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Abstract

This paper proposes a new method for measuring the dependency
between securities. Applying independent component analysis to the
return data of the whole component securities in a universe, independent
factors composing the returns are extracted. Reconstructing return data
of individual component security based on such factors, we �nd that each
security has a unique factor hierarchy. A comparative analysis of the
hierarchies can �nd dependence structures between securities. Empirical
studies show that the new method outperforms old measures based on
correlation, and that it reveals very delicate dependence structures which
otherwise remain hidden. Useful examples of applying it to the portfolio
or risk management are also provided.

JEL Classi�cation: C14, C45, C58, C63
Keywords: Dependency between Securities, Independent Factor Order Dis-
tance (IFOD), Factor Model, Relative Hamming Distance (RHD), FastICA
Algorithm, TnA Algorithm

1 Department of Mathematics, The Catholic University of Korea, Bucheon-si, Korea,
Republic of. E-mail: changhohan@catholic.ac.kr

2 QuantGlobal, Seoul, Korea, Republic of. E-mail: changhohan@quantglobal.co.kr

Article Info: Received : August 28, 2013. Revised : September 29, 2013
Published online : January 1, 2014



244 Measuring the Dependency between Securities via Factor-ICA Models

1 Introduction

When you select securities from a given universe to construct your own
portfolio, it will pay o� to take into consideration the dependence structure
between securities. However, traditional tools in statistics measure only part
of the dependence structure, and thus may be misleading in �nancial turmoils
when frequent structural breaks in the data generating process would occur,
or black-swan-like tail events could take place in the �nancial market. As
noted in [1], the linear correlation is a measure of dependence for elliptically
distributed variables,3 and thus fallacies arise from the naive assumption that
the dependence properties of elliptical world also hold in non-elliptical world.4

What is worse, it only measures the central dependency, and hence is not
able to explain the tail dependence. In �nance, it is an prominent example
of tail dependence that the stock returns are asymmetric in the sense that
they are more highly dependent during market downturns than during market
upturns [3]. Recently, [4] proposes a local correlation function to handle such
asymmetry. However, it is only for bi-variate Gaussian distributions. Though
various concepts of dependence are discussed in Chapter 5 of [5], their highly
abstract theoretical nature prevents us from applying them to the real �nancial
data.

The main objective of this paper is to devise a practical tool for mea-
suring the interdependence between securities, which is easy to apply to the
real �nancial data, not bound to a speci�c category of distributions, and can
measure the whole aspects of dependency. When you say two persons from a
family resemble each other, you are referring to the similarity between their
entire physical features. They look alike because they share the same blood.
Likewise, if we would extract, from the return data, the fundamental factors
which compose each security return and �nd how the factors are structurally
related to it, we could determine, by comparing the structures, how much two
di�erent securities are similar to each other.

ICA is a novel statistical signal processing technique to �nd independent
sources given only observed data that are mixtures of unknown sources without

3Canonical examples are multivariate normally distributed variables.
4It is well known empirical facts that the distribution of security returns is in the non-

elliptical world. Security returns are characterized not by normality but by the stylized facts
such as fat tails, high peakedness (excess kurtosis) and skewness [2].
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any prior knowledge of the mixing mechanism [6, 8]. It represents the original
data with the components that are statistically independent, or as independent
as possible. Such a representation captures the essential structure of the data in
many applications [7]. [9], [7], and [11] provide excellent overviews on ICA. ICA
has been successfully applied to �nancial time series and revealed some driving
mechanisms that otherwise remain hidden [13, 19, 20, 17, 21, 16, 22, 25, 24, 23].

This paper proposes a new method for measuring the dependency between
securities in a given universe. Applying independent component analysis to
the return data of the whole component securities in the universe, we can ex-
tract independent factors which compose the returns of component securities.
Reconstructing return data of each individual component security based on
such factors, we can �nd hierarchy between the factors: we can order the fac-
tors according to their relative importance in reconstructing each individual
security return. Each security has a unique factor hierarchy under certain con-
ditions. Thus we can represent each security return with a linear combination
of independent factors in the order speci�c to the security. Based on the fact
that the security returns are non-Gaussian distributed and that the indepen-
dent factors extracted by ICA are also non-Gaussian distributed (see Section
2), the linear combination can be considered as a proper representation of the
security return.

A comparative analysis of the resulting hierarchies can �nd dependence
structures between securities in a nonparametric and distribution-free context:
since every return consists of the same independent factors, and has a unique
hierarchy that determines the relative importance of each factor for the recon-
struction of its return data, we can �nd the dependency between securities by
comparing their factor hierarchies.

Due to the non-elliptical distributional attributes of security returns, those
measures based on correlation, which is only a measure of dependence for el-
liptically distributed variables, cannot appropriately measure the dependency
between securities. Whereas, we can �nd the dependency between securities
appropriately by comparing their factor hierarchies. Empirical studies in this
paper show that the new method outperforms the old measures in the sense
that it can measure the whole aspects of dependency by comparing securities
factor by factor of which the returns of the securities are composed. Fur-
thermore, empirical studies show that the new method reveals very delicate
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dependence structures that otherwise remain hidden. We also provide use-
ful examples of applying this new method to various areas in �nance such as
portfolio management or risk management.

This paper will proceed in the following order: Section 2 introduces Factor-
ICA model; Section 3 explains the procedure of ordering the independent fac-
tors; Section 4 de�nes new measures of dependency; Section 5 reports empirical
results of these new measures, and shows that they outperforms those mea-
sures based on correlation in many respects; Section 6 comments on several
issues; Section 7 presents examples of applying the new measures to various
areas in �nance; Section 8 concludes this paper with a summary.

2 Factor-ICA Model

2.1 Independent Component Analysis (ICA)

ICA is a method for blind source separation developed in the area of signal
processing [12]. Suppose that we can observe random variables x1, x2, · · · , xN

which are assumed to be linear combinations of unknown independent sources
s1, s2, · · · , sN . Arranging the observed random variables and the sources into
x = (x1, x2, · · · , xN)

′ and s = (s1, s2, · · · , sN)
′ respectively, a basic ICA model

can express the linear relationship as x = As, where A represents a unknown
N × N matrix of full rank, which is called mixing matrix. Given only the
observed data that are mixtures of unknown sources, ICA can �nd the inde-
pendent sources without any prior knowledge of the mixing mechanism [6, 8].
It represents the original data with the components that are statistically in-
dependent, or as independent as possible. Such a representation captures the
essential structure of the data in many applications [7]. Various ICA algorithms
are developed to �nd a de-mixing matrix W [7, 9, 10, 11]. The de-mixing ma-
trix W transforms x into the independent components (ICs) y. The ICs are
used as the estimates of s:

Mixing : x = As

De−mixing : y = Wx
(1)
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2.1.1 ICA Model for Time Series

Let xi and si denote respectively each observed signal vector and each
source signal vector, and 1 ≤ i ≤ N . Both are assumed to be T − step time
series: xi = [xi(1), xi(2), · · · , xi(T )]

′ ; si = [si(1), si(2), · · · , si(T )]
′ . Let X and

S denote a N ×T observation matrix and a N ×T source matrix respectively:
X = [x1,x2, · · · ,xN ]

′ , S = [s1, s2, · · · , sN ]
′ . In the basic model of ICA, X is

modeled as X = AS =
∑N

i=1 ais
′
i, where ai is the i− th column of A, and s

′
i is

the i− th row of S [7]. The ICA model aims at estimating an unknown N ×N

de-mixing matrix W such that

Y = [y
′

i] = WX, (2)

where y
′
i = [yi(1), yi(2), · · · , yi(T )] is the i − th row of Y , and 1 ≤ i ≤ N .

In order to estimate the independent latent sources s1, s2, · · · , sN using y1,
y2,· · · , yN under the basic ICA model for time series, yi, 1 ≤ i ≤ N must be
instantly mutually independent.5 For the estimation of the sources, three other
assumptions are required: at most, one of the sources is Gaussian distributed
[7]; the mixing matrix is of full rank [9]; the observed signals are stationary
[13].

2.1.2 Ambiguities in the ICA Model

If W = A−1, then ICs are the same as source signals: Y = WX =

A−1AS = S. However, this is not always satis�ed. There are two inherent
ambiguities in the ICA model [11]: magnitude and scaling ambiguity; permu-
tation ambiguity. The �rst ambiguity means that the true variance of each
source signal cannot be determined: since both ai and si are unknown, X

can be rewritten as X = AS =
∑N

i=1

(
1
αi

ai

) (
αis

′
i

)
. The most simple solu-

tion to this ambiguity is to assume that each source signal has unit variance:
E[(si(t))

2] = 1, 1 ≤ i ≤ N, 1 ≤ t ≤ T . Even after introducing this as-
sumption, there still leaves the ambiguity of sign: the sign of each source
signal cannot be determined.6 The second ambiguity means that the order of

5It means that for any given t in 1 ≤ t ≤ T , y1(t), y2(t), · · · , yN (t) must be mutually
independent.

