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Abstract

The log-normal distribution is one of the most common distributions
used for modeling skewed and positive data. In recent years, various
methods for comparing the means of two independent log-normal dis-
tributions have been developed. In this paper a higher-order likelihood-
based method is proposed. The method is applied to two real-life ex-
amples and simulation studies are used compare the accuracy of the
proposed method to some existing methods.
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1 Introduction

In real life applications, cases arise when random variables take on strictly

positive values where the use of the normal distribution is not appropriate for

statistical inference. The use of the log-normal distribution features promi-

nently in these settings. For example, in medical research, the log-normal

distribution is commonly used to model the incubation periods of certain dis-

eases, and the survival times of cancer patients. In economics and business

studies, the log-normal distribution is used to model income, firm size and

stock prices. In this paper, we use higher-order likelihood-based analysis to

derive a test statistic for comparing the means of two independent log-normal

distributions. We compare the performance of this test statistic with three

existing approaches in the literature. These approaches are due to Zhou et al.

(1997), Abdollahnezhad et al. (2012) and the signed log-likelihood ratio statis-

tic method. Simulation studies show that our proposed method outperforms

the three existing methods.

Let X and Y be independently distributed with

log X ∼ N(µx, σ
2
x) and log Y ∼ N(µy, σ

2
y) .

The random variables X and Y are said to have a log-normal distribution with

means Mx = exp{µx + σ2
x/2} and My = exp{µy + σ2

y/2}, respectively. Then

testing:

H0 : Mx = My vs Ha : Mx < My

is equivalent to testing:

H0 : ψ = 0 vs Ha : ψ < 0,

where ψ = log Mx − log My = log(Mx/My) = µx − µy + (σ2
x − σ2

y)/2. In this

paper, we consider a slightly more general hypothesis:

H0 : ψ = ψ0 vs Ha : ψ < ψ0 . (1)

Consider (x1, . . . , xn) and (y1, . . . , ym) to be independent samples from

N(µx, σ
2
x) and N(µy, σ

2
y), respectively. Zhou et al. (1997) propose a likelihood-

based test and show that the p-value for testing hypothesis (1) can be approx-

imated by

pZ(ψ0) = Φ(z), (2)
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where Φ() is the cumulative distribution function of N(0, 1) and

z =
µ̂x − µ̂y + (s2

x − s2
y)/2− ψ0√

s2
x

n
+

s2
y

m
+ 1

2

(
s4
x

n−1
+

s4
y

m−1

) , (3)

where µ̂x =
∑

log xi/n and µ̂y =
∑

log yi/m are the maximum likelihood

estimators of µx and µy, respectively. The terms s2
x =

∑
(log xi− µ̂x)

2/(n− 1)

and s2
y =

∑
(log yi − µ̂y)

2/(m − 1) are the unbiased estimators of σ2
x and σ2

y,

respectively. Moreover, a (1− α)100% confidence interval for ψ is given by
(

ψ̂ − zα/2

√
v̂ar(ψ̂), ψ̂ + zα/2

√
v̂ar(ψ̂)

)
, (4)

where

ψ̂ = µ̂x − µ̂y + (s2
x − s2

y)/2

v̂ar(ψ̂) =
s2

x

n
+

s2
y

m
+

1

2

(
s4

x

n− 1
+

s4
y

m− 1

)

and zα/2 is the (1− α/2)100th percentile of N(0, 1).

Abdollahnezhad et al. (2012) apply a generalized p-value approach to ob-

tain the p-value for testing hypothesis (1). This generalized p-value is obtained

using the following algorithm:

Step 1: For k = 1 to K, where K is reasonably large:

(a) generate ux from χ2
n−1 and uy from χ2

m−1

(b) calculate

pk = Φ


 µ̂x − µ̂y + nσ̂2

x

2ux
− mσ̂2

y

2uy
− ψ0√

σ̂2
x

ux
+

σ̂2
y

uy


 , (5)

where σ̂2
x =

∑
(log xi − µ̂x)

2/n, and σ̂2
y =

∑
(log yi − µ̂y)

2/m

Step 2: pA(ψ0) =
∑K

k=1 pk/K .

The corresponding (1−α)100% confidence interval for ψ using the method

in Abdollahnezhad et al. (2012) is (ψL, ψU) such that p(ψL) = 1 − α/2 and

p(ψU) = α/2. Note that this method requires extra computing time because

for each calculation, we need to generate K values of ux and K values of

uy respectively. Thus, obtaining confidence intervals will require substantial

computing time, especially when K is large.
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This paper proceeds as follows. In Section 2, we present the likelihood-

based inference methods for a scalar parameter from an exponential family

model. In Section 3 we apply these methods for inference on the difference of

the means of two independent log-normal distributions. In Section 4 we present

our numerical results and some concluding remarks are given in Section 5.

