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Abstract 
 

The Topp-Leone generalized power Weibull distribution, which is an extension of 

generalized power Weibull, is proposed and its properties explored. The failure rate 

of the proposed distribution exhibits increasing, reversed J, upside-down bathtub, 

and bathtub shapes. Some statistical properties are obtained: quantile function, 

moments, moment generating function, incomplete moment, mean and median 

deviations, mean residual life function, and Lorenz as well as Bonferroni curves. 

The maximum likelihood estimation approach is deployed to estimate the model 

parameters. Simulation studies are conducted to evaluate the performance and 

accuracy of the maximum likelihood estimates of the model parameters. 

Applications of the model to real datasets are presented. A location-scale regression 

model is also developed for the proposed model and its application has been 

demonstrated with a real dataset. 
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1. Introduction  

The classical Weibull distribution by Weibull [34] is one of the examples of lifetime 

distributions for modeling lifetime data. The most serious drawback of this 

distribution is that it failed to offer a non-monotone failure rate that is common in 

survival and reliability studies. To improve the flexibility of its properties, 

numerous alternative generalized Weibull distributions have been recommended 

and studied in published works. Mudholkar et al. [19] introduced the exponentiated 

Weibull distribution. The exponentiated Weibull distribution offers a bathtub-

shaped failure rate. Mudholkar et al. [20] proposed and studied a three-parameter 

generalized Weibull (GW) class that houses distributions with unimodal and 

bathtub-shaped failure rates. These special distributions in this class are analytically 

tractable and computationally manageable, the extended Weibull distribution by 

Ghitany et al. [11], A reduced new modified Weibull distribution due to Almalki 

[1], generalized Weibull distributions proposed and studied by Lai [17], the flexible 

Weibull distribution recommended by Bebbington et al. [7], McDonald generalized 

power Weibull distribution by Sayibu et al. [37], extended cosine generalized power 

Weibull by Sayibu et al. [28]  and the Topp-Leone Generated Weibull distribution 

by Aryal et al. [4] among others.   

Nikulin and Haghighi [25] studied a new generalization of the Weibull distribution 

by incorporating an additional shape parameter. This distribution is known as the 

generalized power Weibull distribution (GPW). The random variable  follows 

the GPW distribution, if the CDF is specified as: 

 

,  , ,  and                     (1) 

 

The corresponding PDF of GPW is written succinctly as: 

 

                                           (2) 

 

The survival function of GPW is as follows: 

 

                                                           (3)                                                                

where  is a scale parameter,  and  are shape parameters. The standard 

Weibull distribution is contained in GPW, when . According to Nikulin and 

Haghighi [25], the failure rate function of the generalized power Weibull 

distribution can be constant, monotone, and non-monotone shaped.    
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The failure rate function of GPW is read as: 

 

 
 

The quantile function of GPW is provided as 

 
In the statistics literature, some extensions of the generalized power Weibull 

distribution have been studied by many researchers, namely, Selim and Badr [30] 

introduced the Kumaraswamy generalized power Weibull distribution Selim [29] 

recommended the generalized power generalized Weibull distribution, Khan [15] 

studied the transmuted generalized power Weibull distribution and Pena-Ramirez 

et al. [26] considered the exponentiated power generalized Weibull distribution.      

The Topp-Leone (TL) distribution was introduced by Topp and Leone [31]. The 

distribution did not receive much attention until Nadarajah and Kotz [22] discovered 

it. Following this, Ghitany et al. [12] provided some reliability measures of the TL 

distribution, a discourse on kurtosis of the TL distribution was reported by Kotz and 

Seier [16], Vicaria et al. [33] recommended two-sided generalized Topp and Leone 

distribution, Al-Zahrani [2] obtained goodness of fit tests for the TL distribution. 

Sangsanit and Bodhisuwan [27], presented the Topp-Leone generalized exponential 

(TLGE) distribution as an example of the TLG distribution.    

