see that under 

all the spatial weighting matrices, the Moran’s I index for TFCEE exhibits a positive 

value and achieves significance at the 1% level across all years. This suggests the 

provincial TFCEE exhibits a notable positive spatial correlation rather than being 

random. Consequently, the spatial econometric model can be employed for analyses. 
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Table 4: Testing results for the Moran’s I Index 

Year W1 W2 W3 

Moran’s I Z-value Moran’s I Z-value Moran’s I Z-value 

2005 0.386*** 3.512 0.099*** 3.807 0.201*** 2.289 

2006 0.386*** 3.541 0.096*** 3.737 0.205*** 2.351 

2007 0.379*** 3.525 0.089*** 3.590 0.202*** 2.347 

2008 0.390*** 3.653 0.092*** 3.710 0.223*** 2.579 

2009 0.388*** 3.576 0.096*** 3.753 0.254*** 2.843 

2010 0.395*** 3.625 0.095*** 3.722 0.261*** 2.897 

2011 0.370*** 3.383 0.094*** 3.660 0.284*** 3.100 

2012 0.384*** 3.466 0.100*** 3.790 0.309*** 3.309 

2013 0.363*** 3.286 0.099*** 3.747 0.320*** 3.414 

2014 0.401*** 3.563 0.115*** 4.175 0.362*** 3.776 

2015 0.384*** 3.432 0.117*** 4.215 0.371*** 3.875 

2016 0.408*** 3.601 0.123*** 4.361 0.357*** 3.708 

2017 0.400*** 3.545 0.126*** 4.450 0.356*** 3.708 

2018 0.384*** 3.423 0.123*** 4.370 0.363*** 3.779 

2019 0.373*** 3.343 0.117*** 4.229 0.381*** 3.967 
Notes: *** indicate statistical significance at the 1% level. W1, W2 and W3 denote neighborhood matrix, 

geographic distance matrix and economic distance matrix, respectively.  

 

Panel spatial econometric models have three forms: spatial autoregressive model 

(SAR), spatial error model (SEM), and spatial Durbin model (SDM). The LR test 

and the Wald test show that the SDM can not be decomposed into the other model 

(as shown in Appendix Table A4), so this paper constructs the following SDM with 

spatial-temporal fixed effects to continue further research. 

𝑙𝑛𝑇𝐹𝐶𝐸𝐸𝑖𝑡 = 𝛼0 + 𝜌1∑ 𝑊𝑖𝑗𝑦𝑗𝑡
𝑛
𝑖 + 𝛼1𝑙𝑛𝑅𝐸𝐷𝑖𝑡 + 𝜌2∑ 𝑊𝑖𝑗𝑅𝐸𝐷𝑗𝑡

𝑛
𝑖 + 𝛼𝑘 ∑ 𝑙𝑛𝑋𝑘𝑖𝑡

7
𝑘=2 +

𝜌𝑘 ∑ 𝑊𝑖𝑗 ∑ 𝑙𝑛𝑋𝑘𝑖𝑡
7
𝑘=2

𝑛
𝑖 + 𝜇𝑖 + 𝜈𝑡 + 𝜀𝑖𝑡                                  (6) 

Where, i and j denote different provinces, t denotes the year. Wij represents spatial 

weighting matrices. ρ1, ρ2 and ρk are spatial correlation coefficients.  
Table 5 shows the regression outcomes of RED on TFCEE under SDM. The spatial 

autoregressive coefficient (ρ) of the SDM is notably positive at the 1% significance 

level. This signifies the presence of not only an exogenous interaction effect among 

the explanatory variables but also an endogenous interaction effect among the 

explained variables in this model. Thus, the choice of SDM is more appropriate.  
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Table 5: Estimation results of SDM 

Explanatory variable (1) (2) (3) 

 W1 W2 W3 

lnRED -0.008 

(0.008) 

0.013 

(0.009) 

0.013* 

(0.007) 

W*lnRED 0.071*** 

(0.013) 

0.176*** 

(0.045) 

0.098*** 

(0.023) 

ρ 0.472*** 

(0.048) 

0.337** 

(0.141) 

0.390*** 

(0.066) 

Control variables Yes Yes Yes 

Province fixed effect Yes Yes Yes 

Year fixed effect Yes Yes Yes 

R2 0.599 0.454 0.557 
Notes: ***, ** and * indicate statistical significance at the 1%, 5% and 10% levels, respectively. The 

figures in () are standard errors. W1, W2 and W3 denote neighborhood matrix, geographic distance 

matrix and economic distance matrix, respectively. 

 

LeSage and Pace (2009) pointed out that analyzing direct and spillover effects 

through simple point estimate results would lead to erroneous conclusions. 