2 Likelihood-Based Inference for a Scalar Pa-

rameter from an Exponential Family Model

In this section we provide an overview of the third-order likelihood-based

inference method we will use in this paper for testing the difference of means of

two independent log-normal distributions. We begin by reviewing the standard

first-order likelihood method. Consider a random sample (y1, . . . yn) obtained

from a distribution with density f(y; θ), where θ = (ψ, λ′)′ with ψ being the

scalar interest parameter and λ the vector of nuisance parameters. The log-

likelihood function based on the given sample is then

l(θ) = l(ψ, λ) =
∑

log f(yi; θ).

From this function, the signed log-likelihood ratio statistic (r) can be ob-

tained:

r ≡ r(ψ) = sgn(ψ̂ − ψ){2[l(θ̂)− l(θ̃]}1/2, (6)

where θ̂ represents the maximum likelihood estimator of θ satisfying the first-

order conditions, ∂l(θ)/∂θ = 0, and θ̃ represents the constrained maximum

likelihood estimator of θ for a given ψ. The constrained maximum likelihood

estimator can be solved by maximizing the log-likelihood function subject to

the constraint ψ(θ) = ψ. The method of Lagrange multipliers can be used to

solve this optimization problem. The function

H(θ, α) = l(θ) + α[ψ(θ)− ψ] (7)

is known as the Lagrangean, where α is termed the Lagrange multiplier. Then

(θ̃, α̂) is the solution from solving the equations

∂H(θ, α)

∂θ
= 0 and

∂H(θ, α)

∂α
= 0
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simultaneously. The tilted log-likelihood is defined as

l̃(θ) = l(θ) + α̂[ψ(θ)− ψ]. (8)

Note that the tilted log-likelihood function has the property that l̃(θ̃) = l(θ̃).

The signed log-likelihood ratio statistic in (6) is asymptotically distributed

as N(0, 1) with rate of convergence O(n−1/2) and is referred to as a first-order

method. Hence, the p-value for testing

H0 : ψ = ψ0 vs Ha : ψ < ψ0

using the signed log-likelihood ratio statistic method is

pr(ψ0) = Φ(r(ψ0)). (9)

The (1− α)100% confidence interval for ψ is

{ψ : |r(ψ)| < zα/2} . (10)

It is well-known that the signed log-likelihood ratio statistic method does

not perform satisfactorily well in small sample situations. Many improvements

have been suggested in the literature. In particular, Barndorff-Nielsen (1986,

1991) proposes a modified signed log-likelihood ratio statistic, given by

r∗ ≡ r∗(ψ) = r(ψ) + r(ψ)−1 log

{
q(ψ)

r(ψ)

}
, (11)

where r(ψ) is the signed log-likelihood ratio statistic given in (6) and q(ψ) is a

statistic that can be derived in various ways depending on the information at

hand. It is shown in Barndorff-Nielsen (1986, 1991) that the modified signed

log-likelihood ratio statistic is asymptotically distributed as N(0, 1) with rate

of convergence O(n−3/2) and is referred to as a third-order method. Hence the

corresponding p-value is

pBN(ψ0) = Φ(r∗(ψ0)) (12)

and the corresponding (1− α)100% confidence interval for ψ is

{ψ : |r∗(ψ)| < zα/2} . (13)

Note that the most difficult aspect of the methodology is obtaining q(ψ).
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Fraser and Reid (1995) provide a systematic approach to obtain q(ψ) for a

full rank exponential model with density

f(y; θ) = exp{ϕ′(θ)t(y)− c(θ) + h(t(y))},

where ϕ(θ) is the canonical parameter and t(y) is the canonical variable. For

this model, q(ψ) takes the form

q ≡ q(ψ) = sgn(ψ(θ̂)− ψ)|χ(θ̂)− χ(θ̃)|
[
v̂ar

(
χ(θ̂)− χ(θ̃)

)]−1/2

, (14)

where χ(θ) is the standardized maximum likelihood estimator recalibrated in

the ϕ(θ) scale:

χ(θ) = ψ′θ(θ̃)ϕ
−1
θ (θ̃)ϕ(θ) (15)

where

ϕθ(θ) =
∂ϕ(θ)

∂θ
.

