
Journal of Statistical and Econometric Methods, vol.3, no.1, 2014, 115-136

ISSN: 1792-6602 (print), 1792-6939 (online)

Scienpress Ltd, 2014

Forecasting Volatility in Indian Stock Market

using State Space Models

Neha Saini1 and Anil Kumar Mittal2

Abstract

The paper examines and compares forecasting ability of Autoregres-
sive Moving Average (ARMA) and Stochastic Volatility models repre-
sented in the state space form and Kalman Filter is used as an esti-
mator for the models.The models are applied in the context of Indian
stock market. For estimation purpose, daily values of Sensex from Bom-
bay Stock Exchange (BSE) are used as the inputs. The results of the
study confirm the volatility forecasting capabilities of both the mod-
els. Finally, we interpreted that which model performs better in the
out-of-sample forecast for h-step ahead forecast. Forecast errors of the
volatility were found in favour of SV model for a 30-day ahead forecast.
This also shows that Kalman filter can be used for better estimates and
forecasts of the volatility using state space models.
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1 Introduction

To fully understand prices, asset returns and risk management, one has

to understand the nature and behaviour of the volatility. This is not just

explained by simple decision rules, but is the inter-relation of many other mar-

ket factors, which determine in the end, prices, returns and market volatility.

Understanding the volatility of the market is important if one wants to make

some prediction for the future for ex. Sensex index.

Sensex is the most followed market index in the Indian stock market and

consists of the 30 largest and most actively traded stocks and representative of

various sectors on the BSE. The Indian Stock Market has been studied during

the last two decades along with financial markets of different countries. In

Indian context variants of GARCH models have been considered for study, a

large volume of literature focuses on modeling volatility using these models.

The present paper tests an alternate modeling technique for the estimation of

the volatility in the Indian stock market by using State Space (SS) model.

The State Space models were first introduced by control engineers and

physicists for modeling of continuously changing unobserved state variable.

The unknown model parameters in such models were estimated by the Kalman

filter (KF), popularly named after Kalman (1960). This Kalman Filter algo-

rithm plays a central role in the modeling, estimating and further predicting

the states of State Space models.

Several studies have reported applications of SSModel in estimating price

volatility [1]. To address the volatility prediction from the data, it has been

suggested that such models should be captured by the Kalman Filter Model

[2]. Yet, there is also another reason why these models are becoming more

popular, financial econometricians began to understand the appeal of State

Space models because of their ability to represent complex dynamics equations

via a simple structure of matrices. Further, it was found easier to apply the

Kalman Filter to SS Models because of the nature of its very powerful and

flexible recursive structure and ability to forecast in missing data.

There are two popular approaches to deal with volatility in State Space

representation: ARMA and stochastic volatility (SV) approaches. The ARMA

model , focuses on capturing the effects of volatility by using price indices di-

rectly [3]. On the other hand, the stochastic volatility models the time-varying
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variance as a stochastic process which can be estimated using Quasi Maximum

Likelihood methods [4, 5]. While these studies provide useful modeling ap-

proaches of volatility, the predictive ability of competing models needs to be

examined for out-of-sample forecast performance. This is of particular impor-

tance at least to researchers and investors that require volatility forecasts and

interval forecasts to estimate whether an exchange rate will fluctuate within a

specified zone.

The bigger problem is narrowed down to model estimation after both the

models are formulated in the state space form. It is well known that for linear

system with Gaussian innovations the Kalman filter is an optimal filter (in the

sense of minimizing mean squared errors)[6]. Some of the important literature

which presented and estimated the various models in a state space form are:

Harvey and Shephard(1996)[7] propsed a stochastic volatility model that

can be estimated by a quasi-maximum likelihood procedure by transforming

to a linear state-space form. The method is extended to handle correlation

between the two disturbances in the model and applied to data on stock re-

turns. They conclude that QML method for estimating the parameters in an

SV model is relatively simple and has produced plausible empirical results.

Koopman S.J. (1997)[8] presented a new exact solution for the initializa-

tion of the Kalman filter for state space models with diffuse initial conditions.

He proposed a regression model with stochastic trend, seasonal and other non

stationary ARIMA components which requires a (partially) diffuse initial state

vector. He proposed an easy to implement and computationally efficient ana-

lytical solution and exact solution for smoothing and handled missing obser-

vations.

Durbin J.(2004)[9] presents a broad general review of the state space ap-

proach to time series analysis by introducing linear Gaussian state space model

and Kalman filter and smoother are also described. He also introduces an ap-

plication to real data which is presented in his work.