6It may not be a serious problem because the sources can be multiplied by -1 without
a�ecting the model and the estimation [7].
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estimated independent components cannot be speci�ed: introducing a permu-
tation matrix P and its inverse, X can be rewritten as X = AP−1PS = A∗S∗.
Since the elements of S∗ = PS are the original sources in a di�erent order and
A∗ = AP−1 is another unknown mixing matrix, we cannot distinguish AS

from A∗S∗ within the ICA model. Due to these ambiguities, we are only able to
�nd W such that WA = PD where D is a diagonal scaling matrix [14]. Thus,
ICs are scaled source signals in a di�erent order: Y = WX = WAS = PDS.7

2.2 Implementation of ICA

2.2.1 Non-Gaussianity Maximization

According to central limit theorem, a sum of independent signals with ar-
bitrary distributions tends toward a Gaussian distribution under certain con-
ditions. This implies that independent variables are more non-Gaussian than
their mixtures. Hence, non-Gaussianity is a measure of independence. This
elucidate that the separation of independent signals from their mixtures can
be accomplished by making the linear signal transformation as non-Gaussian
as possible. The key to estimating ICA model is non-Gaussianity [7, 9, 11].
Therefore, we can implement the ICA model as an optimization problem by
setting up a measure for the independence of ICs as an objective function. And
then, we can use some optimization techniques to �nd the de-mixing matrix
W [28]. Considering that what we are looking for in this paper is independent
components which security returns consist of, and that the security returns
are non-Gaussian distributed, non-Gaussianity-oriented ICA methods may be
the most relevant for the aim of this paper. The non-Gaussianity of ICs can
be measured by negentropy [27, 6]: J(y) = H(ygauss) − H(y), where ygauss

denotes a Gaussian random vector which has the same covariance matrix as
y = [y1, y2, · · · , yN ]

′ . And H(y) is the entropy of a random vector y with den-
sity p(y), which is de�ned as H(y) = −

∫
p(y)log (p(y)) dy. The negentropy

is always non-negative, and is zero if and only if y has a Gaussian distribution.
To overcome the computational di�culty, an approximation of negentropy8 is

7This implies that the instant mutual independence of ICs is equivalent to that of source
signals.

8In practice, we need the approximation of negentropy in 1− dimensional only [6].
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proposed in [27] as J(y) ≈ (E[G(y)]− E[G(v)])2, where v is a Gaussian vari-
able of zero mean and unit variance, and G(·) is a non-quadratic function. In
this paper, G(·) is given as G(y) = − exp(−y2/2). For details on the selection
of G(·), see [27].

2.2.2 Data Preprocessing

Before applying an ICA algorithm on the data, some preprocessing tech-
niques that make the ICA estimation simpler and better conditioned are per-
formed: centering and whitening the data [7]. The preprocessing step in ICA
is the multivariate standardization of the data by using PCA. For details, see
APPENDIX A.

2.2.3 FastICA Algorithm

FastICA algorithm proposed by [26] and [27] is a fast and e�cient imple-
mentation of ICA, and adopted in this paper to �nd a de-mixing matrix W.
It has various appealing properties [7]:

1. It converges very fast. Under the assumptions of ICA model, the con-
vergence is cubic or at least quadratic. The convergence of ordinary ICA
algorithms based on stochastic gradient descent methods is only linear.

2. It is simple to implement. Contrary to gradient-based algorithms, there
are no step size parameters to choose. Furthermore, it does not require
any matrix inversions, which usually consume a lot of computing time.

3. It can estimate both sub-Gaussian and super-Gaussian ICs. Ordinary
maximum likelihood algorithms only work for a given class of distribu-
tions.

4. With a kurtosis-based contrast functions, it can be shown to converge
globally to the ICs [9].

FastICA beats almost all the other ICA methods in robustness, speed and
simplicity. Those interested in the details on the comparison between FastICA
and other algorithms are invited to [28] or [10]. The details on the procedure
for implementing FastICA appears in APPENDIX B.
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2.3 Factor Model for ICA

The returns of securities are assumed to be represented as linear combi-
nations of some factors in many �nancial models [18]. Since factors are not
necessary directly related to the observable economic variables, �nding the fac-
tors for the model are not easy. [19] applied ICA to recover the hidden factors
and the corresponding sensitivities. In the multifactor model, the return of
the k − th security, rk, is represented as

rk = αk +
M−1∑
m=1

βkmfm + uk, (3)

where fm and βkm, 1 ≤ m ≤ M − 1, are factors a�ecting the return and
corresponding sensitivities, respectively. αk is the zero factor of the k − th

security, which is invariant with time. And uk is a zero mean random variable of
the k−th security, which is assumed that cov(fm, uk) = 0, 1 ≤ m ≤M−1 and
cov(ui, uj) = 0, i 6= j, where cov(·, ·) denotes the covariance. By subtracting
mean, (3) can be rewritten as rk − E[rk] =

∑M−1
m=1 βkm(fm − E[fm]) + uk.

By treating the noise term uk as an extra factor without loss of generality,
i.e. putting uk = βkMFM , [19] transformed the factor model in (3) into the
product of a mixing matrix and factor time series as

Rk(t) =
M∑

m=1

βkmFm(t), 1 ≤ t ≤ T, 1 ≤ k ≤ N, (4)

where Rk = rk −E[rk] and Fm = fm−E[fm]. (4) is the factor model for ICA.
In this model, F1, F2, · · · , FM are unknown independent source signals which
are designated as source factors.

2.4 Applying ICA to the Factor Model

In order to separate independent factors, ICA is applied to the preprocessed
return time series under the model in (4). The detailed procedure for this is
as follows (see APPENDIX A and B):

1. Select a universe of N securities, and observe the (T + 1) − step time
series of each component security: pk(t), 1 ≤ k ≤ N , 0 ≤ t ≤ T ;
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2. Calculate returns from the prices: rk(t) = (pk(t) − pk(t − 1))/pk(t − 1),
1 ≤ k ≤ N , 1 ≤ t ≤ T ;

3. Center each return time series: Rk(t) = rk(t) − E[rk], 1 ≤ k ≤ N ,
1 ≤ t ≤ T , where E[rk] is estimated as rk =

∑T
t=1 rk(t)/T ;

4. Whiten the centered return time series: R̃(t) = ED−1/2E
′
R(t),

where R̃(t) = [R̃1(t), R̃2(t), · · · , R̃N(t)]
′ , R(t) = [R1(t), R2(t), · · · , RN(t)]

′ ,
1 ≤ t ≤ T ;

5. Apply the FastICA algorithm to the preprocessed return vector time
series R̃(t) , 1 ≤ t ≤ T .

In the fourth step above, E is the orthogonal matrix of eigenvectors for the
covariance matrix E[RR

′
]. D is the diagonal matrix of its eigenvalues: D =

diag(d1, · · · , dN), and D−1/2 = diag(d
−1/2
1 , · · · , d−1/2

N ). E[RR
′
] is estimated as

E[RR
′
] ≈

∑T
t=1 R(t)R(t)

′
/(T − 1).

3 Hierarchy of Factors

Factor models can estimate the systematic risk, and there exist several
methods to �nd out the number of factors in security returns [30, 31]. How-
ever, factors in the aforementioned articles are not independent, and at best
uncorrelated. They estimate multifactor models by methods similar to �prin-
cipal component analysis (PCA).� PCA transforms a data set in which there
are a large number of interrelated variables into a new data set of variables,
the principal components (PCs), which are uncorrelated. In PCA, the PCs are
ordered according to the size of their eigenvalues so that the �rst few retain
most of the variation present in all of the original variables [15]. In this article,
the returns of component securities of a given universe are decomposed into
independent factors, and thus both systematic and idiosyncratic risk factors
can be included in the model as well as further decomposition of the uncor-
related factors is accomplished. This is quite di�erent from the traditional
factor model approaches that specify models (such as one factor model, two
factor model, etc.) �rst and then use data to estimate them. The approach
of this paper uses data �rst in order to identify risk factors, and then specify
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the model using the identi�ed factors. Therefore, this approach can include
all the risk factors contained in the data.

ICA cannot order ICs in the way as PCA orders PCs because it is assumed
in ICA that each source signal has unit variance, and hence all the eigenval-
ues of ICs are normalized to unity through data preprocessing [16]. However,
still can they be ordered according to their relative importance in data re-
construction [17]. [17] uses relative hamming distance (RHD) to construct
the Q-measure which measures the data reconstruction error. Adopting RHD

to measure data reconstruction error is based on the consideration that the
trend of a time series may be mostly controlled by the underlying independent
components. RHD compare the trend of original time series with that of re-
constructed time series in a very simple way: if both time series are moving
in the same direction at a given point of time, the value of RHD is 0; if both
time series are moving in opposite directions, the value of RHD is 4; if one of
the time series is moving in a direction while the other remains still, the value
of RHD is 1. By minimizing the cumulative data reconstruction error, the ICs
can be ordered according to their joint contribution in data reconstruction.

Other methods suggested for ordering ICs before [17] have decided the or-
der based on each individual component without considering their interactions
on the observed times series. For example, [13] decides the IC order according
to the norm of each individual component; [29] suggests to select a subset of
ICs based on the mutual information between the observation and the indi-
vidual components; [28] sorts ICs to their non-Gaussianity. In these methods,
the component order is determined based on each individual component only.
However, the observed series are actually in�uenced by several components,
whose individually decided optimum order is no longer optimum as a whole
from the viewpoint of analyzing the observed series. Therefore, it may be more
helpful to consider the joint contribution of the components to the time series
in performing ordering [17].

3.1 Data Reconstruction

Let x1(t), x2(t), · · · , xN(t) be the observed N signals at time t, which are
instantaneous linear mixtures of unknown mutually independent sources s1(t),
s2(t),· · · , sN(t) at time t. The observed signals can be modeled as x(t) =
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As(t), where x(t) = [x1(t), x2(t), · · · , xN(t)]
′ , s(t) = [s1(t), s2(t), · · · , sN(t)]

′ ,
and A is a N × N unknown mixing matrix. ICA can recover the source
signal vector s(t) up to an unknown constant and a permutation of indices
through a de-mixing matrix W: y(t) = Wx(t) = WAs(t), 1 ≤ t ≤ T , where
y(t) = [y1(t), y2(t), · · · , yN(t)]

′ is a IC vector at time t. Then the contribution
of a independent component yn to the reconstruction of the observed signal xk

can be denoted as

ckn(t) = W−1
kn yn(t), 1 ≤ t ≤ T, (5)

where W−1
kn denotes the (k, n)− th element in the inverse matrix of W, W−1.