The variance term in (14) is computed as

v̂ar
(
χ(θ̂)− χ(θ̃)

)
≈ ψθ(θ̃)̃

−1
θθ′(θ̃)ψ

′
θ(θ̃)|̃θθ′(θ̃)||ϕθ(θ̃)|−2

|jθθ′(θ̂)||ϕθ(θ̂)|−2
(16)

where jθθ′(θ̂) and ̃θθ′(θ̃) are defined as

jθθ′(θ̂) = − ∂2l(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

and

̃θθ′(θ̃) = − ∂2l̃(θ)

∂θ∂θ′

∣∣∣∣∣
θ=θ̃

and are referred to as the observed information matrix obtained from l(θ) and

l̃(θ) respectively, and

ψθ(θ) =
∂ψ(θ)

∂θ
.

The idea of the method is to recalibrate (11) in the canonical parameter,

ϕ(θ), scale. Since the signed log-likelihood ratio statistic is invariant to repa-

rameterization, it remains the same as in (6). The only quantity that needs

recalibration in the ϕ(θ) scale is therefore q(θ). For a detailed discussion of

this derivation, see Fraser and Reid (1995).
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3 Inference for the Difference of Means of Two

Independent Log-Normal Distributions

We apply the modified signed log-likelihood ratio statistic method to our

problem of interest. The log-likelihood function is:

l(θ) = −n

2
log σ2

x −
nµ2

x

2σ2
x

+
µx

σ2
x

n∑
i=1

log xi − 1

2σ2
x

n∑
i=1

(log xi)
2

−m

2
log σ2

y −
mµ2

y

2σ2
y

+
µy

σ2
y

m∑
j=1

log yj − 1

2σ2
y

m∑
j=1

(log yj)
2

= −n

2
log σ2

x −
nµ2

x

2σ2
x

+
µx

σ2
x

t1 − 1

2σ2
x

t3

−m

2
log σ2

y −
mµ2

y

2σ2
y

+
µY

σ2
y

t2 − 1

2σ2
y

t4, (17)

where

(t1, t2, t3, t4) =
(∑

log xi,
∑

log yi,
∑

(log xi)
2,

∑
(log yi)

2
)

is a minimal sufficient statistic, θ = (µx, µy, σ
2
x, σ

2
y)
′ and our parameter of

interest is

ψ = ψ(θ) = (µx − µy) + (σ2
x − σ2

y)/2 . (18)

Moreover, the canonical parameter ϕ(θ) is

ϕ ≡ ϕ(θ) =

(
µx

σ2
x

,
µy

σ2
y

,
1

σ2
x

,
1

σ2
y

)′
. (19)

The first and second derivatives of l(θ) are given in the Appendix. By

solving the first-order conditions, we have the maximum likelihood estimator

of θ:

θ̂ = (µ̂x, µ̂y, σ̂
2
x, σ̂

2
y)
′,

where

µ̂x =
t1
n

= t̄1

µ̂y =
t2
m

= t̄2

σ̂2
x =

2

n

[
n

2
(t̄1)

2 − n(t̄1)
2 +

1

2
t3

]
=

1

n

[
t3 − n(t̄1)

2
]

σ̂2
y =

2

m

[
m

2
(t̄2)

2 −m(t̄2)
2 +

1

2
t4

]
=

1

m

[
t4 −m(t̄2)

2
]
.
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The corresponding observed information matrix is given by:

jθθ(θ̂) =




n
σ̂2

x
0 0 0

0 m
σ̂y

0 0

0 0 n
2σ̂4

x
0

0 0 0 m
2σ̂4

y




. (20)

The constrained maximum likelihood estimator is derived using the La-

grangean defined in (7):

H(θ, α) = l(θ) + α

[
(µx − µy) +

1

2
(σ2

x − σ2
y)− ψ0

]
, (21)

with derivatives given by:

∂H(θ, α)

∂µx

=
∂l(θ)

∂µx

+ α

∂H(θ, α)

∂µy

=
∂l(θ)

∂µy

− α

∂H(θ, α)

∂σ2
x

=
∂l(θ)

∂σ2
x

+
1

2
α

∂H(θ, α)

∂σ2
y

=
∂l(θ)

∂σ2
y

− 1

2
α

∂H(θ, α)

∂α
= (µX − µY ) +

1

2
(σ2

x − σ2
y)− ψ0,

from which (θ̃, α̂) can be obtained. The tilted log-likelihood from (8) is given

as:

l̃(θ) = l(θ) + α̂

[
(µx − µy) +

1

2
(σ2

x − σ2
y)− ψ0

]
. (22)

It is easy to show that l̃(θ̃) = l(θ̃) and ̃θθ′(θ̃) = jθθ′(θ̃).

