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Sufficiency in optimal control without

the strengthened condition of Legendre

Gerardo Sánchez Licea1

Abstract

In this paper we derive a sufficiency theorem of an unconstrained

fixed-endpoint problem of Lagrange which provides sufficient conditions

for processes which do not satisfy the standard assumption of nonsingu-

larity, that is, the new sufficiency theorem does not impose the strength-

ened condition of Legendre. The proof of the sufficiency result is direct

in nature since the former uses explicitly the positivity of the second

variation, in contrast with possible generalizations of conjugate points,

solutions of certain matrix Riccati equations, invariant integrals, or the

Hamiltonian-Jacobi theory.
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1 Introduction

In the classical calculus of variations it is well-known that the nonnegativity of

the second variation along an arc x0 over the set of admissible variations be-

comes a second order necessary condition for optimality. The theory of Jacobi
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2 Sufficiency in optimal control ...

concerns with a characterization of the nonnegativity of the second variation

over the set of admissible variations with the nonexistence of conjugate points

on the underlying time interval under consideration. In concrete, a smooth

nonsingular trajectory x0 satisfies the fact that its second variation is non-

negative over the set of admissible variations if and only if x0 satisfies the

condition of Legendre and there are no conjugate points on x0 in the under-

lying open interval. Moreover, the second variation is positive over the set of

nonnull admissible variations if and only if x0 satisfies the strengthened con-

dition of Legendre and there are no conjugate points on x0 in the half-open

interval. One of the unfortunate features of Jacobi’s theory arises when the

arc under consideration is not nonsingular, that is, when it is singular, in this

case, the theory of Jacobi is not applicable. On the other hand, all the classical

sufficiency theorems in the theory of calculus of variations assume the strength-

ened condition of Legendre, and therefore the extremals under consideration

satisfying the classical sufficiency conditions must be nonsingular.

Because of this fact, Ewing mentions in [7], that in the theory of calculus

of variations, there is a gap between the necessary and sufficient conditions for

optimality. In fact, in [7], Ewing devotes an entire section to problems for which

Legendre strengthened condition fails. There he shows that we can partially

close this gap by an elementary device discussed in [6] of adding a penalty term.

This procedure is illustrated by means of three examples where the trajectory

being examined is singular, but one can obtain a solution directly from the

properties of the particular examples. However, this technique may not hold

in general. Ewing states that ‘although the use of the penalty term sheds

light on the theory, it provides no panacea for attacking particular examples.

Indeed there are no panaceas!’

In more recent years, the study of second order conditions for optimality

in the theory of calculus of variations and optimal control has provided an

extensive literature (see [1-5, 17-22, 24, 26-35] and references therein). In

[17] sufficient conditions in the calculus of variations are obtained by using an

appropriate form of local convexity. For optimal control problems, sufficiency

is derived in [25, 26] by applying the positivity of the second variation as well

as a generalized theory of Jacobi in terms of conjugate points, the insertion

of the original optimal control problem in a Banach space exhibits in [35]
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an alternate sufficiency method, the construction of a bounded solution to a

matrix-valued Riccati equation, a verification function satisfying the Hamilton-

Jacobi equation, and a quadratic function that satisfies a Hamilton-Jacobi

inequality become fundamental devices in sufficiency results given in [2, 5, 16,

18-21, 24].

A different approach which provides sufficiency in the classical isoperimet-

ric calculus of variations fixed-endpoint problem is given by Hestenes in [15].

This method treats explicitly with the positivity of the second variation on the

set of nonnull admissible variations and it is implicitly based on the concept

of a directionally convergent sequence of trajectories which is in turn a gen-

eralization of the concept of directional convergence for vectors in the finite

dimension case. The development of this technique as it appears in [15], as well

as its application to more general problems, can be traced back to different

papers of the author and McShane (see [8-14, 23]). A generalization of this

method which covers optimal control problems can be found in [26, 31, 32].

In this paper we study an unconstrained fixed-endpoint optimal control

problem of Lagrange. The main contribution is based on two fundamental

facts. First, we show how by applying a similar technique of that given in [26,

31, 32], one can be able to obtain an itself-contained proof to a sufficiency result

which is in contrast with possible generalizations of conjugate points, solutions

of certain matrix Riccati equations, invariant integrals, theory of extremals, or

the Hamiltonian-Jacobi theory. Second, the new sufficiency theorem does not

include the standard assumption of nonsingularity, that is, the strengthened

Legendre-Clebsch condition is not imposed. In particular, we refer the reader

to [24] where the importance of this condition is fully explained.