3.2 Relative Hamming Distance (RHD)

Suppose that the N ICs y1(t), y2(t), · · · , yN(t) are given, and that we de-
termine a speci�c list Lk which shows the order of them. For example, if 5 ICs
are given and Lk = {2, 1, 5, 3, 4}, then the ordering of ICs is y2, y1, y5, y3, y4.
Using the �rst m ICs under the list Lk, xk is reconstructed as

x̂m
Lk

(t) =
m∑

r=1

ckq(r)(t), (6)

where q(r) denotes the r− th element of Lk. The corresponding reconstruction
error Q(xk, x̂

m
Lk

) is de�ned by the Relative Hamming Distance (RHD) function
as

Q(xk, x̂
m
Lk

) = RHD(xk, x̂
m
Lk

) =
1

T − 1

T−1∑
t=1

[Hk(t)− Ĥm
Lk

(t)]2, (7)

where

Hk(t) = sign[xk(t + 1)− xk(t)], Ĥm
Lk

(t) = sign[x̂m
Lk

(t + 1)− x̂m
Lk

(t)], (8)

and

sign(h) =


1 if h > 0

0 if h = 0

−1 otherwise

(9)
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Q(xk, x̂
m
Lk

) measures how well the reconstructed time series mimics the original
time series. The cumulative data reconstruction error JLk

is given as

JLk
=

N∑
m=1

Q(xk, x̂
m
Lk

) (10)

And hence, the optimum order list L∗
k under the Q measure criterion is given

as
L∗

k = arg min
Lk

JLk
(11)

For each time series {xk(t)}Tt=1, 1 ≤ k ≤ N , we can �nd a speci�c optimum
order list. This method is termed �Exhaustive Search� in [17].

4 New Measures of Dependency

4.1 Independent Factor Order Distance (IFOD)

The factor model for ICA explained in Section 2.3 can be rewritten as
R(t) = βF(t), 1 ≤ t ≤ T , where β is a N × M sensitivity matrix and
F(t) = [F1(t), F2(t), · · · , Fm(t)]

′ . Pre-multiplying the whitening matrix K =

ED−1/2E
′ to the both sides, we arrive at R̃(t) = β̃F(t), 1 ≤ t ≤ T , where

R̃(t) = KR(t) and β̃ = Kβ. Once the de-mixing matrix W is estimated as
Ŵ by the procedure in APPENDIX B, then we can obtain the estimate of
independent factor vector F̂ 9 as F̂ (t) = ŴR̃(t), 1 ≤ t ≤ T . Since R̃(t) =

KR(t), we have ŴR̃(t) = ŴKR(t) = F̂ (t), 1 ≤ t ≤ T . Thus, we �nally
arrive at

R(t) =
(
ŴK

)−1

F̂ (t), 1 ≤ t ≤ T. (12)

We can rewrite (12) component-wisely as10

Rk(t) =
N∑

n=1

(
ŴK

)−1

kn
F̂n(t), 1 ≤ k ≤ N, 1 ≤ t ≤ T, (13)

9F̂ corresponds to Ŷ, the estimate of independent component vector Y in the usual ICA
model: Ŷ = ŴX. In the factor model for ICA, we designate independent components as
independent factors.

10It is assumed that the number of ICs (independent factors) equals to that of observed
signals (security returns), i.e. M = N [7].
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where
(
ŴK

)−1

kn
denotes the (k, n) − th element of

(
ŴK

)−1

, and F̂n is the

n − th element of F̂ . Using (13) and the de�nition of optimum order list L∗
k

(see Section 3.2), we can represent the return time series of each security as

Rk(t) =
N∑

r=1

(
ŴK

)−1

kq∗k(r)
F̂q∗k(r)(t), 1 ≤ k ≤ N, 1 ≤ t ≤ T, (14)

where L∗
k denotes the optimum order list for the return time series of Security

k, and q∗k(r) denotes the r − th element of L∗
k. In other words, q∗k(r) is the

factor index of the r − th contribution, under the Q-measure criterion, to
the reconstruction of return time series of Security k using the estimates of
independent factors, F̂1, F̂2, · · · , F̂N . Thus, we can translate the return of
each security into a linear combination of the independent factors in the order
speci�c to the security.

Considering that the return of every security is composed of the same inde-
pendent factors as in (13) and that every security has a unique optimum order
list which determines the contribution ranking of each independent factor in
reconstructing its return data as in (14), it may be quite natural to conjecture
that similar securities have similar optimum order lists. And hence, it may be
a natural conclusion that we can measure the dependency between the securi-
ties by comparing their optimum order lists. Thus, we propose �Independent
Factor Order Distance (IFOD)� as a new measure of dependency between
securities, which is de�ned as

IFOD(i, j) =
1

N

N∑
n=1

(
L∗

i (n)− L∗
j(n)

)2
, 1 ≤ i, j ≤ N, (15)

where L∗
i (n) and L∗

j(n) denote the location of Factor n in the optimum order
list for the return of Security i and Security j, respectively. IFOD measures
the average of all the squared factor distances between two securities.11 The
smaller the value of IFOD is, the larger the dependency between the two
securities is.

4.2 Changes of IFOD

We assign rankings to the values of IFOD(k, i), i = 1, · · · , N for a �xed
11A factor distance means the location di�erence of a factor between two securities.
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Stock k so that the smaller value has the higher ranking. Thus the higher
ranking of IFOD(k, i) implies the more dependency between Stock k and
Stock i. Based on the comparison of rankings of IFOD(k, i), 1 ≤ i ≤ N in
two di�erent periods, p1 and p2, for the �xed Stock k, we propose an index
that can measure the changes in the attributes of Stock k as follows:

CHANGE(k, p1, p2) =
1

N

N∑
i=1

(RIFOD(k, i)p1 −RIFOD(k, i)p2)
2 , (16)

where RIFOD(k, i)p1 and RIFOD(k, i)p2 denote the ranking of IFOD(k, i)

in the period of p1 and p2, respectively. The smaller the value of CHANGE

is, the lesser the attributes of Stock k has changed between the two periods.
We also assign rankings to the values of CHANGE(k, p1, p1), k = 1, · · · , N
in a descending order, i.e. CHANGE with the smaller value takes the higher
ranking. Thus the higher ranking of CHANGE(k, p1, p2) implies the lesser
changes in the attributes of Stock k between p1 and p2.

5 Empirical Results

5.1 Data

Using the daily return times series of current component stocks of which
Dow Jones Industrial Average (DJIA) is comprised, we test the performance
of IFOD. The list of component stocks appears in Table 1. To analyze the
changes of IFOD during the recent �nancial crisis, the daily market clos-
ing prices of component stocks from 9/2/2005 to 8/31/2006 and those from
9/3/2008 to 8/31/2009 are used in the calculation of stock returns. The former
period, which is designated as Period 1, represents a relatively quite period,
while the latter, which is designated as Period 2, represents a turbulent pe-
riod. Data source is http://�nance.yahoo.com. All the prices are adjusted for
dividends and splits as of 7/25/2013. The number of price observations for
each stock is 251 in each Period. Thus, the number T of return observations
of each stock is 250 in each Period. Figure 1 shows the graph of DJIA from
9/2/2005 to 8/31/2009, from which we can �nd the di�erence between the two
periods by simple visual inspection.
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5.2 Independent Factors of Dow Jones Market

Though the number of DJIA component stocks is 30 in Table 1, we use only
5 stocks of them in the �rst empirical study of this paper to save computing
time.12 They are Stock 6 (CSCO), Stock 12 (HPQ), Stock 13 (IBM), Stock 14
(INTC), and Stock 21 (MSFT). All of them are related to the IT sector, which
is sensitive to the economic turbulence. Figure 2 shows, F̂n(t), 1 ≤ n ≤ 5, 1 ≤
t ≤ T , the estimates of independent factors both in Period 1 and Period 2,
which are extracted by FastICA from the return data. There is one important
thing to which you have to pay attention in reading the �gure: we name
each independent factor according to the order in which FastICA estimates it.
Because FastICA is initialized randomly each time it runs, it may estimate the
same factor in di�erent order each time it runs. As explained in Section 2.1.2,
the order of estimated independent components cannot be speci�ed. Therefore
Factor k in Period 1 may be completely di�erent from Factor k in Period 2.

Table 2 shows the optimum order lists (L∗
k, k = 6, 12, 13, 14, 21) and the

cumulative data reconstruction errors (JL∗
k
, k = 6, 12, 13, 14, 21) of the 5 stocks

both in Period 1 and in Period 2. In Period 1, Stock 12 (HPQ) has 2 di�erent
factor hierarchies. And in Period 2, Stock 21(MSFT) has two factor hierar-
chies. These multiple optimum order lists result from the fact that we apply
FastICA to a universe composed of a small number of stocks which come from
a single industry sector, and hence some factors extracted by FastICA seem
to be similar to each other. If we apply FastICA to a universe with a large
number of stocks which come from diverse industry sectors, this problem will
disappear (see Section 6.2 of this paper).

5.3 IFOD of Dow Jones Market

From Sub-table (a) in Table 2, we can observe that Factor 3 in Period 1
takes the �rst position in the optimum order list of Stock 21 (MSFT), while it
takes the last position in that of Stock 6 (CSCO) and second in that of Stock
13 (IBM). Therefore, we can say that the distance between Stock 21 and Stock
6 are as far as 4(=5-1) with respect to Factor 3, while the distance between

12The exhaustive search for ordering N independent factors requires (N + 1)! times of
data reconstruction. For large N , we will use TnA algorithm (see Section 6.1 of this paper).
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Stock 21 and Stock 13 is as close as 1(=2-1) with respect to Factor 3. The
IFOD measures the average of squared factor distances between two stocks.