The Topp-Leone generated family (TL-G) was recommended by Sanganti and 

Bodhisuwan [27]. The CDF is given by:   

 

     , ,              (4) 

 

The corresponding PDF is obtained by differentiating the CDF. We get, 

 

                                          (5) 

 

where  and  
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Other important characteristics of lifetime data analysis are the survival and hazard 

functions. Those functions of the TL-G distribution are in that order 

 

                            (6) 

and 

                                         (7) 

 

Furthermore, Nadarajah and Kotz [22] pointed out that the TL-G distribution offers 

bathtub shape of the failure rate function when .  In addition, if the 

TL-G distribution has a non-increasing failure rate function. Moreover, the inverse 

of the cumulative distribution function of the TL-G distribution is: 

 

  
 

where u is distributed as the uniform on the interval (0,1).      

 

In this article, a new generalization of the GPW, the Topp-Leone Generalized Power 

Weibull (TLGPW) is derived. The mathematical properties are studied. The 

motivations for deriving the TLGPW are to provide more usefulness and flexibility 

of the ordinary distribution and to improve its goodness-of-fit in comparison with 

the well-known distributions in lifetime data analysis.    

The structure of the paper is unfolded as follows: Section 2 has been devoted to 

deriving the CDF and the associated PDF of the proposed distribution, the linear 

representation of the density function, the survival function, the failure rate function, 

cumulative hazard, and reversed hazard functions. In Section 3, the statistical 

properties of the proposed distribution are derived. Estimators for the parameters of 

the proposed model, namely, the maximum likelihood estimation technique are 

presented in section 4. Section 5 houses Monte Carlo simulations undertaken to 

evaluate the finite sample behavior of the estimators. In section 6, the empirical 

relevance of the TLGPW is illustrated using real datasets. A location-scale 

regression model and its application are covered under section 7. The concluding 

remarks of the article are found in section 8.  
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2. The Topp-Leone Generalized Power Weibull Distribution 

In this section, we introduce the PDF and the CDF of TLGPW by inserting the 

survival function of GPW distribution in equation (3) into equation (4).  

 ,      , ,  and  

 

                                                   (8) 

 

The associated density function is derived by differentiating equation (6) and is 

given as: 

                 (9) 

, , ,  and  

Where , ,  are shape parameters and  is a scale parameter. A random 

variable  having PDF (7) is denoted as .   

The proposed distribution reduces to the Topp-Leone Weibull when . 

Some of the shapes exhibited by the PDF of the TLGPW are shown in Figure 2. 

The shapes include right skewed of different kurtosis, nearly symmetric, and 

decreasing shapes.  

 

 

 

 

Figure 1: Plots of PDF of TLGPW for various selected values of parameters 
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2.1 Special models of the TLGPW    

A number of essential distributions can be derived as particular cases of the TLGPW 

for some selected values of the model parameters .  These distributions 

are presented in Table 1.         

 
Table 1: Some nested models of TLGPW distribution 

Distribution 
   

b Distribution function Author(s) 

Topp-Leone 

Weibull 

- 1 - - 

 

Tuoyo et al. [32] 

Topp-Leone 

generalized 

power 

exponential 

- - 1 - 

 

New 

Topp-Leone 

Exponential 

distribution 

- 1 1 - 

 

New 

Topp-Leone 

Nadarajah-

Haghighi 

 

- - 1 - 

 

Yousof 

and Korkmaz [36] 

Topp-Leone 

Rayleigh 

Distribution 

- 1 2 - 

 

New 

Generalized 

power Weibull 

distribution 

- - - 1 

 

Nikulin 

and Haghighi [25] 

 

Weibull 

Distribution 

- 1 - 1 
 

Weibull [34] 

Nadarajah-

Haghighi 

- - 1 1 
 

 

Nadarajah 

and Haghighi [21] 

Exponential - 1 1 1 
 

 

Generalized 

power Rayleigh 

- - 2 1 

 
 

New 
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2.2 Survival Function  

The survival function of TLGPW is expressed as 

                                                      

                                              (10) 

 

2.3 Hazard Function 

The hazard function is specified by   

              (11) 

 

The plot of the hazard function is shown in Figure 4. Some of the suitable shapes 

for the failure rate function include increasing, reversed J-shape, upside-down 

bathtub, and bathtub shapes 

 

 

 

Figure 2: Plots of the failure rate of TLGPW for selected values of the 

parameters 
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2.4 Cumulative Hazard 

The cumulative hazard is expressed as follows    

                                     (12) 