The paper is organized as follows. In Section 2 we pose the problem we

shall deal with, introduce some notation and basic definitions, and state the

main result. In Section 3 we illustrate the usefulness of the new sufficiency

theorem by means of a simple example of a singular process which is a proper

strong minimum of the problem in hand. Section 4 is devoted to the proof of

the main sufficiency theorem together with the statement of an auxiliary result

on which the proof is strongly based. The auxiliary result, which implicitly

includes a possible generalization of the notion of a directionally convergent

sequence of trajectories, is established in Section 5.
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2 The problem and the main result

The fixed-endpoint optimal control problem we shall study in this paper can

be stated as follows. Suppose we are given an interval T := [t0, t1] in R, two

points ξ0 and ξ1 in Rn, and functions L and f mapping T × Rn × Rm to R

and Rn respectively.

Let X := AC(T ;Rn) denote the space of absolutely continuous functions

mapping T to Rn, let U := L1(T ;Rm), set Z := X ×U , and denote by Ze the

set of all (x, u) ∈ Z satisfying

a. L(t, x(t), u(t)) is integrable on T .

b. ẋ(t) = f(t, x(t), u(t)) a.e. in T .

c. x(t0) = ξ0, x(t1) = ξ1.

The problem we shall deal with, which we label (P), is that of minimizing

I over Ze, where

I(x, u) :=

∫ t1

t0

L(t, x(t), u(t))dt.

For this problem, an admissible process is an element of Ze, that is, a couple

(x, u) comprising functions x ∈ X and u ∈ U which satisfy the constraints

of problem (P). An admissible process (x, u) is called a strong minimum of

problem (P) if there exists ǫ > 0 such that I(x, u) ≤ I(y, v) for all (y, v) ∈ Ze,

(y, v) 6= (x, u), with ‖y−x‖∞ < ǫ. If the inequality can be replaced by a strict

inequality then (x, u) is said to be a proper strong minimum of (P).

We shall assume throughout the paper that the functions L and f are

continuous and of class C2 with respect to x and u on T × Rn × Rm.

For the theory to follow we shall find convenient to introduce the following

definitions.

• For all (t, x, u, p) ∈ T × Rn × Rm × Rn let

H(t, x, u, p) := 〈p, f(t, x, u)〉 − L(t, x, u).

• A triple (x, u, p) will be called an extremal if (x, u) is a process, p ∈ X,

ṗ(t) = −H∗

x(t, x(t), u(t), p(t)) (a.e. in T ) and Hu(t, x(t), u(t), p(t)) = 0 (t ∈ T )

where ‘∗’ denotes transpose. Throughout the paper all derivatives such as Hx
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and Hu will be gradient row vectors and all vector-valued functions such as

p ∈ X will be considered as column vectors.

• For a given p ∈ X define, for all (t, x, u) ∈ T × Rn × Rm,

F (t, x, u) := L(t, x, u)−〈p(t), f(t, x, u)〉−〈ṗ(t), x〉 [= −H(t, x, u, p(t))−〈ṗ(t), x〉].

With respect to F , define the functional J : Ze → R as

J(x, u) := 〈p(t1), ξ1〉 − 〈p(t0), ξ0〉 +

∫ t1

t0

F (t, x(t), u(t))dt.

Consider the first variation of J along (x, u) ∈ X×L∞(T ;Rm) over (y, v) ∈

Z given by

J ′((x, u); (y, v)) :=

∫ t1

t0

{Fx(t, x(t), u(t))y(t) + Fu(t, x(t), u(t))v(t)}dt,

and the second variation of J along (x, u) ∈ X × L∞(T ;Rm) over (y, v) ∈

X × L2(T ;Rm) given by

J ′′((x, u); (y, v)) :=

∫ t1

t0

2Ω(t, y(t), v(t))dt

where, for all (t, y, v) ∈ T × Rn × Rm,

2Ω(t, y, v) := 〈y, Fxx(t, x(t), u(t))y〉+2〈y, Fxu(t, x(t), u(t))v〉+〈v, Fuu(t, x(t), u(t))v〉.

Also, with respect to F , denote by E the Weierstrass excess function which

corresponds to

E(t, x, u, v) := F (t, x, v) − F (t, x, u) − Fu(t, x, u)(v − u)

for all (t, x, u, v) ∈ T × Rn × Rm × Rm.