Table 3 compiles IFODs both in Period 1 and in Period 2. From Sub-table
(a) in Table 3, we can �nd 2 di�erent IFOD ranking matrices corresponding
to the multiple optimum order lists of Stock 12 (HPQ) in Period 1. And, from
Sub-table (b) in Table 3, we can also �nd 2 di�erent IFOD ranking matrices
corresponding to the multiple optimum order lists of Stock 21 (MSFT) in
Period 2. The i− th row of each matrix in Table 3 shows the values of IFOD

between Stock i and the other Stocks: IFOD(i, j), j = 6, 12, 13, 14, 21. Note
that IFOD(i, i) = 0. The smaller the value of IFOD(i, j) is, the larger the
dependency between Stock i and Stock j is.

To read the information from these matrices more easily, we assign rankings
to the elements of each row according to their values in descending order: the
smaller value an element in the row has, the higher ranking is assigned to it.
Thus, the higher ranking implies the larger dependency. Each ranking is des-
ignated as RIFOD(i, j), i = 6, 12, 13, 14, 21, j = 6, 12, 13, 14, 21, and appear
in parenthesis beside the corresponding IFOD. Note that RIFOD(i, i) = 0.
When L∗

12 = (1, 2, 3, 5, 4), RIFOD(6, 12) and RIFOD(6, 14) are respectively
1.5 and 1.5, i.e. IFOD(6, 12) ties with IFOD(6, 14) (see the �rst matrix
in Sub-table (a) of Table 3). When L∗

12 = (1, 2, 5, 3, 4), RIFOD(6, 12) and
RIFOD(6, 14) are respectively 1 and 2 (see the second matrix in Sub-table
(a) of Table 3).

5.4 E�ects of Recent Financial Crisis on IFOD

Suppose that for a �xed Stock k we make a comparison of IFOD(k, j), j =

6, 12, 13, 14, 21 in Period 1 with those in Period 2. Then we can �nd how much
the attributes of Stock k has changed during the recent �nancial crisis. For
example, from Table 3 we can �nd that Stock 6 (CSCO) was the most dissim-
ilar to Stock 21 (MSFT) before the crisis (see the two matrices in Sub-table
(a) of Table 3, where you can �nd that RIFOD(6, 21) = 4), whereas it is
the most dissimilar to Stock 12 (HPQ) after the crisis (see the two matrices
in Sub-table (b) in Table 3, where you can �nd that RIFOD(6, 12) = 4).
CHANGE(k,Period 1, Period 2) shows how much Stock k has experienced
changes in its attributes between Period 1 and Period 2 by comparing the
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rankings of IFOD(k, j), j = 6, 12, 13, 14, 21 in Period 1 with those in Pe-
riod 2. Because Stock 12 (HPQ) has two optimum order lists in Period 1
and Stock 21 (MSFT) also has two optimum order lists in Period 2, there
are all 4 pairs of ranking matrices which we have to consider for the cal-
culation of CHANGE. For a �xed Stock k, we calculate all the values of
CHANGE(k, Period1, P eriod2) using the 4 pairs of ranking matrices and
then average them out. Table 4 reports the result. We can observe that Stock
12 (HPQ) has experienced the smallest changes of attributes during the crisis,
while Stock 13 (IBM) the largest changes.

5.5 Correlation versus IFOD

From Table 5, we can observe all the correlations between the returns of
5 IT stocks from DJIA components, and their rankings. The larger the cor-
relation of a pair of stocks is, the higher ranking it takes in the row of the
corresponding correlation matrix. The larger correlation means the more de-
pendency between stocks, whereas the smaller value of IFOD implies the
more dependency between stocks. For the purpose of comparison, we also de-
�ne another index that can measure the change of characteristics of the stock,
CHANGE∗(k, Period1, P eriod2), which is based on correlation rankings:

CHANGE∗(k, p1, p2) =
1

N

N∑
i=1

(Rcorr(k, i)p1 −Rcorr(k, i)p2)
2 , (17)

where Rcorr(k, i)p1 and Rcorr(k, i)p2 denote the ranking of correlation between
the return of Stock k and Stock i in the period of p1 and p2, respectively.

According to the rankings of CHANGE∗(k, Period1, P eriod2),13 Stock
13(IBM) seems to have experienced the least changes in attributes between
Period 1 and Period 2 (see Sub-table (c) in Table 5). This is a prominent
contrast to the result of CHANGE, which shows that Stock 13 (IBM) has ex-
perience the largest changes in attributes between Period 1 and Period 2 (see
Table 4). Considering that the distribution of stock returns is non-elliptical
whereas the linear correlation is a measure of dependence for elliptically dis-
tributed variables, we can understand why there is such a large di�erence
between CHANGE and CHANGE∗: CHANGE is based on the IFOD,

13The higher ranking implies the lesser changes.
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which is not dependent on the distribution of stock returns, while CHANGE∗

is based on the correlation which is con�ned to the elliptically distributed
variables. And, using another canonical di�erence between IFOD and corre-
lation we can also explain why there exists such a large di�erence di�erence
between CHANGE and CHANGE∗: IFOD measures the whole aspects of
dependency through factor-by-factor comparison of security returns, whereas
correlation measures only the central dependency between security returns. In
other words, CHANGE can re�ect appropriately tail events that may happen
during the economic turbulence owing to the holistic nature of IFOD, whereas
CHANGE∗ cannot due to the limited ability of correlation.

Not only through the di�erence between CHANGE and CHANGE∗ but
also through the di�erence between measurements on the variation of depen-
dency according to the economic conditions, can we �nd another important
distinction between IFOD and correlation. From Table 5, we can observe
that every correlation in Period 2 is larger than that in Period 1, which im-
plies that stock returns are more dependent during market downturns (Period
2) than during market upturns (Period 1). From the viewpoint of IFOD,
however, we can �nd that the dependency of stock returns does not always
behave in this pattern. Table 6 shows average IFODs in Period 1 and those
in Period 2, which are respectively the result of averaging out the IFOD

ranking matrices in Sub-table (a) and in Sub-table (b) of Table 3. From
Table 6, we can observe that some stock returns are less dependent during
market downturns: the values of IFOD(6, 12), IFOD(12, 6), IFOD(12, 13),
IFOD(13, 12), IFOD(13, 21), and IFOD(21, 13) in Period 2 is larger than
those in Period 1, which implies that the dependency in Period 2 between
Stock 6 and 12, between Stock 12 and 13, and between Stock 13 and 21 are
less than those in Period 1, respectively.

From the observations above in this subsection, we can conclude that ow-
ing to the factor-wise comparison IFOD can provide the more fundamental
concept of relationship between securities than the traditional statistical tools
based on correlation can do: IFOD measures the dependency between stock
returns by comparing the relationship of independent factors which comprise
the returns, while correlation measures the dependency by comparing the re-
lationship of the returns themselves. Furthermore, we can say that IFOD

extracts information from the return data exhaustively in the sense that the
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Q-measure (see Section 3.2) uses the cumulative data reconstruction error to
determines the optimum order list for a given stock: when a permutation of
N factors is given for the data reconstruction, the Q-measure accumulates in-
formation by increasing the number of factors that are used in the calculation
of the error one by one according to the order speci�ed by the permutation
until it uses up all the factors. It keeps to perform the same procedure with a
new permutation of N factors until it uses up all the permutations. Thus the
resulting optimum order list for the given stock carries all the information that
can be extracted from the independent factors and the relationship between
them. Since each stock return can be expressed in a linear combination of these
factors in the order which the optimum order list speci�es, the IFOD ranking
matrices can represent the more delicate relationship between securities than
the correlation ranking matrices do.

6 Discussion

6.1 TnA Algorithm

Even for a minor increase of N , the exhaustive search explained in Section
3.2 requires a rapid increase of computing time because it needs to reconstruct
the data (N+1)! times for ordering N independent factors. Therefore, calculat-
ing the IFODs with respect to all the components of DJIA is almost impossible
for a humble desktop computer due to the astronomical number of iterations,
which amounts to 31! Luckily, [17] also proposes another ordering method
called �Test-and-Acceptance (TnA)�, which requires only N(N +1)/2−1 times
of data reconstruction, and thus does not consume such huge computing time
even for a relatively large number of N .14

Using the algorithm in APPENDIX C, TnA produces a sub-optimum order
list L̂∗

k as an estimate of the optimum order list L∗
k. Because it estimates the

optimum order list for a given stock by deleting factors as explained in the
appendix, it can not always �nd the optimum order list for the stock: there

14To order the 30 independent factors with respect to all the component securities using
the TnA algorithm, it takes a desktop computer, which is equipped with an Intel CPU of
i7-3930K and the 32G main memories, less than 2 minutes.
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is a trade-o� between the speed and the accuracy. And hence, we recommend
you to use the exhaustive search when N is less than 10; otherwise to use TnA.

Table 7 reports the optimum order lists by TnA for the whole component
stocks of DJIA in Period 1.15 The bold numbers in the headline column of
the table denote component stocks, and those in the headline row denote the
factor order. Thus the i − th row other than the headline row of the table
represents the optimum factor order list corresponding to Stock i in Period 1.
For example, the �rst row except the headline row in Table 7, which is read as
�29, 6, 23, ...., 4�, is the optimum order list of Stock 1 (AA) in Period 1: in this
optimum order list, Factor 29 takes the �rst place, Factor 6 takes the second
place, Factor 23 takes the third place,..., and Factor 4 takes the last place.

6.2 Solutions to the Multiple Hierarchies

Suppose that a universe contains a small number of stocks or it is composed
of homogeneous stocks, for example, stocks from a single industry sector. Then
it happens that a single component stock of the universe may have multiple
optimum factor lists because the resulting independent factors may not be
distinctive enough to describe the universe. There is a simple solution to this
problem: adding to the universe some stocks from diverse industry sectors. The
additional stocks will act as dummy variables to guarantee the uniqueness of
factor hierarchy for every component stock.

We add two stocks, Stock 15 (JNJ) and Stock 26 (UNH), to the universe
composed of the 5 IT stocks in Section 5.2. And hence, we can show that, in
the new universe, each of the 5 IT stocks has a unique factor hierarchy (see
Table 8).