Therefore, following his suggestion, using partial differential method to estimate 

direct and spillover effects. According to the outcomes in Table 6, the direct and 

spillover effect of RED are significantly positive, indicating that RED not only 

enhances TFCEE in local regions, but also contributes significantly to TFCEE in 

spatially related regions. Moreover, the spatial spillover effects of RED are 

significantly more than the direct effects. Consequently, neglecting the spatial 

spillover effects of RED would result in a substantial underestimation of the 

beneficial effect of RED on TFCEE. 

 
Table 6: Direct, indirect, and total effects of RED on TFCEE. 

 (1) (2) (3) 

 W1 W2 W3 

Direct effect 0.002 

(0.008) 

0.018* 

(0.010) 

0.023*** 

(0.008) 

Indirect effect 0.117*** 

(0.020) 

0.279*** 

(0.091) 

0.161*** 

(0.037) 

Total effects 0.119*** 

(0.020) 

0.297** 

(0.094) 

0.184*** 

(0.043) 

Notes: ***, ** and * indicate statistical significance at the 1%, 5% and 10% levels, respectively. The 

figures in () are standard errors. W1, W2 and W3 denote neighborhood matrix, geographic distance 

matrix and economic distance matrix, respectively. 
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This paper argues that the spatial spillover effects of RED on TFCEE may occur 
through two channels: (1) Inter-provincial transmission of renewable electricity. (2) 
Spillover of advanced management experience and technology. To test the first 
channel, this paper constructs two spatial Durbin models based on Equation (6) with 
lnREC and lnPREC as explained variables, respectively. As China’s renewable 
energy resources are mostly in the western provinces, while the electricity-using 
provinces are mainly located in eastern regions, China’s renewable electricity is 
often transported across multiple provinces. Therefore, it is more appropriate to use 
a geographic distance spatial weighting matrix than a neighborhood matrix in 
estimating the spatial spillover effect of RED on renewable energy consumption. 
According to columns (1)-(2) of Table 7, RED not only increases the consumption 
of renewable energy in space-related regions, but also changes the energy 
consumption structure in space-related regions.  
Then, based on Eq. (1), this paper constructs fixed effects models with lnREC and 
lnPREC being the key explanatory variables, and the estimation outcomes are 
shown in columns (3)-(4) of Table 7. This demonstrate an increase in the proportion 
of renewable energy can increase TFCEE. Therefore, through inter-provincial 
transmission of renewable electricity, the RED in the local regions can elevate the 
proportion of renewable energy in the spatially connected regions and thus increase 
the TFCEE in the spatially connected regions. 
 

Table 7: Physical transmission mechanism test for the spatial spillover effect of RED 
on TFCEE 

Independent variables Dependent variables 
 (1) (2) (3) (4) 
 lnREC lnPREC lnTFCEE lnTFCEE 

lnRED 0.394*** 
(0.039) 

0.377*** 

(0.041) 
  

W*lnRED 0.754*** 
(0.196) 

0.870*** 
(0.203) 

  

lnREC   0.024 
(0.020) 

 

lnPREC    0.057*** 
(0.019) 

Control variables Yes Yes Yes Yes 
Province fixed effect Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes 
R2 0.330 0.387 0.523 0.538 

Direct effect of lnRED 0.383*** 
(0.040) 

0.365*** 
(0.042) 

  

Indirect effect of lnRED 0.387*** 
(0.138) 

0.511*** 
(0.155) 

  

Total effects of lnRED 0.770*** 
(0.131) 

0.876*** 

(0.148) 
  

Notes: *** indicate statistical significance at the 1% level. The figures in () are standard errors. lnREC 

and lnPREC denote the logarithm of renewable energy consumption and the share of renewable 

energy consumption in total primary energy consumption, respectively. 
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According to the mechanism analyzed in the previous section, RED in local regions 

contributes to the improvement of management level and technological progress of 

local enterprises. Due to the close economic linkages between provinces in China, 

advanced management experience and low-carbon technologies induced by RED in 

one province may spill over to other provinces, leading to a higher TFCEE in other 

provinces. The magnitude of this spillover effect depends mainly on two aspects: 

(1) the absorptive capacity of the technology and knowledge of the recipient, and 

(2) the degree of diffusion of technology and knowledge. Thus, if RED-induced 

low-carbon knowledge and technology in local regions can spill over to spatially 

relevant regions, this spillover effect increases as the absorptive capacity and 

diffusion of technology and knowledge increases.  