Choudhry and Wu(2008)[2] investigates the forecasting ability of four dif-

ferent GARCH models and the Kalman filter method. Forecast errors based on

20 UK company daily stock return forecasts were employed to evaluate out-

of-sample forecasting ability of both GARCH models and Kalman method.

Measures of forecast errors very much support the Kalman filter approach.

Among the GARCH models the GJR model appeared to provide more accu-
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rate forecasts.

Tsyplakov A. (2010)[10] aimed to provide a straightforward and sufficiently

accessible demonstration of some known procedures for stochastic volatility

model. He reviews the important related concepts and has given an informal

derivations of the methods. He presented a framework to forecast SV model

with QML estimation and also presented a detailed derivations of extended

SV models.

The study described in present paper can be justified on following ideas.

The evidence from other developing markets provide mixed evidence of fore-

casting performances in volatility models[11, 12, 13]. However, there has been

no comprehensive study of State Space Models of volatility in India, which is

one of the fastest developing markets. Hence, the present paper is devoted

to compare the volatility forecasting using State Space models in the Indian

stock exchange namely, Bombay Stock Exchange (BSE). Additionally, the In-

dian economy has registered a recession in the recent past and several models

have been proposed and are under test to capture the salient stylized facts.

This is the first study which examines the issue of forecasting of volatility in

the Indian context using State Space Kalman Filter estimator.

The present paper uses the daily closing values of BSE-Sensex for the period

01 January 2006 to 22 August 2013. The daily index values of Sensex are

collected from the official websites of BSE[14]. The selected index have enough

number of observations to perform time-series analysis on the models to get

meaningful results. We have modeled the volatility forecast using a powerful

generic state space modeling (SSM) toolbox for Matlab [15]. The models are

represented using SSM Toolbox and further estimation methods available in

toolbox of MATLAB from Mathworks.

The rest of paper is organized as follows. Section 2 gives a brief overview

of the selected volatility models along with the state space representation.

We then estimate and analyse the model by presenting the main results of

the paper. In next section, out-of-sample forecast of the estimators are dis-

cussed. Section 4 explores the comparative performance of the various fore-

casting models and a 30-day ahead forecast is given with tabular and graphical

representation. Section 5 gives the concluding remarks.
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2 Models Overview & State Space Represen-

tation

State space methods are tools for investigation of state space models, as

they allow one to estimate the unknown parameters along with the time varying

states. It can also be used to assess the uncertainty of the estimates, to forecast

future states and observations. The following sections will review the basic

model representation in State Space. The model parameters estimation is

briefly discussed in subsequent sections.

2.1 Linear Gaussian State Space Model

This section provides a brief review of linear Gaussian state space model.

Let yt denote an p × 1 observation vector related to an m × 1 vector of

unobservable components αt (states sequences), by the so-called measurement

equation eq 1,

yt = Ztαt + εt, εt ∼ N(0, Ht) (1)

αt+1 = ct + Ttαt + Rtηt, ηt ∼ N(0, Qt) (2)

The evolution of the states is governed by the process or state equation 2:

Thus the matrices Zt, ct, Tt, Rt, Ht, Qt, a1, P1 are required to define a linear

Gaussian state space model [16, 1]. The matrix Zt is the state to observation

linear transformation matrix, for univariate models it is a row vector m ×
1. The matrix ct is the same size as the state vector, and is the constant in

the state update equation, although it can be dynamic or dependent on model

parameters. The square matrix Tt [m × m ] defines the time evolution of states.

The matrix Rt [m × r ] transforms general disturbance into state space, and

exists to allow for more varieties of models. Ht [p × p ] and Qt [r × r ] are

Gaussian variance matrices governing the disturbances, and a1 and P1 are the

initial conditions[17]. The specification of the state space model is completed

by the initial conditions concerning the distribution of α1 ∼ N(a1, P1),∀t.

2.2 Autoregressive Moving Average (ARMA) Model

ARMA models are frequently used for the analysis in the form of return
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series. An ARMA model combines the Auto Regressive and Moving Average

models into a compact form so that the number of parameters used is kept

small. Here, we have used the ARMA representation to model volatility using

the direct observation sequences as shown by [18, 19].