6.3 Asymmetry in the IFOD Rankings

In realty, we sometimes experience asymmetric relationship with others:
for example, person A considers person B as his best friend, while person B
considers person C other than person A as his best friend. Amazingly, IFOD

15When a stock has multiple optimum order lists, we pick up the �rst one to compile this
table.
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ranking matrices mimic this human behavior: the linear correlation can mea-
sure only the symmetric relationship between two stocks in the sense that
corr(Stock i, Stock j) = corr(Stock j, Stock i), whereas the IFOD ranking
matrices can detect whether the relationship is symmetric or asymmetric. For
example, from the �rst IFOD ranking matrix in Sub-table (a) of Table 3
we can observe that Stock 21 (MSFT) considers Stock 13 (IBM) as his best
friend,16 whereas Stock 13 (IBM) considers Stock 12 (HPQ) as his best friend
instead of Stock 21 (MSFT). This asymmetry does not imply any miscalcu-
lation of IFOD: we can �nd that all the IFOD matrices in this paper are
symmetric as the de�nition of IFOD in Equation (15) enforces. We can also
�nd symmetric relationship between securities as well: for example, from the
�rst IFOD ranking matrix in Sub-table (a) of Table 3 we can observe that
Stock 12 (HPQ) considers Stock 13 (IBM) as his best friend at the same time
Stock 13 (IBM) also considers Stock 12 (HPQ) as his best friend.

7 Applications of IFOD

In this section, we present some useful examples of applying IFOD to
various areas in �nance. Section 7.1 and 7.4 show how we can apply IFOD to
the area of portfolio management, and Section 7.2 and 7.3 to the area of risk
management.

7.1 Selecting Alternatives

Suppose that regulations or some other reasons prevent you from investing
in a speci�c security which you have found very attractive and promising. One
of the relevant alternatives you can choose to cope with this situation may be
to select alternative securities, which are similar to the non-allowable security,
from your universe. Assume that you are a fund manager only allowed to
invest your budget in DJIA components, while you have found that �EBAY�,

16In this context, �the best friend� means the security which is closest to Stock 21 (MSFT)
by the criterion of IFOD, i.e. which has the highest IFOD ranking within {IFOD(21, j) :
j = 6, 12, 13, 14}.
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which is not in your universe, would be promising. If you add EBAY to your
universe and then apply ICA as well as TnA to the new universe, you can �nd
best friends of EBAY from your universe. Let us designate EBAY as Stock 0
(EBAY) for the sake of convenience. Then, we can calculate IFOD(0, j), 1 ≤
j ≤ N , and hence �nd Stock j∗, which has the smallest value of IFOD among
the 30 component stocks of DJIA. Stock j∗ is the best friend of EBAY. Now,
you can invest some of your budget in the best friend instead of EBAY to which
you want to take some exposure. What is the di�erence between selecting
the best friend by IFOD and that by correlation? The correlation measures
only the central dependency, whereas the IFOD takes into account the whole
aspects of dependency in the sense that it compares Security 0 with Security
j factor by factor. Therefore, we can expect that the best friend selected by
IFOD may be quite di�erent from that selected by correlation.

Table 9 shows IFOD(0, j), 1 ≤ j ≤ 30 and their rankings both in Period
1 and Period 2. The smaller IFOD takes the higher ranking. And, Table 10
shows corr(0, j), 1 ≤ j ≤ 30 and their rankings both in Period 1 and Period
2. The larger correlation has the higher ranking. In period 1, best 5 friends
of EBAY selected by IFOD are XOM, UTX, DIS, DD, and AA (see Sub-
table (a) of Table 11), whereas those selected by correlation are WMT, CAT,
INTC, AXP, and GE (see Sub-table (b) of Table 11). We can see the best 5
friends selected by IFOD are quite di�erent from those selected by correlation.
Furthermore, two of the best 5 friends selected by correlation (INTC and AXP)
are in the list of worst friends selected by IFOD. In Period 2, the best 5 friends
of EBAY selected by IFOD are INTC, DD, IBM, HPQ, MRK, while the best
5 friends of EBAY selected by correlation are INTC, CSCO, DD, UTX, DIS.
Both criteria select INTC as the best friend of EBAY unanimously. And, both
criteria also select DD as one of the best 5 friends. However, two of the best
5 friends selected by correlation (CSCO, UTX) are in the list of worst friends
selected by IFOD.

7.2 Detecting Structural Breaks

Based on the conjecture that the attributes of security would not change
signi�cantly in stable periods, we can detect structural breaks using Equation
(16). First, we calculate RIFOD(k, i), 1 ≤ i ≤ N in Period 1 for a given
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Stock k. We de�ne a new data set, which we designate as t1, by attaching to
Period 1 the return data of next month, and then calculate RIFOD(k, i), 1 ≤
i ≤ N in t1. And, we de�ne another new data set, which we designate as
t2, by attaching to t1 the return data of the next month, and then calculate
RIFOD(k, i), 1 ≤ i ≤ N in t2. We continue the same procedure until tT .
By using (16), we measure how much the attributes of Stock k has changed
between Period 1 and t1. And then we measure it between t1 and t2. We
continue the same procedure until tT . Now, we can �nd structural breaks
by observing the graph of CHANGE(k, ti−1, ti), 1 ≤ i ≤ T , where t0 means
Period 1. If a structural break has occurred, we can �nd a large spike in
the graph. Because each stock has di�erent attributes, the patterns of the
graphs are quite di�erent across stocks: some stocks are very sensitive to the
structural breaks and hence they respond instantly to them, while others are
insensitive and hence respond slowly or do not respond at all. We also calculate
the average of CHANGE(k, ti−1, ti), 1 ≤ k ≤ N for each i and designate it as
AveCAHNGE(ti−1, ti):

AveCAHNGE(ti−1, ti) =
1

N

N∑
k=1

CHANGE(k, ti−1, ti) (18)

Figure 3 shows the graph of AveCAHNGE(ti−1, ti), 1 ≤ i ≤ 36.
From this graph, we can observe a large spike at i = 18 and at i = 28,

respectively. In other words, one structural break occurred between January
and February of 2008, and the other between November and December of
2008. Table 12 shows the values of AveCAHNGE(ti−1, ti), 1 ≤ i ≤ 36 and
their change ratios in percentage.

7.3 Measuring Diversi�cation

Suppose that the universe is composed of N securities and your portfolio
consists of two stocks among them, Stock i and Stock j. Then we can measure
the degree of diversi�cation of your portfolio from the viewpoint of IFOD.
Since the largest value of RIFOD(i, ·) is N − 1,17 RIFOD(i, j)/(N − 1) can
measure the relative distance between Stock i and Stock j. Taking into account
that RIFOD(i, j) does not always equal to RIFOD(j, i) due to the asymmetry

17Note that RIFOD(i, i) = 0
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discussed in Section 6.3, we de�ne the whole relative distance between Stock i

and Stock j (WRD(i, j)) as follows:

WRD(i, j) =
1

2
(RIFOD(i, j)/(N − 1) + RIFOD(j, i)/(N − 1)) (19)

We designate the generalized version of (19) for a portfolio composed of k

stocks, Stock n1, Stock n2,· · · , Stock nk, as DIV F (n1, n2, · · · , nk) and de�ne
it as follows:

DIV F (n1, n2, · · · , nk) =
1

kC2

∑
i∈{n1,··· ,nk}

∑
j∈{n1,··· ,nk}, j>i

WRD(i, j), (20)

where kC2 = k(k − 1)/2. Because 0 5 WRD(i, j) 5 1 and the number of
WRDs in (20) is kC2, DIV F ranges from 0 to 1. The closer to 1 the DIV F

of the portfolio is, the more diversi�ed it is from the viewpoint of IFOD.
DIV F does not depend on the weights of individual component stocks of
the portfolio. Using Table 7, we can calculate every RIFOD(i, j) in Pe-
riod 1. Table 13 shows RIFODs in Period 1. Suppose that your portfolio
is composed of Stock 1(AA), Stock 2(AXP), and Stock 3(BA). From Table
13, we can read the values of 6 RIFODs in Period 1: RIFOD(1, 2) = 3,
RIFOD(2, 1) = 3, RIFOD(1, 3) = 5, RIFOD(3, 1) = 2, RIFOD(2, 3) = 2,
and RIFOD(3, 2) = 1. Thus we can calculate WRDs related to these val-
ues: WRD(1, 2) = 0.103448, WRD(1, 3) = 0.12069, WRD(2, 3) = 0.0.051724.
Now, we obtain the value of DIV F (1, 2, 3) in Period 1: it is 0.091954.

7.4 IFOD CAPM

In this subsection, we discuss IFOD version of capital asset pricing model
(CAPM). In the CAPM, each security beta is de�ned as the ratio of the return
covariance between the security and the market portfolio to the return variance
of the market portfolio. Because we are working with the 30 component stocks
of DJIA, we substitute DJIA for the market portfolio. For the sake of conve-
nience we will designate DJIA as Stock 0. If we can calculate RIFOD(0, i)

and RIFOD(i, 0), then we can use WRD(0, i) as the IFOD version of beta
for Security i. Now, in order to calculate RIFOD(0, i) and RIFOD(i, 0), we
have to �nd the hierarchy of factors with respect to DJIA. According to the
ICA framework, the return time series of each component stock is a linear
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combination of independent factors. Because DJIA is a linear combination
of price time series of the component stocks, the return time series of DJIA
can also be a linear combination of the same independent factors.18 Ordering
the independent factors according to their ability to mimic the trend of return
time series of DJIA, can we �nd the hierarchy of factors with respect to DJIA.
The similar procedure has been done with respect to the return time series of
individual component stocks in order to �nd their factor hierarchies. Borrow-
ing the idea of TnA algorithm, the ability of each factor to mimic the trend of
return time series of DJIA is measured by RHD, which is discussed in Section
3.2. There is one important thing we have to pay attention to: as discussed in
Section 2.1.2, the ambiguity of sign still remains even after data preprocessing.
In other words, the sign of each source signal cannot be determined. There-
fore, we have to calculate two di�erent RHD, RHD+ and RHD−. RHD+

is de�ned as RHD between a factor and the centered return of DJIA, while
RHD− as RHD between the inverse signed factor and the centered return of
DJIA:

RHD+
n =

1

T − 1

T−1∑
t=1

{sign [CRDJIA(t + 1)− CRDJIA(t)]− sign [Fn(t + 1)− Fn(t)]}2

RHD−
n =

1

T − 1

T−1∑
t=1

{
sign [CRDJIA(t + 1)− CRDJIA(t)]− sign

[
F−

n (t + 1)− F−
n (t)

]}2
,

where CRDJIA(t) is the centered return of DJIA at time t, and F−
n (t) =

−Fn(t), 1 ≤ n ≤ N . The RHDn (RHD for Factor n) is de�ned as the smaller
one between RHD+

n and RHD−
n .