Since the canonical parameter ϕ(θ) is given in (19), we have:

ϕθ(θ) =




1
σ2

x
0 −µx

σ4
x

0

0 1
σ2

y
0 −µy

σ4
y

0 0 − 1
σ4

x
0

0 0 0 − 1
σ4

y




,
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and

ϕ−1
θ (θ) =




σ2
x 0 −µxσ

2
x 0

0 σ2
y 0 −µyσ

2
y

0 0 −σ4
x 0

0 0 0 −σ4
y


 .

Moreover, the parameter of interest ψ = ψ(θ) is given in (18) and we have

ψθ(θ) =
(

1 −1 1
2
−1

2

)′
.

Hence, the recalibrated parameter χ(θ) can be obtained by (15). Given the

computed quantities above, we are able to construct the modified signed log-

likelihood ratio statistic given in (11), with q(ψ) defined as in (14).

It is important to note that theoretically, (θ̃, α̂) is uniquely defined. How-

ever, special care must be taken when performing numerical calculations as

standard optimization subroutines in standard statistical software may not

converge to the true θ̃, which results in a negative definite ̃θθ′(θ̃).

4 Numerical Results

We present two real-life examples followed by simulations to compare re-

sults obtained from the following methods: the Z-score method proposed by

Zhou et al. (1997) (Zhou), the generalized test method proposed by Ab-

dollahnezhad et al. (2012) (Abdollahnezhad), the signed log-likelihood ratio

statistic method (r), and the proposed modified signed log-likelihood ratio

statistic method (r∗).

The first example is discussed in Abdollahnezhad et al. (2012). They

considered the amount of rainfall (in acre-feet) from 52 clouds, of which 26

were chosen at random and seeded with silver nitrate. The log-normal model

is used and the summary statistics expressed in this paper’s notation are:

n = 26, m = 26, t1 = 133.484, t2 = 103.74, t3 = 749.2669, t4 = 481.5226 .

Let Mx and My be the mean rainfall for the seeded clouds and the mean

rainfall for the unseeded clouds respectively. The p-values, obtained from the

four methods discussed in this paper, for testing

H0 : Mx = My vs Ha : Mx > My ⇔ H0 : ψ = 0 vs Ha : ψ > 0 ,
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where ψ is the logarithm of the ratio of the log-normal means, are recorded in

Table 1.

Table 1: p-values for testing H0 : ψ = 0 vs Ha : ψ > 0 for the rainfall example

Method p-value

Zhou 0.061

Abdollahnezhad 0.080

r 0.066

r∗ 0.078

The 95% confidence interval for the ratio of the log-normal means are

recorded in Table 2.

Table 2: 95% confidence interval for Mx

My
for the rainfall example

Method 95% Confidence interval

Zhou (0.751, 11.342)

Abdollahnezhad (0.600, 13.587)

r (0.681, 12.150)

r∗ (0.606, 13.450)

From these tables it is clear that the four methods produce quite different

inferential results.

The second example is a bioavailability study. A randomized, parallel-

group experiment was conducted with 20 subjects to compare a new test for-

mulation (x), with a reference formulation (y), of a drug product with a long

half life. The data from this study is given in Table 3.

The Shapiro-Wilk tests for the normality on the log-transformed data give

a p-value of 0.595 for the test formulation group and 0.983 for the reference

formulation group. These tests suggest that the log-normal model is suitable

for this data set. The p-values, obtained from the four methods discussed in
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Table 3: Data for the bioavailability study

x 732.89 1371.97 614.62 557.24 821.39

363.94 430.95 401.42 436.16 951.46

y 1053.63 1351.54 197.95 1204.72 447.20

3357.66 567.36 668.48 842.19 284.86

this paper, for testing

H0 : Mx = My vs Ha : Mx 6= My ⇔ H0 : ψ = 0 vs Ha : ψ 6= 0 ,

where ψ is the logarithm of the ratio of the log-normal means, are recorded in

Table 4.

Table 4: p-values for testing H0 : ψ = 0 vs Ha : ψ 6= 0 for the bioavailability

example

Method p-value

Zhou 0.204

Abdollahnezhad 0.182

r 0.167

r∗ 0.173

The 95% confidence interval for the ratio of the log-normal means are

recorded in Table 5.

Table 5: 95% confidence interval for Mx

My
for the bioavailability example

Method 95% Confidence interval

Zhou (0.339, 1.259)

Abdollahnezhad (0.226, 1.236)

r (0.451, 1.181)

r∗ (0.242, 1.120)
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Again the results obtained from the four methods discussed in this paper

are quite different.