• A process (x, u) is nonsingular if the determinant |−Huu(t, x(t), u(t), p(t))| =

|Fuu(t, x(t), u(t))| is different from zero for all t ∈ T . A process (x, u) satisfies

the strengthened condition of Legendre if the matrix −Huu(t, x(t), u(t), p(t)) =

Fuu(t, x(t), u(t)) > 0 for all t ∈ T .

• For all (x, u) ∈ X×L∞(T ;Rm), denote by Y (x, u) the class of all (y, v) ∈

X × L2(T ;Rm) satisfying

ẏ(t) = A(t)y(t) + B(t)v(t) a.e. in T, y(t0) = y(t1) = 0
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where A(t) := fx(t, x(t), u(t)), B(t) := fu(t, x(t), u(t)) (t ∈ T ). Elements of

Y (x, u) will be called admissible variations along (x, u).

• For all x ∈ X and all u ∈ U let

D1(x) :=

∫ t1

t0

ϕ(ẋ(t))dt and D2(u) :=

∫ t1

t0

ϕ(u(t))dt

where

ϕ(c) := (1 + |c|2)1/2 − 1.

• Define D : Z → R by

D(x, u) := max{D1(x), D2(u)},

and denote by ‖ · ‖ = ‖ · ‖∞ the supremum norm in X.

Let us now state the main theorem of the paper. It consists of a sufficiency

result for a proper strong minimum of problem (P) assuming, with respect to

a given extremal, the Legendre-Clebsch condition, the positivity of the second

variation along nonnull admissible variations, and two conditions related to

the Weierstrass excess function.

2.1 Theorem: Let (x0, u0, p) be an extremal with u0 ∈ L∞(T ;Rm) and

suppose that the there exist h, ǫ > 0 such that

i. Fuu(t, x0(t), u0(t)) ≥ 0 (a.e. in T ).

ii. J ′′((x0, u0); (y, v)) > 0 for all nonnull admissible variations (y, v) along

(x, u).

iii. For all (x, u) ∈ Ze satisfying ‖x − x0‖ < ǫ, E(t, x(t), u0(t), u(t)) ≥ 0

(a.e. in T ) and

∫ t1

t0

E(t, x(t), u0(t), u(t))dt ≥ hD(x − x0, u − u0).

Then there exist ρ, δ > 0 such that, for all admissible processes (x, u) satisfying

‖x − x0‖ < ρ,

I(x, u) ≥ I(x0, u0) + δD(x − x0, u − u0).

In particular, (x0, u0) is a proper strong minimum of (P).
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3 Example

In this section we provide an example of a fixed-endpoint problem for which

an application of Theorem 2.1 shows that the singular extremal under consid-

eration is in fact a proper strong minimum.

3.1 Example: Consider the problem of minimizing

I(x, u) =

∫

4

0

{2u2

1
(t) + |u2(t)|

3 − x1(t) − x2(t)}dt

subject to

a. 2u2

1
(t) + |u2(t)|

3 − x1(t) − x2(t) is integrable on [0, 4].

b. (ẋ1(t), ẋ2(t)) = (sin2 u2(t), u1(t)) a.e. in [0, 4].

c. (x1(0), x2(0)) = (0, 0) and (x1(4), x2(4)) = (0,−2).

For this case n = m = 2, T = [0, 4], ξ0 = (0, 0)∗, ξ1 = (0,−2)∗,

L(t, x, u) = 2u2

1
+ |u2|

3 − x1 − x2 and f(t, x, u) = (sin2 u2, u1)
∗.

Let x0(t) = (0,−t2/8)∗, u0(t) = (−t/4, 0)∗ (t ∈ T ). Clearly, (x0, u0) ∈ Ze. We

have

H(t, x, u, p) = p1 sin2 u2 + p2u1 − 2u2

1
− |u2|

3 + x1 + x2,

Hx(t, x, u, p) = (1, 1), Hu(t, x, u, p) = (p2 − 4u1, 2p1 sin u2 cos u2 − 3|u2|u2).

Therefore, (x0, u0, p) with p(t) = (−t,−t)∗ (t ∈ T ) is an extremal. In addition,

F (t, x, u) = 2u2

1
+ |u2|

3 + t sin2 u2 + tu1, and so

Fuu(t, x, u) =

(

4 0

0 6|u2| + 2t cos2 u2 − 2t sin2 u2

)

.