In equation (3) yt is a scalar time series observations, represented in ARMA(p,

q) formulation [1]. Here auto regression order is p and moving average order

is q. φ are auto regressive coefficients and ζt are uncorrelated disturbances.

yt = φ1yt−1 + . . . + φpyt−p + ζt + θ1ζt−1 + . . . + θqζt−q, ζt ∼ N(0, σ2
ζ ), (3)

The observation equation of SS representaion of ARMA(p, q) is:

yt =
[

1 0 0 . . . 0
]


αt

αt−1

...

αt−r−1

 + εt (4)

The state equation of ARMA(p, q) is:


αt+1

αt

...

αt−r

 =


φ1 1 0 . . . 0

φ2 0 1 . . . 0
...

. . . . . . 0

φr−1 0 0 . . . 1

φr 0 0 . . . 0




αt

αt−1

...

αt−r−1

 +


1

θ1

...

θr−1

 ζt (5)

where,

T =


φ1 1 0 . . . 0

φ2 0 1 . . . 0
...

. . . . . . 0

φr−1 0 0 . . . 1

φr 0 0 . . . 0

 , R =


1

θ1

...

θr−1

 , Z =
[

1 0 0 . . . 0
]
, Ht = 0 (6)

The form given is not the only stale space version of an ARMA model but

is a convenient one, where r = max(p, q + 1) and for which some coefficients

are to be calculated.



Neha Saini and Anil Kumar Mittal 121

2.3 Stochastic Volatility Model

Stochastic volatility modeling is an active research area. Moreover, SV

model is a popular modeling technique used in the literature for non-linear/

non-Gaussian state-space models and hidden Markov models. It is probably

the important volatility models, with powerful properties similar to ARCH or

GARCH.

This subsection briefly introduces the stochastic volatility(SV) model in

discrete time for a observation asset log-returns yt. The Stochastic volatility

can be appropriately represented by the unobserved state variable as shown in

equation (7) and (8).

yt = µ + σ∗exp

(
1

2
ht

)
εt, εt ∼ IID(0, 1), (7)

with

ht+1 = φht + ηt, ηt ∼ IID(0, σ2
η), h1 ∼ N(0, σ2

η/(1− φ2)), (8)

for t = 1, . . . , T . The parameter µ denotes the unconditional expectation of the

return process yt . The scaling parameter σ∗ is the average standard deviation

with σ∗ > 0. The unobserved log-volatility process is denoted by ht = log(σ2
t )

[20].

Here, the logarithms ensures positivity of (σ2
t ). The regression parameter φ

is 0 < φ < 1 [20]and usually is reported to take on values greater than 0.8. The

constant µ will be treated as fixed and set to zero as shown by [21]. Although

ht can be modeled by any stationary autoregressive process, it is common to

choose a first-order autoregressive process [1]. The disturbances εt and ηt are

Gaussian white noise[22] where, εt represents the contents of new information

(good or bad news); ηt reflects the shocks to the news flow’s intensity.

The SV model in (7) and (8) is also commonly referred to as the log-

normal SV model. It represents a state space model where the observation

equation describes the relationship between the univariate vector of observa-

tions, y = (y1, . . . , yT )
′
, and the state vector. The hidden volatility process

θ = (h1, . . . , hT )
′
is specified in the state equation, which models the dynamic

properties of ht. As εt and ht, which both enter the multiplication in the

mean equation, are stochastic, the basic SV model is nonlinear, hence linear

approaches cannot be used.
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The Kalman Filter cannot be applied directly for estimation purposes. This

introduces an estimation problem because no closed expression for the likeli-

hood function exists. Now since the parameters of the SV model cannot be

estimated by a direct application of standard maximum likelihood techniques,

estimation is conducted by approximation of Likelihood or using simulation-

based techniques based on observable past information[23]. There are methods

proposed [7, 1]to linearize the SV model by squaring the returns and taking

logarithms as shown in equation (9) and (10)

logy2
t = ht + logσ2

∗ + logε2
t , (9)

ht+1 = φht + ηt, (10)

where the disturbance terms ηt in the transformed model are assumed to be

uncorrelated. Taking logarithms leads to a heavily skewed distribution of logε2
t

with a long left-hand tail.