2.5 Reversed Hazard 

The reversed hazard is defined by  

 

           

 

             (13) 

 

 

 

 

2.6 Expansion for the density function 

Several popular classes of distributions can be expressed as infinite or finite 

weighted series of their baseline distributions (Eugene et al., [10]; Jones, [13]; 

Cordeiro et al., [8]). This also means that the properties and inferences can be 

derived from the same measures of its baseline distributions. Expressing the density 

function in linear representation is a key determinant in deriving useful statistical 

properties of any new distribution. In this segment, the density function would be 

written in linear representation form. This expansion is derived using the 

generalized binomial theorem. For any real number,   and , the 

binomial expansion is   

                                                    (14) 

where  

 

 

Using the binomial expansion (8) in equation (7), we get the PDF as power series 

expansion as follows   

 
                                                                              (15)
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3. Statistical Properties 

It is important to derive the statistical properties of any new distribution. The 

statistical properties of TLGPW distribution will be obtained in this segment. These 

properties are quantile functions, moments, moment-generating functions, 

incomplete moments, mean and median deviations, mean residual life, Lorenz and 

Bonferroni curves and order statistics. 

  

3.1 Quantile Function 

The quantile function is explained as the inverse of the cumulative distribution 

function. The quantile function of a random variable   is obtained by solving the 

system equation .  

Thus   

 

 
Rearranging gives 

 
 

Taking the natural logarithm of both sides gives 

 

Simplifying further and expressing the equation in terms of  gives the quantile 

function as 

           ,               (16) 

 

The median of TLGPW can be obtained by inputting  into equation (16) 
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Simulating from TLGPW is straightforward. Using the inverse transformation 

method, we consider the random variable  given by 

 

where is a uniform variate on the unit interval . 

 

3.2 Moments of TLGPW 

The moment and moment-generating functions play important roles in analyzing 

any distribution functions. Although it is sometimes involving to obtain the 

moments in explicit forms, they can be obtained as infinite summation of gamma 

functions. Distinct moments can be easily computed with the aid of any standard 

mathematical software.   

Denote  as a continuous random variable with density function , then the 

 non-central moments of a random variable are defined as  

 

 
 

For the TLGPW family of distributions 

 

 
 

Inputting the mixture representation of the density function, we get 

 

 

 
 

But ,  hence we get  
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Applying Integration by substitution to simplify  , the following steps are 

undertaken. 

Let  

,  

 

Then as ,  and ,  

 

Further,

 

 

 
Hence 

 

 

 

Using the generalized form of binomial expansion; , 

 

,  
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then 

 

 

 

 

 

(17) 

 

3.3 Moment Generating Function 

The moment-generating function characterizes the distribution function. The 

moment generating functions are unique functions deployed to find the moments of 

a random variable, if it exists. If all the moments of a random variable exist then the 

moment-generating function of  can be written as   
 

  
 

Using Taylor’s series of expansion   

 

 
(18) 



On the Topp-Leone Generalized Power Weibull Distribution: Properties,… 

 

13  

3.4 Incomplete Moment 

Incomplete moments can be used to explain not only the shape of a distribution of 

a random variable, but also play a key role in computing the mean deviation, median 

deviation, inequality measures, and mean residual life of the distribution of a 

random. The  incomplete moment is given as    

 
Using the series expansion of the TLGPW density function, we get 

 

 

Let ,  

 

 

Then as ,  and ,  

 

Further, 

 

 

 

 

After some algebraic manipulations, the  incomplete moment is given as follows 

(19) 
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3.5 Mean and Median Deviations 

The first incomplete moment is a key determinant in obtaining expressions for the 

mean deviation from the mean as well as the mean deviation from the median. The 

overall spread of a random variable is explicated by these measures. The mean 

deviation of a random variable is specified by  

    

where  is the first incomplete ( ) at  

 

 
 

Therefore, the mean deviation of TLGPW is given as follows 

 

(20) 

The median deviation is defined as 

    

    
(21) 

 

3.6 Mean Residual Life 

The mean residual life (MRL) function at time , indicates the estimated additional 

life span for a unit alive at time . The MRL ( ) is defined as 

 