Table 14 shows RHDs and their rankings both in Period 1 and Period 2.
The factor with the smaller value of RHD takes the higher position in the
factor hierarchy of Stock 0 (DJIA). The factor hierarchy of Stock 0 (DJIA) in
Period 1 and Period 2, respectively designated as L̂∗Period1

0 and L̂∗Period2
0 , are

as follow:
18Because the return time series of Stock 0 (DJIA) is a linear combination of return time

series of 30 DJIA component stocks, the rank of return matrix of the 31 stocks will be
smaller than 31. Therefore we can not apply ICA directly to it.
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L̂∗Period1
0 = {18, 5, 28, 23, (10, 27), 30, (6, 26), 17, 24, 14, (2, 4),

13, 16, 25, 29, 7, 9, 3, 12, 21, 8, 15, (1, 22), (11, 19, 20)}
L̂∗Period2

0 = {9, 5, 17, 11, (20, 26), 22, 10, (13, 25, 29, 30), 6,

(2, 18, 21), (12, 23), (8, 14), 1, 15, 7, (4, 28), 24, 27, (3, 16, 19)}

The factors in parenthesis are interchangeable in the corresponding list of factor
ordering because they tie in their RHD values. For example, Factor 10 and
27 have the same RHD value of 1.638554 in Period 1, and hence Factor 10 or
27 can take the �fth position in the factor ordering list of Stock 0 (DJIA) in
Period 1.

Table 15 shows RIFOD(0, i), RIFOD(i, 0), and WRD(0, i), 1 ≤ i ≤ N

both in Period 1 and Period 2. Because DJIA is considered as Stock 0,
RIFOD(0, i) and RIFOD(i, 0) are divided by 30 instead of 29 in the cal-
culation of WRD(0, i). To ease the calculation of IFODs in Period 1, we
use L∗

0(10) = L∗
0(10) = 5.5; L∗

0(6) = L∗
0(26) = 8.5; L∗

0(2) = L∗
0(4) = 13.5;

L∗
0(1) = L∗

0(22) = 26.5; and L∗
0(11) = L∗

0(19) = L∗
0(20) = 29 in Equation

(15) instead of using multiple hierarchies of Stock 0 (DJIA). And in Period 2,
we use L∗

0(20) = L∗
0(26) = 5.5; L∗

0(13) = L∗
0(25) = L∗

0(29) = L∗
0(30) = 10.5;

L∗
0(2) = L∗

0(18) = L∗
0(21) = 15; L∗

0(12) = L∗
0(13) = 17.5; L∗

0(8) = L∗
0(14) =

19.5; L∗
0(4) = L∗

0(28) = 24.5; and L∗
0(3) = L∗

0(16) = L∗
0(19) = 29 in Equation

(15).
Table 15 also shows the CAPM version of betas for DJIA component stocks

both in Period 1 and Period 2. The IFOD version of beta for Stock i,
WRD(0, i), shows how di�erent the behavior of Stock i is from that of the
market: the closer to 1 WRD(0, i) is, the more di�erently from the market
Stock i behaves. Comparing both betas (WRD and CAPM beta) in Period 1
and those in Period 2, we can �nd several interesting facts:

1. Those stocks which have largeWRDs in Period 1, i.e. which behave quite
di�erently from the market in Period 1, reduce their WRDs signi�cantly
in Period 2. Stock 7, 8, 22, 28, 30 have large WRDs, which are over 0.8
in Period 1. In Period 2, they reduce their WRDs by 20%~70%.

2. Those stocks which have small WRDs in Period 1, i.e. which behave
in accordance with the market in Period 1, increase their WRDs sig-
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ni�cantly in Period 2. Stock 2, 6, 21, 23, 27 have small WRDs, which
are below 0.2 in Period 1. In Period 2, they increase their WRDs by
60%~1200%. There is one exception: Stock 9 has a WRD as small as
0.1667 in Period1, and it reduces its WRD further by 20% in Period 2.

3. Those stocks with large CAPM betas have relatively small WRDs in
Period 1, whereas they have relatively large WRDs in Period 2: in Period
1, Stock 1, 3, 5, 14, 16 have CAPM betas which are over 1.2, and they
all have WRDs which are below 0.5; in Period 2, Stock 1, 2, 4 have
CAPM betas which are over 1.8 and they all have WRDs which are over
0.6. There is one exception: in Period 2, Stock 16 has a CAPM beta as
large as 1.869, while its WRD is as small as 0.2667. The economy in
Period 1 is in boom, and hence large CAPM betas mean to behave in
accordance with the market, which explains why those stock with large
CAPM betas in Period 1 also have small WRDs. The economy in Period
2 is in recession, and hence large CAPM betas mean to behave di�erently
from the market, which explains why those stock with large CAPM betas
in Period 2 also have large WRDs.

8 Conclusion

This paper proposes a new method for measuring the dependency between
securities in a given universe. Applying independent component analysis to
the return data of the whole component securities in the universe, we can ex-
tract independent factors which compose the returns of component securities.
Reconstructing return data of individual component security based on such
factors, we �nd that each security has a unique factor hierarchy under certain
conditions: we can order the factors according to their relative importance in
reconstructing each individual security return. Thus, we can express its return
in a linear combination of independent factors in the order speci�c to the secu-
rity. Based on the fact that the security returns are non-Gaussian distributed
and that the independent factors extracted by ICA are also non-Gaussian dis-
tributed (see Section 2.2.1), the linear combination can be considered as a
proper representation of the security return.
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A comparative analysis of the resulting hierarchies can �nd the depen-
dence structure between securities in a nonparametric and distribution-free
context. Due to the non-elliptical distributional attributes of security returns,
those measures based on correlation which is only a measure of dependence
for elliptically distributed variables cannot appropriately measure the depen-
dency between securities. However, by comparing their factor hierarchies we
can appropriately measure the dependency. To compare their factor hierar-
chies systematically, we de�ne a new measure called �IFOD�. The IFOD,
which is de�ned in Equation (15), calculates the average of all the squared
factor distances between two securities. The smaller the value of IFOD is,
the larger the dependency between the two securities is. IFOD re�ects the
whole aspects of dependency between securities through the factor-by-factor
comparison of their returns, whereas correlation measures only the central de-
pendency between the security returns. And, we also de�ne another measure,
which is designated as �CHANGE� in Equation (16). It can measure how
much the attributes of a stock has changed between two di�erent periods by
comparing RIFODs of the security in the two periods. We also compare
the performance of CHANGE with that of CHANGE∗, which is based on
correlation: CHANGE can re�ect appropriately tail events that may happen
during the economic turbulence owing to the holistic nature of IFOD, whereas
CHANGE∗ cannot due to the limited ability of correlation.

Empirical studies of this paper show that the new method outperforms
the old measures which are based on correlation: owing to the factor-wise
comparison IFOD can provide the more fundamental concept of relationship
between securities than the traditional statistical tools based on correlation
can do. IFOD measures the dependency between stocks by analyzing the
relationship of independent factors which comprise the returns, while corre-
lation measures it by comparing the relationship of the returns themselves.
Furthermore, IFOD can reveals very delicate dependence structures between
securities that otherwise remain hidden.

We have discussed TnA algorithm to cope with large N (the number of
securities in a universe), and also discussed how to deal with multiple factor
hierarchies of a single stock. We have also found that the IFOD ranking
matrices show asymmetry, i.e. that every security selects his best friend in
a human-like attitude: Stock A chooses Stock B as his best friend, whereas
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Stock B happens to choose Stock C instead of Stock A as his best friend.
Finally, we provide several useful examples of applying IFOD to various

areas in �nance such as portfolio management (see Section 7.1 and 7.4) or risk
management (see Section 7.2 and 7.3).

Considering that important variables in �nance such as security returns
are non-elliptically distributed and that the correlation is only relevant for
elliptically distributed variables, IFOD will be a viable alternative to the
correlation-based measures of dependency between securities. It provides a
nonparametric distribution-free approach for measuring the dependency.
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Appendix A. Data Preprocessing

Centering the random vector x = [x1, x2, · · · , xN ]
′19 means to subtract its

mean vector m = E[x] from x so to make it a zero-mean variable. This
implies that s is a zero-mean variable as well. After being centered, x is
linearly transformed into a white random vector x̃. The components of x̃

are uncorrelated and their variances are unity: E[x̃x̃
′
] = I, where I is an

identity matrix. In order to whiten x, the eigenvalue decomposition is ap-
plied to the covariance matrix E[xx

′
] as follows: E[xx

′
] = EDE

′ , where E

is the orthogonal matrix of eigenvectors of E[xx
′
], and D is the diagonal ma-

trix of its eigenvalues: D = diag(d1, d2, · · · , dN), and di, 1 ≤ i ≤ N are
eigenvalues. E[xx

′
] is estimated in a standard way from the available sample

x(1),x(2), · · · ,x(T ) : E[xx
′
] ≈ 1

T−1

∑T
t=1 x(t)x(t)

′ . Now, whitening is done
as follows: x̃ = ED−1/2E

′
x, where D−1/2 = diag(d

−1/2
1 , d

−1/2
2 , · · · , d−1/2

N ).