Observe that

〈Fuu(t, x0(t), u0(t))h, h〉 = 4h2

1
+ 2th2

2
(t ∈ T )

so that (x0, u0) does not satisfy the strengthened condition of Legendre but

2.1(i) holds. Now, observe that

A(t) =

(

0 0

0 0

)

, B(t) =

(

0 0

1 0

)

(t ∈ T )
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and hence (y, v) ∈ Y (x0, u0) implies that (ẏ1(t), ẏ2(t)) = (0, v1(t)) a.e. in T . It

follows that

J ′′((x0, u0); (y, v)) =

∫

4

0

{4v2

1
(t) + 2tv2

2
(t)}dt > 0

for all (y, v) ∈ Y (x0, u0), (y, v) 6= (0, 0). Hence 2.1(ii) holds.

Clearly, (x, u) ∈ Ze implies that x1 ≡ 0 and u2(t) = k(t)π (t ∈ T ) for some

integrable function k(·) which maps T to the set of integers. Observing that

ϕ(c) ≤ |c|2/2 for all c ∈ R2, (x, u) ∈ Ze implies that

E(t, x(t), u0(t), u(t)) = E(t, 0, x2(t),−t/4, 0, u1(t), k(t)π)

= 2u2

1
(t) + |k(t)|3π3 + tu1(t) + t2/8

= 2(u1(t) + t/4)2 + |k(t)|3π3

≥ 2−1[(u1(t) + t/4)2 + k2(t)π2]

≥ max{ϕ((0, u1(t) + t/4)∗), ϕ((u1(t) + t/4, k(t)π)∗)}

= max{ϕ(ẋ(t) − ẋ0(t)), ϕ(u(t) − u0(t))} (a.e. in T ).

Thus with any ǫ > 0 and h = 1, 2.1(iii) holds. By Theorem 2.1, (x0, u0) is a

proper strong minimum of problem (P).

4 Proof of Theorem 2.1

In this section we shall prove Theorem 2.1. We first state an auxiliary result

(proved in Section 5) on which the proof of Theorem 2.1 is strongly based.

Implicit on the statement of the result it is inserted a possible generaliza-

tion of the notion of a directionally convergent sequence of trajectories, firstly

introduced in a calculus of variations context by Hestenes in [15], page 155.

4.1 Lemma: Let {zq := (xq, uq)} be a sequence in Z, z0 := (x0, u0) ∈ Z,

and suppose that

lim
q→∞

D(zq − z0) = 0 and dq := [2D(zq − z0)]
1/2 > 0 (q ∈ N).

For all q ∈ N and almost all t ∈ T define

wq(t) := max

{[

1 +
1

2
ϕ(ẋq(t) − ẋ0(t))

]1/2

,

[

1 +
1

2
ϕ(uq(t) − u0(t))

]1/2}

.
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For all q ∈ N and t ∈ T define

yq(t) :=
xq(t) − x0(t)

dq

, vq(t) :=
uq(t) − u0(t)

dq

.

Then the following hold:

a. For some v0 ∈ L2(T ;Rm) and some subsequence of {zq}, again denoted

by {zq}, {vq} converges weakly to v0 in L1(T ;Rm). Moreover, {(ẋq, uq)} con-

verges almost uniformly to (ẋ0, u0) on T and hence wq(t) → 1 almost uniformly

on T .

b. There exist a function σ0 ∈ L2(T ;Rn) and some subsequence of {zq},

again denoted by {zq}, such that {ẏq} converges weakly in L1(T ;Rn) to σ0.

Moreover, if we define

y0(t) :=

∫ t

t0

σ0(s)ds (t ∈ T ),

then yq(t) → y0(t) uniformly on T .

c. Suppose S ⊂ T is measurable and wq(t) → 1 uniformly on S. Let

Rq(·), R0(·) be m × m real matrix-valued functions with Rq(·) measurable on

S, R0(·) ∈ L∞(S;Rm×m), Rq(t) → R0(t) uniformly on S, and R0(t) ≥ 0

(t ∈ S). Then for some subsequence of {zq}, again denoted by {zq},

lim inf
q→∞

∫

S

〈Rq(t)vq(t), vq(t)〉dt ≥

∫

S

〈R0(t)v0(t), v0(t)〉dt.

Proof of Theorem 2.1:

Let z0 := (x0, u0). Assume that, for all ρ, δ > 0, there exists z = (x, u) ∈ Ze

with ‖x − x0‖ < ρ such that

J(x, u) < J(x0, u0) + δD(z − z0). (1)

We are going to show that this contradicts (ii) of Theorem 2.1 and the state-

ment will follow, since I(x, u) = J(x, u) on Ze.