 

where  denotes the first non-central moment. 
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Inserting the relevant terms, we get 

 

    
(22) 

where 

 
and 

 
 

3.7  Lorenz and Bonferroni Curves 

The Lorenz and Bonferroni curves are tools deployed in the measurement of, for 

example, income inequalities. The Lorenz curve is defined as 

 

 
 

Substituting, we obtain the Lorenz curve of TLGPW as follows 

  
(23) 

 

Also, the expression for the Bonferroni curve is obtained by 

 
Inserting the relevant terms, the Bonferroni curve for the TLGPW family of 

distributions is given as 

  
(24) 
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3.8 Order Statistics 

Order statistics feature prominently in distribution theory and practice. Suppose 

 be a haphazard sample of size , then the PDF of the  

order statistic is given by  

 

 
 

For the TLGPW family of distributions, the PDF is given by 

 

 
 

The PDF of the largest order statistics is obtained by inserting  

 

 

    
(25) 

The PDF for the smallest order statistics ( ) for the TLGPW is 

 

 

 
 

Substituting we obtained 

     
(26) 
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4. Parameter Estimation 

In this section, the unknown parameters of the TLGPW class of distributions were 

estimated using the maximum likelihood estimation technique.  

 

4.1 Maximum Likelihood Estimation 

Suppose  denote a random sample of complete data from the TLGPW 

distribution. The likelihood function is given as   

 

                                                              (27) 

 

Inserting equation (7) into equation (27), we have  

   

 
 

The log-likelihood function for the TLGPW is given as  

 

 
(28) 

 

To obtain the MLE of the parameters, we maximize the score function by taking the 

first partial derivative of the equation (28). Thus 

 

                                              (29) 

 

    
(30) 

 



18                                           Abdul-Lateef et al. 

 

 

 
(31) 

 

   
(32) 

 

The maximum likelihood estimates of , ,  and  are the simultaneous 

 

solutions of the equations , ,  and .  

 

These equations cannot be solved analytically and statistical software can be used 

to solve them numerically by using iterative techniques.    

 

5. Monte Carlo Simulation Study 

A simulation study was carried out to evaluate the performance and accuracy of the 

estimating technique, namely, the maximum likelihood estimation procedure. 

Monte Carlo experiments were done based on generated data from the TLGPW 

distribution. By using the inversion method, 1000 random samples of size  , 

50, , ,  and  from TLGPW distribution for different combinations 

of the parameter values for: , ,  and , and ,

, and  were generated. The following quantities were 

computed in this study:   

Average bias (AB) of the MLE  of the parameter   
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Root mean squared (RMSE) of the MLE,  of the parameter   

 

Table 2 presents the average bias and RMSE values of the parameters    

for various sample sizes. The outcomes in Table 2 show declining AB and RMSE 

as the sample size increases.  
 

Table 2: Monte Carlo Simulation results of average bias and RMSE 

  I  II  

Parameter n AB RMSE AB RMSE 

 30 0.2928 0.6962 0.5014 0.6467 

 50 0.2413 0.5129 0.4945 0.4774 

 80 0.1684 0.5046 0.3796 0.5506 

 
120 0.1058 0.3584 0.3536 0.3662 

 150 0.0742 0.2265 0.3236 0.2939 

 200 0.0326 0.1310 0.2528 0.2727 

 250 0.0156 0.1099 0.2287 0.2484 

 30 4.5258 12.5752 1.8620 0.9389 

 50 0.6759 1.0312 0.8529 0.9148 

 80 0.6590 0.9215 0.7247 0.8154 

 
120 0.4295  0.8211    0.7130 0.7795 

 150 0.3574 0.6699 0.6635 0.7797 

 200 0.3311 0.5370 0.5876 0.6088 

 250 0.3263 0.4175 0.4926 0.5712  

 30 0.7455 1.2038 2.5201 5.0567 

 50 0.4805 0.7455 1.0371 2.0297 

 80 0.3581 0.5598 0.6704 1.0594 

 
120 0.2272 0.4152 0.3492 0.7542 

 150 0.1896 0.3623 0.2339 0.4239 

 200 0.1617 0.2227 0.2269 0.3228 

 250 0.1565 0.1985 0.2106 0.2958  

 30 0.6298 0.7620 1.1639 1.3801 

 50 0.5130 0.6758 0.9944 1.1910 

 80 0.4701 0.5794 0.9189 1.1854 

 
120 0.3830 0.4264 0.7506 0.8946 

 150 0.3040 0.4439 0.7372 0.8757 

 200 0.2048 0.3868 0.6984 0.7969 

 250 0.1530 0.2879  0.6812 0.6138  
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6. Applications 