Appendix B. FastICA Algorithm

In the FastICA algorithm, the approximation of negentropy gives an ob-
jective function for estimating W. By maximizing the function given as

JG(w) = [E[G(w
′
x)]− E[G(v)]]2

we can �nd one independent component as yi = w
′
x. w is a N −dimensional

weight vector constrained so that E[(w
′
x)2] = 1. For whitened data, this

constraint implies that the norm of w to be unity: E[(w
′
x)2] = E[w

′
xx

′
w] =

w
′
E[xx

′
]w = w

′
Iw = w

′
w = 1.

The one-unit objective function can be extended to compute the whole
matrix W as follows:

Max
{wi}N

i=1

N∑
i=1

JG(wi)

s.t. E[(w
′
ix)(w

′
jx)] = δjk

19x means a random vector corresponding to cross-sectional data: for given t, x(t) denotes
x(t) = [x1(t), x2(t), · · · , xN (t)]

′ . Meanwhile, xi means the time series of i − th signal:
xi = [xi(1), xi(2), · · · , xi(T )]

′
.
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, where δjk = 1 if j = k, and δjk = 0 if j 6= k. This extension results
from maximizing the sum of N one-unit objective functions and taking into
account the constraint of de-correlation. At the maximum, every vector w

′
i, i =

1, 2, · · · , N gives one of the rows in the de-mixing matrix W.

Algorithm for One Unit

Estimation of w proceeds iteratively with the following steps, until conver-
gence is achieved. Convergence means that the old and new value of w point
to the same direction, i.e. their dot-product is almost equal to 1.

1. Choose an initial random vector w with ||w|| = 1.

2. w ← E[xg(w
′
x)] − E[g

′
(w

′
x)]w, where g(z) = dG/dz, and g

′
(z) =

dg(z)/dz.

3. w← w/||w||.

4. If |w′

oldwnew − 1| ≤ ε then stop; otherwise go back to step 2.

Algorithm for Multiple Units

Estimating several independent components needs to run the one-unit Fas-
tICA algorithm using several units with weight vectors w1, w2, · · · , wN . To
prevent di�erent vectors from converging to the same maximum, the outputs
w

′
1x, w

′
2x, · · · ,w

′
Nx must be de-correlated at every iteration. For whitened x,

such a de-correlation is equivalent to orthogonalization. Step 4 below is for
this operation.

1. Estimate w1,w2, · · · ,wp.

2. Choose an initial random vector wp+1 with ||wp+1|| = 1.

3. wp+1 ← E[xg(w
′
p+1x)] − E[g

′
(w

′
p+1x)]w, where g(z) = dG/dz, and

g
′
(z) = dg(z)/dz.

4. wp+1 ← wp+1 −
∑p

j=1 w
′
p+1wjwj.
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5. wp+1 ← wp+1/||wp+1||.

6. If |w′

p+1oldwp+1new − 1| ≤ ε then stop; otherwise go back to step 3.

Appendix C. TnA Algorithm

The basic procedure of TnA algorithm is given as follow: from the set of N

independent components, pick yr as the last one in the ordering, which makes
the RHD error between xk and the corresponding reconstruction from those
{yi}Ni=1,i6=r minimized; then, remove this independent component from the com-
ponent set; next, repeat the same operation on the remaining component set
{yi}Ni=1,i6=r and select the second-last component, ....., and so forth.

1. Let Z = {i|1 ≤ i ≤ N}, l = 1, Lk = ().

2. For each i ∈ Z, let vki(t) =
∑

p6=i,p∈Z ckp(t), 1 ≤ t ≤ T .

3. Select β = argminRHD
i∈Z

(xk, vki) as the l − th element of Lk.

4. Let Z = Z − {β}

5. If Z 6= {}, let l = l + 1 and go to step 2; otherwise go to step 6

6. Let L̂∗
k = L−1

k , where L̂∗
k is an estimate of L∗

k, and L−1
k denotes the inverse

order of Lk

7. Stop.
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Figure 1: Dow Jones Industrial Average from 9/2/2005 to 8/31/2009

This graph shows market closing prices of Dow Jones Industrial Average from
9/2/2005 to 8/31/2009. All the prices are adjusted for dividends and splits.
Data source: http://�nance.yahoo.com.
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[Independent Factors in Period 1]

[Independent Factors in Period 2]

Figure 2: Independent Factors of 5 IT Stocks from DJIA Components
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Figure 3: AveCHANGE

This graph show AveCHANGE(ti−1, ti), 1 ≤ i ≤ 36. AveCHANGE(ti−1, ti)

is the average of CHANGE(k, ti−1, ti) across k, 1 ≤ k ≤ 30. There are two
large spikes at i = 18 and i = 28, which imply that two structural breaks
occurred: the one between 1/2008 and 2/2008; the other between 11/2008 and
12/2008.
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Table 1: Component Stocks of Dow Jones Industrial Average

This table shows the list of current component stocks of which Dow Jones
Industrial Average is comprised. Data source: http://en.wikipedia.org.

Stock # Symbol Company Industry Data Added

1 AA Alcoa Aluminum 6/01/1959
2 AXP American Express Consumer �nance 8/30/1982
3 BA Boeing Aerospace & defense 3/12/1987
4 BAC Bank of America Banking 2/19/2008
5 CAT Caterpillar Constr. & mining equip. 5/06/1991
6 CSCO Cisco Systems Computer networking 7/08/2009
7 CVX Chevron Corp. Oil & gas 2/19/2008
8 DD DuPoint* Chemical industry 11/20/1935
9 DIS Walt Disney Broadcast. & entertain. 5/06/1991
10 GE General Electric Conglomerate 11/07/1907
11 HD The Home Depot Home improv. retailer 11/01/1999
12 HPQ Hewlett-Packard Technology 3/17/1997
13 IBM IBM Computers & tech. 6/29/1979
14 INTC Intel Semiconductors 11/01/1999
15 JNJ Johnson & Johnson Pharmaceuticals 3/17/1997
16 JPM JP Morgan Chase Banking 5/06/1991
17 KO Coca-Cola Beverages 3/12/1987
18 MCD McDonald's Fast food 10/30/1985
19 MMM 3M Conglomerate 1/09/1976
20 MRK Merck Pharmaceuticals 6/29/1979
21 MSFT Microsoft Software 11/01/1999
22 PFE P�zer Pharmaceuticals 4/08/2004
23 PG Procter & Gamble Consumer goods 5/26/1932
24 T AT&T Telecommunication 11/11/2001
25 TRV Travelers Insurance 6/08/2009
26 UNH UnitedHealth Group** Managed health care 9/24/2012
27 UTX United Tech. Corp. Conglomerate 3/14/1939
28 VZ Verizon Telecommunication 4/08/2004
29 WMT Wal-Mart Retail 3/17/1997
30 XOM Exxon Mobile Oil & gas 10/01/1928

*DuPoint was also included for 1/22/1924 - 8/31/1925.
**UnitedHealth Group replaced Kraft Foods (KTF) on 9/24/2012.
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Table 8: Optimum Order Lists and IFODs of the 5 IT Stocks in the New Universe

In order to resolve the problem of multiple factor hierarchies of the universe
composed of the 5 IT stocks, two stock from di�erent sectors are added to
the universe. In the new universe, each of the 5 IT stocks has a unique factor
hierarchy.

(a)[Optimum Order Lists in the New Universe]
Optimum order list in Period 1 Optimum order list in Period 2

Stock # Symbol L∗
k JL∗

k
L∗

k JL∗
k

6 CSCO 1, 5, 6, 3, 2, 4, 7 1.991968 3, 6, 2, 5, 4, 7, 1 2.104418
12 HPQ 1, 5, 3, 6, 7, 2, 4 1.863454 2, 4, 5, 3, 7, 6, 1 2.827309
13 IBM 3, 6, 5, 1, 7, 4, 2 1.526104 5, 3, 4, 2, 7, 6, 1 2.329317
14 INTC 4, 2, 6, 3, 1, 5, 7 3.228916 4, 3, 6, 7, 5, 2, 1 2.393574
21 MSFT 7, 6, 1, 3, 4, 5, 2 2.714859 1, 3, 4, 6, 5, 7, 2 4.385542

(b)[IFODs in the New Universe]
IFOD in Period 1 IFOD in Period 2

CSCO HPQ IBM INTC MSFT CSCO HPQ IBM INTC MSFT
CSCO 0.00 1.14 4.00 9.43 8.86 CSCO 0.00 5.71 4.57 4.57 8.86
HPQ 1.14 0.00 2.86 12.86 6.57 HPQ 5.71 0.00 2.57 6.29 12.29
IBM 4.00 2.86 0.00 10.57 5.14 IBM 4.57 2.57 0.00 4.86 9.43
INTC 9.43 12.86 10.57 0.00 11.71 INTC 4.57 6.29 4.86 0.00 6.57
MSFT 8.86 6.57 5.14 11.71 0.00 MSFT 8.86 12.29 9.43 6.57 0.00
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Table 11: Best and Worst Friends of EBAY Selected by IFOD and by Correlation

Sub-table (a) shows best 5 friends and worst 5 friends of EBAY in each Pe-
riod, which are selected by IFOD, and Sub-table (b) shows those selected by
Correlation.