Our model-based estimated actual volatility is fitted well, by the Gaussian

distribution using Quasi Maximum Likelihood. The estimates of volatility [24]

are obtained by

σ2
t|T ≡ V ar(yt|YT ) (11)

E(exp(ht)|YT ) = exp(µt|T + s2
t|T /2)

with variance

V ar(σ2
t|T ) = E(exp(2ht)|YT )− {E(exp(ht)|YT )}2 (12)

= exp(2µt|T + 2s2
t|T )

{
1− exp(−s2

t|T )
}

The smoothing estimates of the square root of volatility are also calculated by

σ∗
t|T ≡ E(exp(ht/2)|YT ) (13)

= exp(µt|T /2 + s2
t|T /8)

with variance

= exp(µt|T + s2
t|T /2)

{
1− exp(−s2

t|T /4)
}

(14)
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2.4 Kalman Filter

The general form of a state space model defines an observation (or mea-

surement) equation and a state transition (or state) equation, similar to linear

gaussian model representing the structure and dynamics of system with noise

[2]. The measurement equation describes the relation between observed se-

quences and unobserved (hidden) state variables. State transition equation

describes the dynamics of the state variables based on information from the

past. The future behavior of the system can be completely described by the

knowledge of the present state and the future input.

The Kalman filter method, is an iterative computational algorithm designed

to calculate forecasts and forecast variances for time series state space models.

The algorithm is as follows, first, each step of the process allows the next

observation to be forecasted based on the previous observation and the forecast

of the previous observation. Second, each consecutive forecast is found by

updating the previous forecast. Finally, the above process is repeated again.

Figure 1 explains the recursion process in an easy and convenient flowchart

form.

Measurement 
Update Time Update 

Project State 
Ahead 

Compute 
Kalman Gain 

Project Error 
Covariance 

Ahead 

State Estimate  

Error Covariance 
estimate 

Initial Estimate 

α0, P0 

Observ. 

yt 
tP

̂

Figure 1: Kalman Filter Recursion

The updates for each forecast are weighted averages of the previous obser-

vation and the previous forecast error. The interesting feature of the Kalman

filter is that the weights are chosen such that the forecast variances are min-
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imized in least square sense. These weights, are also known as the Kalman

gain.

The KF recursively computes the optimal states predictions of yt which is

conditional on past information and also on the variance of their prediction

error. The vector vt is the time t innovation. i.e. the new information in

yt that could not be predicted from knowledge of the past, referred to as the

one-step-ahead prediction error. The normal Kalman filter recursion are as

follows

Measurement Update:

vt = yt − Ztat,

Ft = ZtPtZ
T
t ,

Kt = TtPtZ
T
t F−1

t ,

Lt = Tt −KtZt,

Time Update:

at+1 = ct + Ttat + Ktvt

Pt+1 = TtPtL
T
t + RtQtR

T
t .

The matrix Kt is sometimes referred to as the Kalman gain. While forecasting

it is most desired parameter and all models use it extensively to predict future

outcomes. Kalman filter can additionally be exploited to improve upon the

measurement of current and past volatility estimates using filtering and state

smoothing which are not used in this paper.

3 Estimation and Model Analysis

This study uses closing value of the daily SENSEX during the time period

of 01 January 2006 to 22 August 2013. All the stock market index data are

collected from the official website of BSE. The daily returns are calculated for

each series shown in equation (15).

rt = (log(Pt)− log(Pt−1)) (15)
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where rt is the daily return series, Pt is the current stock price and Pt−1 is the
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Figure 2: Sensex Closing Index
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Figure 3: Sensex Return

stock price in the previous period. Figures 2 and 3 plot the price level and the

returns on the index over the sample period. Our final working sample consists

of 1900 data points for Sensex. In order to make forecasts, the full sample is

divided into two parts comprising 1870 in-sample observations from 01 January

2006 to 03 July 2013 and 30 out of sample observations from 04 July 2013 to

22 August 2013 which are used for model performance evaluation. Descriptive
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Table 1: Descriptive Statistics(SENSEX)

Period 1/1/2006 to 22/8/2013

Parameter Value

Mean 0.00039114

Median 0.00097652

Maximum -0.1160

Minimum 0.1599

Kurtosis 10.1986

Skewness 0.1321

Std. Dev 0.0171

statistics for the Sensex returns series are shown in Table 1. It shows the mean,

median, maximum, kurtosis, skewness and standard deviation of the series. As

expected for a time series of returns, the mean is close to zero.The mean daily

return is 0.00039114. The sample maximum is 0.1599 which happened on 18

May 2009. The volatility (measured as a standard deviation) is 0.0171. The

returns are positively skewed (skewness= 0.1321) which indicates that there

are more positive than negative outlying returns in Indian Stock Market. The

kurtosis coefficient is positive, having high value for the return series(Kurtosis

= 10.1986) that is the pointer of leptokurtosis or fat taildness in the underlying

distribution.