In this section, the flexibility of the proposed model is examined and compared with 

some existing models. These models are odd generalized exponential Weibull 

(OGEW) (Codeiro et al., [8]), generalized power Weibull (GPW) (Bagdonavicius 

and Nikulin, [6]), new Weibull Pareto (NWP) (Nasiru and Luguterah, [23]), 

generalized odd inverse exponentiated exponential (GOIEE) (Yakubu et al., [35]), 

Weibull (Weibull, [34]), and Kumaraswamy generalized power Weibull (KGPW), 

(Selim and Badr, [30]), the rest are generalized odd inverse Weibull (GOIEW) 

(Yakubu et al., [35]), generalized odd inverse Rayleigh (GOIER) (Yakubu et al., 

[35]), inverse Weibull (IW) (Johnson et al., [14]), and generalized odd inverse 

Lomax (GOIEL) (Yakubu et al., [35]).  

 

6.1 Single Carbon Fiber Dataset 

The first dataset represents the strength measured in GPA, for single carbon fibers 

which were tested under tension at gauge lengths of 1, 10, 20, and 50mm. for 

illustration purposes, the 20mm data is considered to have a sample size of 63. The 

dataset can be found in Badar and Priest [5] and was also used by Selim and Badr 

[30]. The observations are as follows: 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 

2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 

2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 

3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 

3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 

4.225, 4.395, 5.020. 

 

6.2 Bladder Cancer Dataset 

The second dataset shows the remission time (in months) of a random sample of 

128 bladder cancer patients.  The dataset can be found in Lee and Wang [18] and 

was recently used by Yakubu et al., [35] and the observations include: 

0.08, 6.97, 2.46, 9.74,3.88, 15.96, 4.26, 79.05, 11.79, 8.37, 12.07, 2.09, 9.02, 3.64, 

14.76, 5.32, 36.66,5.41, 1.35, 18.10, 12.02,21.73,3.48, 13.29, 5.09, 26.31, 7.39, 1.05, 

7.63, 2.87, 1.46, 2.02, 2.07, 4.87, 0.40, 7.2,6, 0.81, 10.34, 2.69, 17.12, 5.62, 4.40, 

3.31, 3.36, 6.94, 2.26, 9.47, 2.62, 14.83, 4.23, 46.12, 7.87, 5.85, 4.51, 6.93, 8.66, 

3.57, 14.24,3.82, 34.26,5.41, 1.26, 11.64, 8.26, 6.54, 8.65, 13.11, 5.06, 25.82, 5.32, 

0.90, 7.62, 2.83, 17.36, 11.98, 8.53, 12.63, 23.63, 7.09, 0.51, 7.32, 2.69 10.75, 4.33, 

1.40, 19.13 12.03, 22.69, 0.20, 9.22, 2.54, 10.06, 4.18, 16.62, 5.49,3.02, 1.76 20.28, 

2.23, 13.80,3.70, 14.77, 5.34, 43.01, 7.66, 4.34, 3.25, 2.02, 3.52, 25.74, 5.17 32.15, 

7.59, 1.19, 11.25, 5.71, 4.50, 3.36, 4.98, 0.50, 7.28, 2.64, 10.66, 2.75, 17.14, 7.93, 

6.25, 6.76. 

 

The descriptive statistics of the two datasets are given in Table 3. It can be observed 

that the mean and median strengths of the carbon fibers are 3.0593 and 2.9960 

respectively. Since the mean is greater than the median, it implies the set is rightly 
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skewed and this is manifested by a skewness value of 0.65. The standard deviation 

is 0.6209. The dataset is less peaked as compared to the normal distribution since it 

shows a kurtosis value of 0.41. 