The existing literature indicates that the absorptive capacity of a country or a region 

for technology and knowledge is significantly and positively correlated with its 

economic level, its level of workers and its R&D intensity (Teixeira and Fortuna, 

2010; Huang and Chen, 2020; Lee and Lee, 2022). In addition, the level of 

development of technology markets is seen as a key influence on the diffusion of 

technology and knowledge (Han and Seo, 2023). Therefore, to test the spatial 

spillover effects, we incorporate the interaction terms of lnRED with lnPGDP, lnHC, 

lnRD, and lnLMTD and the spatial lag terms of these interaction terms into Eq. (6) 

to establish the new spatial Durbin models. The results presented in Table 8 

demonstrate that both the direct and spatial spillover effects of RED on TFCEE 

escalate with higher levels of economic development, human capital, R&D intensity, 

and technological market development. These findings indirectly validate the 

economic transmission mechanism underlying the indirect effect of RED on TFCEE. 

 
Table 8: Economic transmission mechanism test for the spatial spillover effect of 

RED on TFCEE 

 (1) (2) (3) 

 Direct effect Indirect effect Total effects 

lnRED*lnPGDP 0.035*** 

(0.007) 

0.091*** 

(0.027) 

0.126*** 

(0.031) 

lnRED*lnHC 0.076*** 

(0.042) 

0.333** 

(0.157) 

0.409** 

(0.186) 

lnRED*lnRD 0.049*** 

(0.007) 

0.113*** 

(0.020) 

0.162*** 

(0.022) 

lnRED*lnLMTD 0.020*** 

(0.003) 

0.036*** 

(0.009) 

0.056*** 

(0.011) 
Notes: *** and ** indicate statistical significance at the 1% and 5% levels. The figures in () are standard 

errors. lnLMTD denotes the logarithm of technology market turnover as a share of GDP which is 

used to measure technology market maturity. 
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5. Discussion 

Based on the above empirical results, five findings are highlighted. 

First, the development of renewable energy has a significantly positive impact on 

the TFCEE in various provinces of China. Compared to traditional fossil fuels, 

renewable energy is cleaner, and its development reduces dependence on fossil fuels. 

Additionally, renewable energy technologies usually come with higher energy 

conversion efficiency. For instance, modern wind and solar power generation 

technologies incur less energy loss during the conversion process, whereas 

traditional thermal power generation involves considerable energy waste. With 

technological advancements and the realization of economies of scale, the cost of 

renewable energy has significantly decreased, enabling provinces to adopt 

renewable energy technologies more economically and efficiently. The widespread 

adoption and cost reduction of these technologies has prompted more provinces to 

transition to renewable energy, thereby improving carbon emission efficiency. In 

conclusion, the sustainable effects of developing renewable energy have already 

begun to manifest in China. 

Second, economic transformation and energy transformation are complementary 

and collectively promote the achievement of a low-carbon development model. An 

increase in the proportion of the tertiary sector can enhance the positive impact of 

RED on TFCEE. The tertiary sector (services) typically has lower carbon emissions 

compared to the primary (agriculture) and secondary (industry) sectors. The service 

industry primarily relies on human labor and technology, with less dependence on 

energy-intensive and high-emission production processes. The tertiary sector 

includes a large number of technology- and knowledge-intensive industries, such as 

information technology, financial services, education, and scientific research. These 

industries generally have a higher acceptance of new technologies and stronger 

innovation capabilities, allowing them to better adopt and optimize renewable 

energy technologies. The service sector has strong adaptability and flexibility, 

enabling it to respond more quickly to and implement government environmental 

and renewable energy promotion policies. For example, service industry enterprises 

can more easily adopt measures such as green offices and energy management 

systems, which help promote energy transformation at a broader level. As the 

tertiary sector grows, especially with the rise of financial and commercial services, 

consumer environmental awareness also increases. More consumers will choose 

green energy products and services, thereby driving the development of renewable 

energy and further improving carbon emission efficiency. 

Third, The advancement of urbanization is conducive to achieving carbon neutrality, 

as a higher urbanization rate can enhance the positive impact of RED on TFCEE. 

During the urbanization process, large-scale infrastructure construction and 

modernization provide a solid foundation for the development of renewable energy. 

For instance, newly constructed urban buildings and energy networks can 

incorporate the latest energy-saving technologies and renewable energy systems, 

thereby improving overall energy efficiency and reducing carbon emissions. 
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Urbanization is often accompanied by the development and improvement of public 

transportation systems. The widespread use of urban public transport systems such 

as subways, light rail, and electric buses can significantly reduce the use of private 

cars, thereby lowering carbon emissions in the transportation sector. Urbanization 

means a higher concentration of the population in urban areas, which facilitates 

more effective management and distribution of energy resources. The centralized 

energy demand makes large-scale renewable energy projects (such as large solar 

power stations and wind farms) more economically viable and feasible. Cities are 

typically the focal points for the implementation and regulation of national and local 

government policies. As urbanization progresses, governments at all levels find it 

easier to implement and enforce strict environmental policies and renewable energy 

development policies in urban areas. The effective implementation of these policies 

can further promote the achievement of a clean development model. 