Note that, for all z = (x, u) ∈ Ze,

J(z) = J(z0) + J ′(z0; z − z0) + K(z) + Ẽ(z) (2)

where

Ẽ(x, u) :=

∫ t1

t0

E(t, x(t), u0(t), u(t))dt,
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K(x, u) :=

∫ t1

t0

{M(t, x(t)) + 〈u(t) − u0(t), N(t, x(t))〉}dt,

M(t, y) := F (t, y, u0(t)) − F (t, x0(t), u0(t)) − Fx(t, x0(t), u0(t))(y − x0(t)),

N(t, y) := F ∗

u (t, y, u0(t)) − F ∗

u (t, x0(t), u0(t)).

By Taylor’s theorem,

M(t, y) =
1

2
〈y − x0(t), P (t, y)(y − x0(t))〉, N(t, y) = Q(t, y)(y − x0(t)),

where

P (t, y) := 2

∫

1

0

(1 − λ)Fxx(t, x0(t) + λ(y − x0(t)), u0(t))dλ,

Q(t, y) :=

∫

1

0

Fux(t, x0(t) + λ(y − x0(t)), u0(t))dλ.

Let us begin by proving the existence of α0, δ0 > 0 such that, for all z =

(x, u) ∈ Ze with ‖x − x0‖ < δ0,

|K(x, u)| ≤ α0‖x − x0‖[1 + D(z − z0)]. (3)

By using the inequality of Schwarz and the continuity of the functions P and

Q we may choose α, δ0 > 0 such that for all z ∈ Ze with ‖x − x0‖ < δ0,

|M(t, x(t))+〈u(t)−u0(t), N(t, x(t))〉| ≤ α|x(t)−x0(t)|[1+|u(t)−u0(t)|
2]1/2 (t ∈ T ).

Set α0 := max{α, α(t1 − t0)}. Then, for all z ∈ Ze with ‖x − x0‖ < δ0,

|K(z)| ≤ α‖x − x0‖

∫ t1

t0

[1 + ϕ(u(t) − u0(t))]dt ≤ α0‖x − x0‖[1 + D(z − z0)]

and hence (3) holds with α0 and δ0 given above.

Now, by (1), for all q ∈ N there exists zq := (xq, uq) ∈ Ze such that

‖xq − x0‖ < δ0, ‖xq − x0‖ <
1

q
, J(zq) − J(z0) <

1

q
D(zq − z0). (4)

Since zq ∈ Ze, observe that the last inequality implies that uq(t) 6= u0(t) on a

set of positive measure and so D(zq − z0) > 0 (q ∈ N). Since (x0, u0, p) is an

extremal, it follows that J ′(z0; w) = 0 for all w ∈ Z. With this in mind, by

(2), the second condition of 2.1(iii), and (3),

J(zq)− J(z0) = K(zq) + Ẽ(zq) ≥ −α0‖xq − x0‖+ D(zq − z0)(h−α0‖xq − x0‖).
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By (4) we obtain

D(zq − z0)

(

h −
1

q
−

α0

q

)

<
α0

q

and consequently D(zq − z0) → 0, q → ∞. Define dq, wq, yq and vq, as in

Lemma 4.1, that is, dq := [2D(zq − z0)]
1/2,

wq(t) := max

{[

1 +
1

2
ϕ(ẋq(t) − ẋ0(t))

]1/2

,

[

1 +
1

2
ϕ(uq(t) − u0(t))

]1/2}

,

yq(t) :=
xq(t) − x0(t)

dq

and vq(t) :=
uq(t) − u0(t)

dq

.

By Lemma 4.1a there exist v0 ∈ L2(T ;Rm) and some subsequence of {zq},

again denoted by {zq}, such that {vq} converges weakly in L1(T ;Rm) to v0.

By Lemma 4.1b for some σ0 ∈ L2(T ;Rn) and some subsequence of {zq}, again

denoted by {zq}, if y0(t) :=
∫ t

t0
σ0(s)ds (t ∈ T ), then

lim
q→∞

yq(t) = y0(t) uniformly on T .

The theorem will be proved if we show that J ′′(z0; (y0, v0)) ≤ 0, (y0, v0) ∈ Y (z0)

and (y0, v0) 6= (0, 0).

The fact that y0(t0) = y0(t1) = 0 follows by Lemma 4.1b. By definition of

the functional K, for all q ∈ N,

K(zq)

d2
q

=

∫ t1

t0

{

M(t, xq(t))

d2
q

+

〈

vq(t),
N(t, xq(t))

dq

〉}

dt.