3.1 Model Order Evaluation

Augmented Dickey Fuller(ADF) test is used to test for the presence of

unit root in the returns series. The ADF test statistics is tested for the null

hypothesis of unit root at 1% level of significance. A formal application of

ADF test on log returns, rejects the null hypothesis of a unit root in the

return series. There is rejection because value of ADF statistics is much lower

than the critical value for the model with trend (-2.5691) and without trend

(-1.9416) at all the 4-lags shown in Table 2. Hence, the hypothesis that the

daily volatility in the Sensex index over the period from January 2006 to July

2013 has a unit root has to be rejected.
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Table 2: ADF test on SENSEX

With Trend Without Trend

Lags stat value stat value p-value

0 -40.3126 -40.3126 0.001

1 -40.3146 -30.2715 0.001

2 -40.2924 -25.3026 0.001

3 -40.2708 -22.4195 0.001

4 -40.2496 -20.3959 0.001

Several model-selection criteria attempting to overcome the over param-

eterization problem have been proposed in the literature. The most widely

used criteria for ARMA model order selection are Akaike information criterion

(AIC) and Bayesian information criterion (BIC). For SV model, this model-

selection criteria is not required as we have assumed only AR(1) regression

component.

The (p, q)combination that minimizes the AIC should be selected. AIC

measures a models goodness of fit in terms of the estimated error variance

and penalizes for selecting models with a large number of parameters. The

purpose of the penalty term is to avoid over fitting. However, this criterion

may give more than one minimum and there is an assumption that the data

are normally distributed. ARMA(3, 3) found to be the best model, ARMA(2,

2) is the second best as shown in Table 3.

Table 3: AIC for ARMA (p,q) model

p/q 0 1 2 3 4 5

0 36.4042 31.7016 23.2994 22.0551 21.0147 21.0245

1 25.9341 18.2727 20.0768 16.6292 18.2377 15.5085

2 16.5412 15.5252 14.2032 14.8375 17.3074 14.5653

3 16.7688 14.5645 16.6452 13.9094 15.244 21.5604

4 16.7855 15.3837 16.6587 14.8403 16.4298 14.7741

5 16.8792 15.346 16.2668 16.7355 14.894 16.6079
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3.2 Model Estimation

Maximum Likelohood estimation is performed for identification of param-

eters in the both the models. The sufficient conditions for consistency and

asymptotic normality of the maximum likelihood estimators and strong con-

sistency of the maximum likelihood estimator is proved in [9]. LogLikelihood

is maximised numerically using the kalman covariance, which emerge in com-

putationally convenient forms for the state space model. Details are given

by Durbin and Koopman(2001) [1]. Recently, full asymptotic solver based

on maximum likelihood estimation of state space models has been provided

by Aston and Peng(2011) [17] in SSM Toolbox of Matlab. The estimate and

kalman functions of SSMODEL class were used to perform the estimate and

1-step ahead prediction for ARMA Model.

The model estimates of ARMA(3,3) model in state space form after es-

timation are:

T =


0.004278 1 0 0

0.9961 0 1 0

−0.0007445 0 0 1

0 0 0 0

 , R =


1

1.0714

0.07902

0.00003086

 ,

Z =
[

1 0 0 0
]
, Ht = 0, Q = [59261.9252] (16)

The ACF and PACF are used as identification tools, these provide some in-

dication of the broad correlation characteristics of the returns [23]. From the

figure 4 the ACF and PACF of squared innovations of ARMA model, there is

little indication of correlation, which is clear from the similarity between the

graphs. In conclusion, the residuals of the ARMA models are consistent with

white noise. This figure shows that ACF die out quickly, indicating that the

ARMA process innovations are close to stationary. This is an indication that

ARMA models is adequate model class for volatility forecasting as shown in

Figure 4.

The QML estimation method was used to estimate the model parameters

of SV. This was implemented by combining predefined observation guassian

noise with constant and autoregressive model using model concatenation in

SSMODEL class in the toolbox . Hence the estimates are obtained by treating

εt and ηt as though they were normal and minimizes the prediction-error via

the Kalman filter. To solve the QML estimates similar estimate and kalman
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Figure 4: ACF & PCF

function operation was performed on return series with the new updated SV

Model parameters. Estimates of Stochastic Volatility model in state space

form and in Table 4

T =

[
1 0

0 0.9888

]
, R =

[
0

1

]
, Z =

[
1 1

]
, Ht = [4.8246] , Q = [0.0215](17)