(a)[Best and Worst Friends by IFOD]
Ranking Period 1 Period 2

Best

1 Stock 30 (XOM) Stock 14 (INTC)
2 Stock 27 (UTX) Stock 8 (DD)
3 Stock 9 (DIS) Stock 13 (IBM)
4 Stock 8 (DD) Stock 12 (HPQ)
5 Stock 1 (AA) Stock 20 (MRK)

Worst

30 Stock 14 (INTC) Stock 27 (UTX)
29 Stock 2 (AXP) Stock 24 (T)
28 Stock 24 (T) Stock 26 (UNH)
27 Stock 26 (UNH) Stock 4 (BAC)
26 Stock 18 (MCD) Stock 6 (CSCO)

(b)[Best and Worst Friends by Correlation]
Ranking Period 1 Period 2

Best

1 Stock 29 (WMT) Stock 14 (INTC)
2 Stock 5 (CAT) Stock 6 (CSCO)
3 Stock 14 (INTC) Stock 8 (DD)
4 Stock 2 (AXP) Stock 27 (UTX)
5 Stock 10 (GE) Stock 9 (DIS)

Worst

30 Stock 15 (JNJ) Stock 17 (KO)
29 Stock 20 (MRK) Stock 29 (WMT)
28 Stock 26 (UNH) Stock 26 (UNH)
27 Stock 12 (HPQ) Stock 18 (MCD)
26 Stock 6 (CSCO) Stock 4 (BAC)
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Table 12: AveCHANGE

This table shows AveCHANGE(ti−1, ti), 1 ≤ i ≤ 36. The per-
centage of variation is calculated as 100 × (AveCHANGE(ti, ti+1) −
AveCHANGE(ti−1, ti))/AveCHANGE(ti−1, ti).

From To i AveCHANGE(ti−1, ti) change ratio(%)
8/2006 9/2006 1 123.4778
9/2006 10/2006 2 133.0589 7.759371
10/2006 11/2006 3 114.4289 -14.00131821
11/2006 12/2006 4 120.5311 5.332743739
12/2006 1/2007 5 110.0772 -8.673197208
1/2007 2/2007 6 114.9233 4.402455731
2/2007 3/2007 7 115.8378 0.7795758121
3/2007 4/2007 8 98.765 -14.73853958
4/2007 5/2007 9 124.6661 26.22497848
5/2007 6/2007 10 118.9839 -4.557935156
6/2007 7/2007 11 118.6672 -0.266170465
7/2007 8/2007 12 109.285 -7.906312781
8/2007 9/2007 13 125.2644 14.62176877
9/2007 10/2007 14 113.2217 -9.613824838
10/2007 11/2007 15 123.9594 9.483782702
11/2007 12/2007 16 98.40833 -20.61245053
12/2007 1/2008 17 110.1939 11.97619145
1/2008 2/2008 18 81.7444 -25.8176723
2/2008 3/2008 19 116.0289 41.94109933
3/2008 4/2008 20 114.5183 -1.301917022
4/2008 5/2008 21 120.8239 5.506194207
5/2008 6/2008 22 99.705 -17.47907492
6/2008 7/2008 23 107.9728 8.292262173
7/2008 8/2008 24 115.0767 6.579342205
8/2008 9/2008 25 101.005 -12.22810526
9/2008 10/2008 26 101.8333 0.820058413
10/2008 11/2008 27 104.5228 2.641081061
11/2008 12/2008 28 128.8156 23.24162766
12/2008 1/2009 29 103.2506 -19.84619875
1/2009 2/2009 30 114.0039 10.41475788
2/2009 3/2009 31 99.12222 -13.05365869
3/2009 4/2009 32 98.13944 -0.99148304
4/2009 5/2009 33 102.2328 4.170963274
5/2009 6/2009 34 100.5156 -1.679695753
6/2009 7/2009 35 103.5756 3.044303571
7/2009 8/2009 36 95.01333 -8.266686362
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Table 14: RHDs between the Return of DJIA and Those of Independent Factors

This table shows the RHDs between the independent factors and DJIA in
Period 1. RHDn measure how well Factor n mimics the trends of DJIA.

Period 1 Period 2
Factor(n) RHD Ranking RHDn RHD+

n RHD−
n RHD Ranking RHDn RHD+

n RHD−
n

1 26.5 1.959839 1.959839 2.040161 21.0 1.847390 1.847390 2.152610
2 13.5 1.799197 2.200803 1.799197 15.0 1.799197 2.200803 1.799197
3 22.0 1.911647 1.911647 2.088353 29.0 1.975904 1.975904 2.024096
4 13.5 1.799197 1.799197 2.200803 24.5 1.911647 2.088353 1.911647
5 2.0 1.429719 1.429719 2.570281 2.0 1.477912 2.522088 1.477912
6 8.5 1.670683 2.329317 1.670683 13.0 1.783133 2.216867 1.783133
7 19.0 1.879518 1.879518 2.120482 23.0 1.895582 1.895582 2.104418
8 24.0 1.927711 2.072289 1.927711 19.5 1.831325 2.168675 1.831325
9 20.0 1.895582 2.104418 1.895582 1.0 1.365462 2.634538 1.365462
10 5.5 1.638554 1.638554 2.361446 8.0 1.702811 1.702811 2.297189
11 29.0 1.975904 1.975904 2.024096 4.0 1.590361 2.409639 1.590361
12 22.0 1.911647 2.088353 1.911647 17.5 1.815261 1.815261 2.184739
13 16.0 1.831325 1.831325 2.168675 10.5 1.767068 2.232932 1.767068
14 12.0 1.783133 1.783133 2.216867 19.5 1.831325 2.168675 1.831325
15 25.0 1.943775 2.056225 1.943775 22.0 1.863454 2.136546 1.863454
16 16.0 1.831325 2.168675 1.831325 29.0 1.975904 2.024096 1.975904
17 10.0 1.686747 1.686747 2.313253 3.0 1.542169 2.457831 1.542169
18 1.0 1.381526 1.381526 2.618474 15.0 1.799197 1.799197 2.200803
19 29 1.975904 2.024096 1.975904 29.0 1.975904 2.024096 1.975904
20 29 1.975904 2.024096 1.975904 5.5 1.654618 1.654618 2.345382
21 22.0 1.911647 1.911647 2.088353 15.0 1.799197 1.799197 2.200803
22 26.5 1.959839 2.040161 1.959839 7.0 1.670683 2.329317 1.670683
23 4.0 1.574297 2.425703 1.574297 17.5 1.815261 1.815261 2.184739
24 11.0 1.751004 1.751004 2.248996 26.0 1.927711 1.927711 2.072289
25 16.0 1.831325 2.168675 1.831325 10.5 1.767068 1.767068 2.232932
26 8.5 1.670683 1.670683 2.329317 5.5 1.654618 1.654618 2.345382
27 5.5 1.638554 1.638554 2.361446 27.0 1.943775 1.943775 2.056225
28 3.0 1.542169 2.457831 1.542169 24.5 1.911647 1.911647 2.088353
29 18.0 1.847390 2.152610 1.847390 10.5 1.767068 1.767068 2.232932
30 7.0 1.654618 1.654618 2.345382 10.5 1.767068 2.232932 1.767068
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Table 15: IFOD Version of CAPM

This table shows IFOD version of beta for Stock i, WRD(0, i) both in Period
1 and Period 2. It shows how di�erent the behavior of Stock i is from that
of the market. The closer to 1 WRD(0, i) is, the more di�erently from the
market Stock i behaves.

Period 1 Period 2
Stock(i) RIFOD(0, i) RIFOD(i, 0) WRD(0, i) βi RIFOD(0, i) RIFOD(i, 0) WRD(0, i) βi

Stock 1 14 8 0.3667 1.3178118 23 23 0.7667 1.9101529
Stock 2 3 4 0.1167 1.1964542 22 17 0.6500 1.8075688
Stock 3 17 12 0.4833 1.2872906 29 26 0.9167 1.0666729
Stock 4 10 13 0.3833 0.8733478 21 16 0.6167 2.4108033
Stock 5 18 6 0.4000 1.6704378 6 10 0.2667 1.2823385
Stock 6 4 5.5 0.1583 1.0308212 9 7 0.2667 1.1368270
Stock 7 27 24 0.8500 0.8685007 15 25 0.6667 1.2668234
Stock 8 29 27 0.9333 0.9642655 7 8 0.2500 1.2429143
Stock 9 6 4 0.1667 0.8748191 2 6 0.1333 1.2663147
Stock 10 8 11 0.3167 0.8155936 17 19 0.6000 1.2651749
Stock 11 22 13 0.5833 1.1018816 3 3 0.1000 1.0435409
Stock 12 13 10 0.3833 1.1771519 30 26 0.9333 0.9530258
Stock 13 23 18 0.6833 0.7417735 1 4 0.0833 0.8104965
Stock 14 16 6 0.3667 1.2673706 4 1 0.0833 1.0883026
Stock 15 12 8 0.3333 0.5134052 26 26 0.8667 0.6303141
Stock 16 11 6 0.2833 1.2018840 11 5 0.2667 1.8690681
Stock 17 21 12 0.5500 0.6205777 28 23 0.8500 0.6536436
Stock 18 19 19 0.6333 1.1754949 25 25 0.8333 0.6351993
Stock 19 1 1 0.0333 0.9133816 5 7 0.2000 0.8734384
Stock 20 30 27 0.9500 0.9119413 8 6 0.2333 0.9248901
Stock 21 2 1 0.0500 0.8469132 20 20 0.6667 1.0605571
Stock 22 26 24 0.8333 1.0189088 16 11 0.4500 0.8224013
Stock 23 7 5 0.2000 0.7682673 19 15 0.5667 0.6979561
Stock 24 9 5 0.2333 0.7583039 24 27 0.8500 0.9492408
Stock 25 28 29 0.9500 1.0355466 18 12 0.5000 1.2936727
Stock 26 20 6 0.4333 0.6863094 27 24 0.8500 1.2302972
Stock 27 5 2 0.1167 1.0967719 12 19 0.5167 1.0406635
Stock 28 25 24 0.8167 0.9050683 13 17 0.5000 0.8594748
Stock 29 15 9 0.4000 0.9190650 14 18 0.5333 0.5727569
Stock 30 24 25 0.8167 0.9597460 10 17 0.4500 1.1187344