In view of Lemma 4.1b,

lim
q→∞

M(t, xq(t))

d2
q

=
1

2
〈y0(t), Fxx(t, x0(t), u0(t))y0(t)〉,

lim
q→∞

N(t, xq(t))

dq

= Fux(t, x0(t), u0(t))y0(t)

both uniformly on T and, since {vq} converges weakly to v0 in L1(T ;Rm),

1

2
J ′′(z0; (y0, v0)) = lim

q→∞

K(zq)

d2
q

+
1

2

∫ t1

t0

〈v0(t), Fuu(t, x0(t), u0(t))v0(t)〉dt. (5)

Let us now show that for some subsequence of {zq}, again denoted by {zq},

lim inf
q→∞

Ẽ(zq)

d2
q

≥
1

2

∫ t1

t0

〈v0(t), Fuu(t, x0(t), u0(t))v0(t)〉dt. (6)
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By Lemma 4.1a, we may choose S ⊂ T measurable such that (ẋq(t), uq(t)) →

(ẋ0(t), u0(t)) uniformly on S. By Taylor’s theorem, for all t ∈ S and q ∈ N,

we have
1

d2
q

E(t, xq(t), u0(t), uq(t)) =
1

2
〈vq(t), Rq(t)vq(t)〉

where

Rq(t) := 2

∫

1

0

(1 − λ)Fuu(t, xq(t), u0(t) + λ[uq(t) − u0(t)])dλ.

Clearly,

lim
q→∞

Rq(t) = R0(t) := Fuu(t, x0(t), u0(t)) uniformly on S.

By 2.1(i), R0(t) ≥ 0 (t ∈ S). Moreover, by the first condition of 2.1(iii) and

Lemma 4.1c, for some subsequence of {zq}, again denoted by {zq},

lim inf
q→∞

Ẽ(zq)

d2
q

≥
1

2

∫

S

〈v0(t), Fuu(t, x0(t), u0(t))v0(t)〉dt.

Since S can be chosen to differ from T by a set of an arbitrary small measure,

and the function

t 7→ 〈v0(t), Fuu(t, x0(t), u0(t))v0(t)〉

belongs to L1(T ;R), this inequality holds when S = T , and this establishes

(6). Thus, by (4), (5) and (6),

1

2
J ′′(z0; (y0, v0)) ≤ lim

q→∞

K(zq)

d2
q

+ lim inf
q→∞

Ẽ(zq)

d2
q

= lim inf
q→∞

J(zq) − J(z0)

d2
q

≤ 0.

In addition, if (y0, v0) = (0, 0), then

lim
q→∞

K(zq)

d2
q

= 0

and so, by the second condition of 2.1(iii),

1

2
h ≤ lim inf

q→∞

Ẽ(zq)

d2
q

≤ 0

contradicting the positivity of h.

Finally, to show that (y0, v0) ∈ Y (z0), observe that, by Taylor’s theorem,

for all q ∈ N,

ẏq(t) = Aq(t)yq(t) + Bq(t)vq(t) (a.e. in T )
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where

Aq(t) =

∫

1

0

fx(t, x0(t) + λ[xq(t) − x0(t)], u0(t) + λ[uq(t) − u0(t)])dλ,

Bq(t) =

∫

1

0

fu(t, x0(t) + λ[xq(t) − x0(t)], u0(t) + λ[uq(t) − u0(t)])dλ.

We know by Lemma 4.1a that there exists S ⊂ T measurable such that

Aq(t) → A0(t) := fx(t, x0(t), u0(t)), Bq(t) → B0(t) := fu(t, x0(t), u0(t))

both uniformly on S. Since yq(t) → y0(t) uniformly on S and {vq} converges

weakly to v0 in L1(S;Rm), it follows that {ẏq} converges weakly in L1(S;Rn) to

A0y0 + B0v0. By Lemma 4.1b, {ẏq} converges weakly in L1(S;Rn) to σ0 = ẏ0.

Hence,

ẏ0(t) = A0(t)y0(t) + B0(t)v0(t) (t ∈ S).

Since S can be chosen to differ from T by a set of an arbitrary small measure,

there cannot exist a subset of T of positive measure on which the functions y0

and v0 do not satisfy the differential equation ẏ0(t) = A0(t)y0(t) + B0(t)v0(t).

Consequently,

ẏ0(t) = A0(t)y0(t) + B0(t)v0(t) (a.e. in T )

and this completes the proof.