On the other hand, the mean of the cancer data is 9.366 with a standard deviation 

value of 10.508. The median is 6.395. The data is highly skewed to the right with a 

skewness value of 3.33. The dataset is also highly peaked as compared to the normal 

distribution since it has a kurtosis value of 16.15. The details are shown in Table 3.  

 
Table 3: Descriptive statistics of Carbon and Cancer datasets 

 Mean Median Standard 

Deviation 

skewness Kurtosis 

Carbon data 3.0593 2.9960 0.6209 0.65 0.41 

Cancer data 9.3660 6.3950 10.5080 3.3300 16.1500 

 

The Total Test on Time transform (TTT) plot for the carbon dataset is shown in 

Figure 3. The carbon dataset has an increasing failure rate since the curve is above 

the diagonal.  

 

Figure 3: TTT transform plot for the carbon dataset 
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The TTT transform plot for the bladder cancer dataset is shown in Figures 4. The 

bladder cancer dataset exhibits a bathtub shape since the curve initially goes above 

the diagonal and then goes below it.  

 

 
Figure 4: TTT transform plot for the bladder cancer dataset 

Table 4 shows the parameter estimate and their corresponding standard errors in 

brackets for the carbon dataset.   
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Table 4: Parameters estimate for the carbon dataset 

 

Table 5 shows the parameter estimate and their corresponding standard errors in 

brackets for the bladder cancer dataset. 
 

Table 5: Parameters estimate for the bladder cancer dataset 

Distribution 
    

TLGPW 5.5668 

(2.0086) 

0.2608 

(0.2357) 

0.0433 

(0.0328) 

5.3909 

(3.4404) 

     
OGEW 24.3971 

(0.7571) 

0.0575 

(0.3595) 

0.3808 

(0.5270) 

2.7271 

(5.6418) 

 
   

 

GPW 5.9558 

(1.3943) 

0.5341 

(0.1828) 

0.0025 

(0.0029) 

 

    
 

NWP 5.0494 

(0.4557) 

0.8766 

(306.1422) 

3.2294 

(223.3524) 

 

    
 

GOIEE 0.5232 

(0.0651) 

0.7194 

(0.4392) 

0.1328 

(0.0830) 

 

   
  

Weibull 5.0494 

(0.4557) 

0.3017 

(0.0080) 

  

Distribution 
    

TLGPW 0.5116 

(0.3232) 

0.1994 

(0.1020) 

0.0093 

(0.0271) 

2.5572 

(1.2758) 

         
GOIEW 0.5624 

(0.2289) 

1.4505 

(1.1441) 

0.1927 

(0.1857) 

0.8556 

(0.2191) 

 
      

GOIEL 0.4963 

(0.0630) 

1.6500 

(0.7664) 

0.0291 

(0.0277) 

5.9006 

(3.7475 

   
  

IW 2.4310 

(0.2193) 

0.7521 

(0.0424) 

  

    
 

GOIEE 0.5232 

(0.0651) 

0.7194 

(0.4392) 

0.1328 

(0.0830) 

 

   
  

GOIER 0.5919 

(0.0800) 

2.4962 

(1.1523) 

0.1551 

(0.0561) 
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The performance of the fitted distributions is compared using log-likelihood ( ) 

Akaike information criteria (AIC), corrected Akaike information criteria (AICc), 

Bayesian information criteria (BIC), and Kolmogorov-Smirnov (K-S) goodness-of-

fit measure. In general, the higher the values of the log-likelihood and smaller values 

of the AIC, AICc, BIC, and K-S of a particular model, the better the fit of the model 

to the dataset under consideration.  

The log-likelihood, goodness of fit statistics, and information criteria of the fitted 

distributions have been examined and the results are presented in Tables 6 and 7 for 

the two datasets. The proposed model which is in bold has fitted the two datasets 

better than the other competing models according to the criteria given above. 