To compare the accuracy of the four methods discussed in this paper, simu-

lation studies are performed. 10,000 simulated samples from each combination

of parameters are generated. For each generated sample, the 90% confidence

interval for Mx

My
is calculated for each of the four methods discussed in this

paper. The performance of a method is judged using the following criteria:

• the coverage probability (CP):

Proportion of the true Mx

My
falling within the 90% confidence interval

• the lower tail error rate (LE):

Proportion of the true Mx

My
falling below the lower limit of the 90% con-

fidence interval

• the upper tail error rate (LE):

Proportion of the true Mx

My
falling above the upper limit of the 905%

confidence interval

• the average bias (AB):

AB =
|LE − 0.025|+ |UE − 0.025|

2
.

The desired values are 0.9, 0.05, 0.05 and 0 respectively. These values reflect

the desired properties of the accuracy and symmetry of the interval estimates

of Mx

My
. Results are recorded in Table 6. It is clear that the method by Zhou et

al. (1997) and the signed log-likelihood ratio method do not give satisfactory

results. The method by Abdollahnezhad et al. (2012) is an improvement of

the other two methods but still it is not as good as the proposed modified

signed log-likelihood ratio method.

Simulation studies for other combinations of parameters have also been

performed and the same pattern is observed. These results are available from

the authors upon request.
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Table 6: Simulation results

n µx σ2
x m µy σ2

y Method CP LE UE AB

5 1.1 0.4 10 1.2 0.2 Zhou 0.859 0.045 0.096 0.0255

Abdollahnezhad 0.916 0.049 0.036 0.0075

r 0.851 0.063 0.087 0.0250

r∗ 0.895 0.053 0.052 0.0025

5 2.5 1.5 10 3.0 0.5 Zhou 0.855 0.016 0.129 0.0565

Abdollahnezhad 0.909 0.051 0.040 0.0055

r 0.847 0.048 0.105 0.0285

r∗ 0.898 0.049 0.053 0.0020

10 1.1 0.4 10 1.2 0.2 Zhou 0.886 0.047 0.067 0.0100

Abdollahnezhad 0.919 0.044 0.037 0.0095

r 0.878 0.058 0.064 0.0110

r∗ 0.900 0.051 0.049 0.0010

10 2.5 1.5 10 3.0 0.5 Zhou 0.889 0.023 0.088 0.0325

Abdollahnezhad 0.912 0.048 0.040 0.0060

r 0.876 0.050 0.074 0.0120

r∗ 0.901 0.051 0.049 0.0010

5 Discussion

In this paper, four methods are studied for comparing the means of two

independent log-normal distributions. In terms of computation, the method

by Zhou et al. (1997) is the simplest. The method by Abdollahnezhad et

al. (2012) takes up the most computing time because for each calculation,

we have to simulate K samples for ux and also K samples for uy. Both the

signed log-likelihood ratio statistic method and the proposed modified signed

log-likelihood statistic method require the constrained maximum likelihood es-

timator, θ̃. Blindly applying standard optimization subroutines may result in

̃θθ′(θ̃) being a negative definite matrix. The two real-life examples illustrate

that the four methods can give very different inferential results. Simulation

studies show the proposed modified signed log-likelihood ratio statistic method

to be superior to the other three methods. From a theoretical perspective, the

proposed modified signed log-likelihood ratio statistic method has the advan-
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tage that it has a known rate of convergency, O(n−3/2), whereas the signed

log-likelihood ratio statistic method only has rate of convergency O(n−1/2).

The rate of convergency of the method by Zhou et al. (1997) and the method

by Abdollahnezhad et al. (2012) are unknown. Thus the proposed modified

signed log-likelihood ratio statistic method is recommended for comparing the

means of two independent log-normal distributions.
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Appendix

The first and second derivatives of l(θ) given in (17):

∂l(θ)

∂µx

= −nµx

σ2
x

+
1

σ2
x

t1

∂l(θ)

∂µy

= −mµy

σ2
y

+
1

σ2
y

t2

∂l(θ)

∂σ2
x

= − n

2σ2
x

+
1

σ4
x

[
n

2
µ2

x − t1µx +
1

2
t3

]

∂l(θ)

∂σ2
y

= − m

2σ2
y

+
1

σ4
y

[
m

2
µ2

y − t2µy +
1

2
t4

]

∂2l(θ)

∂µ2
x

= − n

σ2
x

∂2l(θ)

∂µx∂µy

= 0

∂2l(θ)

∂µx∂σ2
x

=
nµs

σ4
s

− 1
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