5 Proof of Lemma 4.1

(a): Observe that ϕ(c)(2 + ϕ(c)) = |c|2 (c ∈ Rm). Then for all q ∈ N,

∫ t1

t0

|vq(t)|
2

w2
q(t)

dt ≤ 1. (7)

Thus there exist v0 ∈ L2(T ;Rm) and some subsequence of {zq} (we do not

relabel) such that {vq/wq} converges weakly to v0 in L2(T ;Rm). Let h ∈

L∞(T ;Rm). Note that, for all q ∈ N,

∫ t1

t0

〈h(t), vq(t)〉dt =

∫ t1

t0

〈

h(t),
vq(t)

wq(t)

〉

dt +

∫ t1

t0

〈

h(t)[wq(t) − 1],
vq(t)

wq(t)

〉

dt.
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By the inequality of Schwarz and (7),

∣

∣

∣

∣

∫ t1

t0

〈

h(t)[wq(t) − 1],
vq(t)

wq(t)

〉

dt

∣

∣

∣

∣

2

≤

∫ t1

t0

|h(t)|2[wq(t) − 1]2dt.

For all q ∈ N, set

w1q(t) :=

[

1 +
1

2
ϕ(ẋq(t) − ẋ0(t))

]1/2

(a.e. in T ),

w2q(t) :=

[

1 +
1

2
ϕ(uq(t) − u0(t))

]1/2

(t ∈ T ).

Since for i = 1, 2, w2

iq(t) ≥ wiq(t) ≥ 1 for almost all t ∈ T , we have

0 ≤

∫ t1

t0

[wiq(t) − 1]dt ≤

∫ t1

t0

[w2

iq(t) − 1]dt

≤ max

{
∫ t1

t0

ϕ(ẋq(t) − ẋ0(t))dt,

∫ t1

t0

ϕ(uq(t) − u0(t))dt

}

= D(zq − z0).

Thus it is readily seen that

lim
q→∞

∫ t1

t0

[wq(t) − 1]dt = lim
q→∞

∫ t1

t0

[w2

q(t) − 1]dt = 0.

Observe also that
∫ t1

t0

[wq(t) − 1]2dt =

∫ t1

t0

[w2

q(t) − 1]dt − 2

∫ t1

t0

[wq(t) − 1]dt.

Consequently,

lim
q→∞

∫ t1

t0

|h(t)|2[wq(t) − 1]2dt = 0.

Since L∞(T ;Rm) ⊂ L2(T ;Rm),

lim
q→∞

∫ t1

t0

〈h(t), vq(t)〉dt = lim
q→∞

∫ t1

t0

〈

h(t),
vq(t)

wq(t)

〉

dt =

∫ t1

t0

〈h(t), v0(t)〉dt,

that is, {vq} converges weakly in L1(T ;Rm) to v0.

In order to prove that {(ẋq, uq)} converges almost uniformly to (ẋ0, u0) on

T , for all x ∈ X, set

‖x‖1 :=

∫ t1

t0

|ẋ(t)|dt, w(t) :=

[

1 +
1

2
ϕ(ẋ(t))

]1/2

(a.e in T ).
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Observe first that
∫ t1

t0

2w2(t)dt = 2(t1 − t0) +

∫ t1

t0

ϕ(ẋ(t))dt = 2(t1 − t0) + D1(x)

and
∫ t1

t0

|ẋ(t)|2

2w2(t)
dt =

∫ t1

t0

|ẋ(t)|2

2 + ϕ(ẋ(t))
dt =

∫ t1

t0

ϕ(ẋ(t))dt = D1(x).

By the inequality of Schwarz,

‖x‖2

1
≤

∫ t1

t0

|ẋ(t)|2

2w2(t)
dt

∫ t1

t0

2w2(t)dt.

From these relations we have

‖x‖2

1
≤ D1(x)[2t1 − 2t0 + D1(x)] ≤ D(z)[2t1 − 2t0 + D(z)] (z = (x, u)).

Consequently, ‖xq − x0‖1 → 0, q → ∞, and so some subsequence of {ẋq}

converges pointwisely a.e. to ẋ0. By Egoroff’s theorem, it converges to ẋ0

almost uniformly on T .

Similarly it is readily seen that

‖u‖2

1
≤ D2(u)[2t1 − 2t0 + D2(u)] ≤ D(z)[2t1 − 2t0 + D(z)] (z = (x, u))

implying that some subsequence of {uq} converges almost uniformly to u0 on

T . Thus there is some subsequence of {zq} (we do not relabel) such that

lim
q→∞

(ẋq(t), uq(t)) = (ẋ0(t), u0(t)) almost uniformly on T .