   
Table 6: Log-likelihood and information criteria statistics for the carbon dataset 

Distribution  AIC AICC BIC K-S P-Value 

TLGPW -56.29 120.5728 121.2624 129.9444 0.0838 0.7680 

KGPW -56.35 127.914 128.114 133.4157 0.0842 0.7237 

NWP -61.96 129.9140 130.3207 136.3434 0.0876 0.7192 

GPW -59.92 125.8376 126.2444 132.2670 0.0984 0.5750 

OGEW -56.61 121.2176 121.9073 129.7901 0.0860 0.7402 

Weibull -61.96 127.9140 128.1140 132.2002 0.0876 0.7192 

 
Table 7: Log-likelihood and information criteria statistics for the bladder cancer 

dataset 

Distribution  AIC AICC BIC K-S P-Value 

TLGPW -409.36 826.7206 827.0458 838.1287 0.0316 0.9995 

GOIEW -414.57 837.1456 837.4708 848.5535 0.0842 0.3237 

GOIEL -413.00 835.3095 835.6347 846.7176 0.0904 0.2838 

IW -444.00 892.0015 892.0975 897.7056 0.1408 0.0125 

GOIER -418.18 842.3567 842.5503 850.9128 0.1186 0.0548 

GOIEE -430.91 867.8152 868.0087 876.3713 0.1253 0.0359 

 

Also, the variance-covariance matrices for the parameter estimates of the TPGPW 

for the carbon and bladder cancer datasets are respectively given as follows; 
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The variances of the maximum likelihood estimates of the parameters of the 

TPGPW for the carbon data are: , , 

, and .  

The 95% confidence intervals for the parameters  and   of the TLGPW 

are estimated and presented respectively as follows: (1.6299,9.5037), (0, 0.7228), 

(0, 0.1076), and (0, 12.1341).  

 

Furthermore, the variance-covariance matrix for the parameter estimates of the 

TLGPW for the bladder cancer data is given as follows; 

 

  
 

The variances of the maximum likelihood estimates of the parameters of the 

TLGPW for the bladder cancer data are: , , 

, and .  

The 95% confidence intervals for the parameters  and   of the TLGPW 

are estimated and presented respectively as follows: (0, 1.1451), (0, 0.3993), (0, 

0.0624), and (0.5663, 5.0578). 

The density plots for the single carbon fiber and bladder cancer datasets are 

presented in Figures 5 and 6 respectively. In both Figures 5 and 6, the TLGPW 

mimicked the empirical density and cumulative density better than the other 

competing models. 
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Figure 5: PDF and CDF plots for the carbon data 

 

 

Figure 6: PDF and CDF plots of the bladder cancer data 
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Figure 7 shows the probability-probability (P-P) plots for the carbon dataset of the 

TLGPW and the other competing models. The plots indicate that the TLGPW fits 

the carbon dataset better than the competing models since it has almost all of its 

points along the diagonal line. 

 

 

 

 

Figure 7: P-P plots of the competing models for the carbon data 
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Figure 8 shows P-P plots for the bladder cancer dataset of the TLGPW and the other 

competing models. The plots show that the TLGPW fits the bladder cancer dataset 

better than the competing models since it has almost all of its points along the 

diagonal line. 

 

 

Figure 8: P-P plots of the competing models for the bladder cancer data 
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7. Log TLGPW Location-Scale (LTLGPW) Regression model 

 

This section covers the log TLGPW location-scale regression model. Given that the 

random variable  follows the TLGPW, then the random variable  

follows the log TLGPW (LTLGPW). Assuming that  and , then 

the density function of the LTLGPW regression model is given by  

 

(33) 

 

Where , , ,  and  are shape 

parameters,  is a scale parameter and  is a location parameter. The 

density of the LTLGPW regression model is defined for .  

 

The CDF corresponding to equation (33) is given by 

 .                  (34) 

 

The survival function of the LTLGPW regression model is given by  

                       (35) 

 

Using the density function in equation (33), the LTLGPW location-scale regression 

model is defined with the following regression feature. 

 

 

where  is the location parameter depending on a set of covariates, 

  are the regression parameters,  represents the number of 

covariates,   represents the covariates and  is the random 

error term which follows the density function as defined in equation (33). The 

parameters of the location-scale regression model are estimated using the maximum 

likelihood estimation technique.  
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The log-likelihood function of the LTLGPW regression model is  

   (36) 

where  and  is the number of observations. The estimates of 

the parameters are obtained by maximizing the log-likelihood function in equation 

(36). The adequacy of the LTLGPW regression model is examined using the Cox-

Snell residuals (Cox and Snell, [9]). 