Table 4: Parameters Estimates

Variables ARMA(3,3) SV Model

φ1 0.004278 0.9888

φ2 0.9961 -

φ3 -0.0007445 -

θ1 1.071 -

θ2 0.07902 -

θ3 3.086e-05 -

ζ 5.926e+04 0.0215

ε - 4.825
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3.3 Evaluation Measures

Four measures are used to evaluate the forecast accuracy ,namely, the mean

square error (MSE), the root mean square error (RMSE), the mean absolute

error (MAE) and mean absolute percentage error (MAPE). They are defined

by

MSE =
1

n

n∑
t=1

(σ̂t − σt)
2

RMSE =

√√√√ 1

n

n∑
t=1

(σ̂t − σt)2

MAE =
1

n

n∑
t=1

|σ̂t − σt|

MAPE =
1

n

n∑
t=1

(|σ̂t − σt)/σt| (18)

where σ̂t is the forecast value and σt is the actual value calculated using equa-

tion (19). Statistically, actual volatility is often eastimated as the sample

standard deviation

σ̂ =

√√√√ 1

T − 1

T∑
t=1

(rt − µ)2 (19)

where rt is the return on day t, and µ is the average return over the T -day

period. In this context, the model which has minimum forecast error terms

as MSE, RMSE, MAE and MAPE, is the best volatility forecasting model. In

Table 5 it clearly shows that both the models has less forecast error values

model by using all four evaluation measures.

Table 5: Forecast Error Statistics

ARMA(3,3) SV Model

MSE 2.5452e-6 2.9666e-8

RMSE 0.0016 1.7224e-4

MAE 0.0013 1.4227e-4

MAPE 0.7760 0.1589
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4 Comparison of Out of Sample forecast

After obtaining the daily volatility series, 1-day ahead forecasts are chosen

for the forecasting horizon of 30 days. Furthermore, a period has to be chosen

for estimating parameters and a period for predicting volatility. The 1/1/2006

to 3/7/2013 of data are used to estimate the models. Thus the first day for

which an out-of sample forecast is obtained is 04/07/2013.

Using the estimated models, sequential 1-day ahead forecasts are made.

Hence, in total 30 daily volatilities are forecasted. With this setup, the models

are required to predict volatility for the above mentioned period. The out

of sample forecast for ARMA and Stochastic Volatility models are shown in

Figure 5 and Figure 6 respectively. This shows that the volatility forecast

varies a lot between both the models. Thus it was more relevant to define a

confidence interval of the forecast and plot it along with original observations

to give a better idea of the risk in the price index for both the methods.
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Figure 5: ARMA Out of Sample Forecast

We know that to forecast using the ARMA model, one has to use the price

time series. When a price series has been transformed to return series, the

conditional distribution of the log return series, will no longer be normal. If

logarithms have been taken, the mean and variance of the conditional distri-

bution becomes lognormal[25]. Therefore, to forecast the volatility by ARMA

model, we have to convert the price into returns distribution using the following
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Figure 6: Stochastic Volatility Out of Sample Forecast
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Figure 7: Stochastic Volatility estimate

equation (20).

V ar(rt) = log

(
1 +

m2

(1 + m1)2

)
(20)

Where, m1 and m2 are mean and variance of forecasted price series of ARMA

model respectively. The results of volatility forecasting of SV model is shown

in Figure 7. The Figure 8 shows the 30-day ahead point forecast of both the

models plotted along with the actual volatility, which is used as benchmark

calculated using equation (19). It seems that stochastic volatility has more
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Figure 8: Volatility Forecast Comparison

appropriate forecast as it has lesser residual errors when both models are esti-

mated using maximum-likelihood based technique.

5 Conclusion

This paper examined state space models for forecasting stock market volatil-

ity of the Sensex index . The important models considered here are the ARMA

and SV models. After estimating the models using SSM toolbox in Matlab,

out-of-sample forecasts performance were compared. It was found that the SV

model is superior according to the RMSE and other three evaluation measures

for 30-day ahead forecast. Unfortunately, the ARMA model has fat tailed

residual returns, an empirical study for different noise distribution in this re-

gard would be interesting.

The Kalman filter provides a simple and effective estimation framework for

forecasting the volatility. It would be interesting to explore different fat tailed

distribution and time varing KF model to fit the class of state space models.

The empirical results of this paper provide strong support for the application

of the state space model in the Indian stock market. Finally, we have presented

a simple forecasting application of the Kalman Filter, which has proved useful

to forecast the stock market data.
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