(b): As in (a), for all q ∈ N,

∫ t1

t0

|ẏq(t)|
2

w2
q(t)

dt ≤ 1. (8)

Hence there exists a function σ0 ∈ L2(T ;Rn) such that some subsequence of

{ẏq/wq} converges weakly in L2(T ;Rn) to σ0. We conclude, by an argument

similar to that used in the proof of (a), that there exists some subsequence of

{zq} (we do not relabel) such that {ẏq} converges weakly in L1(T ;Rn) to σ0.

It remains to show that yq(t) → y0(t) uniformly on T . We have

yq(t) =

∫ t

t0

ẏq(s)ds (t ∈ T, q ∈ N),
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and hence

lim
q→∞

yq(t) = y0(t) :=

∫ t

t0

σ0(s)ds pointwisely on T .

In order to prove that this convergence is uniform observe that, by (8), given

a measurable set S ⊂ T ,

∣

∣

∣

∣

∫

S

ẏq(t)dt

∣

∣

∣

∣

2

≤

∫

S

|ẏq(t)|
2

w2
q(t)

dt

∫

S

w2

q(t)dt ≤

∫

S

w2

q(t)dt (q ∈ N).

Moreover
∫

S

w2

q(t)dt = m(S) +

∫

S

[w2

q(t) − 1]dt (q ∈ N).

Given a constant ǫ > 0, choose qǫ ∈ N such that

∫ t1

t0

[w2

q(t) − 1]dt <
ǫ2

2
(q ≥ qǫ).

Choose 0 < δ < ǫ2/2 such that

m(S) < δ ⇒

∣

∣

∣

∣

∫

S

ẏq(t)dt

∣

∣

∣

∣

< ǫ (q < qǫ).

Note that if q ≥ qǫ, then

m(S) < δ ⇒

∣

∣

∣

∣

∫

S

ẏq(t)dt

∣

∣

∣

∣

2

≤ m(S) +

∫ t1

t0

[w2

q(t) − 1]dt <
ǫ2

2
+

ǫ2

2
= ǫ2,

and so

m(S) < δ ⇒

∣

∣

∣

∣

∫

S

ẏq(t)dt

∣

∣

∣

∣

< ǫ (q ∈ N).

Thus the sequence of functions {yq} is equicontinuous on T . Consequently,

yq(t) → y0(t) uniformly on T .

(c): By hypothesis we may assume that, for all t ∈ S and q ∈ N,

|Rq(t) − R0(t)|w
2

q(t) ≤ 1.

Hence

Mq := sup
t∈S

|Rq(t) − R0(t)|w
2

q(t) < ∞ (q ∈ N).

Using the inequality of Schwarz it is easily seen that, for all t ∈ S and q ∈ N,

|〈Rq(t)vq(t), vq(t)〉 − 〈R0(t)vq(t), vq(t)〉| ≤ Mq
|vq(t)|

2

w2
q(t)

.
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Since Rq(t) → R0(t), and wq(t) → 1, both uniformly on S, we have Mq → 0.

Therefore, by (7),

lim inf
q→∞

∫

S

〈Rq(t)vq(t), vq(t)〉dt = lim inf
q→∞

∫

S

〈R0(t)vq(t), vq(t)〉dt.

But for all t ∈ S,

〈R0(t)vq(t), vq(t)〉 = 〈R0(t)v0(t), v0(t)〉 + 2〈vq(t) − v0(t), R0(t)v0(t)〉

+ 〈R0(t)(vq(t) − v0(t)), vq(t) − v0(t)〉.

Since wq(t) → 1 uniformly on S, it is readily seen (see the proof of (a)) that

there is some subsequence of {zq} (again denoted by {zq}) such that {vq}

converges weakly to v0 in L2(S;Rm). Since R0v0 ∈ L2(S;Rm), we have

lim
q→∞

∫

S

〈R0(t)v0(t), vq(t) − v0(t)〉dt = 0.

Hence

lim inf
q→∞

∫

S

〈Rq(t)vq(t), vq(t)〉dt =

∫

S

〈R0(t)v0(t), v0(t)〉dt

+ lim inf
q→∞

∫

S

〈R0(t)(vq(t) − v0(t)), vq(t) − v0(t)〉dt.

Since the last term is nonnegative the result follows.
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