The Cox-Snell residuals of the LTLGPW regression model is 

, where   is defined in 

equation (35). If the LTLGPW regression model fits the given data well, its Cox-

Snell residuals are expected to follow the standard exponential distribution.    

 

The application of the LTLGPW regression model is demonstrated in this section 

by modeling the relationship between long term interest rates (LTIR) of the 

Organization for Economic Co-operation Development (OECD) countries ,  

and foreign direct investment (FDINT), . The data can be sourced from 

previous studies such as (Altun and Cordeiro, [3]) and (Nasiru et al., [24]). 

2.640, 0.596, 0.680, 2.190, 4.560, 2.140, 0.410, 0.530, 0.750, 0.280, 4.390, 3.390, 

5.190, 0.800, 2.160, 2.640, 0.060, 2.549, 0.930, 0.310, 0.540, 7.750, 0.470, 2.810, 

1.760, 3.170, 1.760, 1.010, 0.990, 1.318, 0.550, 0.040, 1.374 and 2.890. 

30.78, 57.87, 121.52, 90.17, 45.39, 11.08, 55.92, 51.54, 56.31, 43.34, 11.64, 20.85, 

21.99, 276.22, 28.81, 27.56, 30.60, 21.02, 5.93, 7.24, 380.10, 15.76, 305.44, 8.94, 

48.05, 5.41, 23.68, 3.56, 14.53, 41.90, 71.70, 162.75, 61.86 and 40.43. 

The data is modeled by the regression equation; 

 

 , 

where follows the LTLGPW distribution. The performance of the 

LTLGPW regression model was compared with log Extended Cosine generalized 

power Weibull (LECGPW) location-scale regression model (Sayibu and Luguterah, 

[28]). The parameters estimate of the LTLGPW and LECGPW regression models 

are shown in Tables 8. From the goodness of fit statistics shown in Table 8, it can 

be established that the LTLGPW regression model has performed better in fitting 

the dataset than the LECGPW according to the criteria defined above. FDINT 

negatively affects both models. This means that FDINT decreases LTIR.   
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Table 8: MLE parameters estimate for the investment dataset 

Model 
      

LTLGPW 

 

   0.8219 

(0.6587) 

0.8029 

(0.7564) 

0.3226 

(0.2170) 

0.5617 

(0.3749) 

-0.0020 

(0.0007) 

LECGPW 55.5663 

(0.0214) 

43.2107 

(0.0258) 

4.7078 

(0.2280) 

8.4465 

(0.8858) 

4.2486 

(0.0525) 

-0.0023 

(0.0012)  

 

The location scale regression model for the LTLGPW is therefore obtained as 

 

Table 9: Goodness of fit statistics of the regression models 

Model  AIC AICc BIC K-S P-value 

LTLGPW -18.4300 46.8648 49.0077 54.4966 0.1185 0.6820 

LECGPW -26.6900 65.3783 68.4894 74.5364 0.1648 0.2818 

* Bold means best based on the selection criteria 
 

The adequacy of the regression models is investigated using the Cox-Snell residuals 

of the regression models. From the P-P plots in Figure 9, the LTLGPW location-

scale regression model performs better than the LECGPW regression model. 

 

Figure 9: P-P plots for the LTLGPW and LECGPW regression models  
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8. Conclusions  

A new distribution known as the Topp-Leone generalized power Weibull 

distribution is introduced and studied. The TLGPW distribution contains numerous 

well-known distributions as particular cases and new distributions. The TLGPW 

distribution wields a failure rate function with flexible behavior. Some closed-form 

statistical properties are derived, namely, quantile function, moments, moment 

generating functions, incomplete moments, mean and median deviations, mean 

residual life function, and Lorenz and Bonferroni curves. The maximum likelihood 

estimation procedure is adopted in estimating the parameters of the TLGPW 

distribution. Simulation studies were undertaken to evaluate the performance and 

accuracy of the maximum likelihood estimates. The TLGPW distribution is fitted 

to two real datasets to illustrate the empirical relevance. A log location-scale 

regression model is also developed for the proposed model. The application of the 

proposed regression model is demonstrated with a real dataset. The proposed 

location-scale regression model performed better than its competing model. 
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