Fourth, technological advancements drive renewable energy development to further 

improve TFCEE. Progress in technology continually enhances the energy 

conversion efficiency of renewable energy technologies. For example, the 

conversion efficiency of solar panels has increased from around 10% in the early 

stages to over 20% today, with some technologies even surpassing 30%. Advances 

in wind power technology have also significantly improved wind energy utilization 

efficiency. These efficiency improvements mean that more clean energy can be 

generated per unit of resource, reducing the reliance on fossil fuels and promoting 

further energy transformation. Technological progress has significantly lowered the 

production and installation costs of renewable energy. For instance, the cost of 

generating solar and wind power has dramatically decreased over the past decade, 

achieving cost parity with, or even becoming cheaper than, traditional fossil fuel 

power generation in many regions. The reduction in costs has made renewable 

energy more economically competitive, driving its large-scale adoption. 

Technological advancements extend beyond the power generation equipment itself, 

encompassing the optimization of the entire industry chain, including raw material 

supply, manufacturing processes, logistics, and installation and maintenance. This 

comprehensive industry-wide technological progress further reduces the overall 

cost of renewable energy, promoting its widespread application and improving 

carbon emission efficiency. 

Fifth, renewable energy development not only enhances the TFCEE of local areas 

but also makes a significant positive contribution to the TFCEE of spatially related 

regions. This spatial spillover effect is achieved through the interprovincial flow of 

electricity and the spillover of technology. With technological advancements and 

improvements in grid infrastructure, the electricity generated from renewable 

energy can be transmitted and shared through cross-regional grids. For example, 

when there is an excess of solar power generation in one area, it can be efficiently 

transmitted via the grid to other areas that need energy. This cross-regional energy-

sharing mechanism allows different regions to better utilize renewable energy, 

optimize overall energy allocation, and improve carbon emission efficiency across 

regions. The successful application of renewable energy technologies can also drive 
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technological progress in surrounding areas. Through technology diffusion and 

knowledge dissemination, advanced renewable energy technologies and 

management experiences can spread from one region to another. This diffusion of 

technology and knowledge not only helps to improve the carbon emission efficiency 

of the local area but also enhances the energy utilization efficiency of related regions, 

collectively boosting overall carbon emission efficiency. 
 

6. Conclusions and policy implications 

This study first uses the global super-efficiency slacks-based measure model to 

assess total factor carbon emissions efficiency (TFCEE) using data collected at the 

province level in China between 2005 and 2019. On this basis, the linear and non-

linear effects of renewable energy development (RED) on TFCEE are explored 

using the two-way fixed effects model and the threshold effects model. Furthermore, 

utilizing the spatial Durbin model, the paper delves into the spatial spillover effect 

of RED on TFCEE and discusses potential transmission mechanisms associated 

with these spatial spillover effects. The key findings are listed below:  

(1) RED significantly improves TFCEE, and this effect is still there following 

several robustness tests that include endogenous treatment. TFCEE rises by 0.020% 

to 0.035% for every 1% increase in RED. (2) China’s RED complements its 

economic structural transformation and technological progress. Upgrading the 

industrial structure, promoting urbanization, and developing green technologies and 

energy technologies can help to enhance the positive impact of RED on TFCEE. (3) 

The neighborhood effect of RED on TFCEE is much larger than the local effect. 

When spatial spillovers are considered, a 1% increase in RED leads to an 0.12%-

0.30% increase in TFCEE. Inter-provincial transmission of renewable electricity 

and spatial spillovers of new knowledge and technologies are potential transmission 

mechanisms for the spatial spillover effects of RED on TFCEE.  

The conclusions of this study have the following clear policy recommendations: (1) 

China should maintain its commitment to the energy transformation strategy and 

actively promote the advancement of renewable energy. To achieve this, the 

Chinese government should allocate resources towards developing supportive 

infrastructure and offer financial subsidies and tax incentives to encourage private 

investment in renewable energy initiatives. (2) To maximize the impact of RED on 

TFCEE, the Chinese government should persist in promoting industrial structure 

upgrades and fostering new urbanization. Additionally, increased investment in 

research and development of green and energy technologies is crucial. (3) The 

facilitating effect of RED on TFCEE depends on its spatial spillover effect. 

Therefore, the central government should co-ordinate the planning of electricity 

infrastructure and technology trading market construction. Local governments 

should strengthen co-operation in renewable energy power production and 

consumption, increase investment in education and R&D, and introduce talents. 
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