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Analysis of small oscillations of a rigid body
elastically suspended and containing an
almost-homogeneous incompressible liquid
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Abstract

We consider a 2d model for a rigid body with a cavity completely filled by a
liquid and suspended by means of an elastic beam. The liquid is assumed to be
“almost-homogeneous” and incompressible inviscid. From the equations of the
system beam-container-liquid, we deduce the variational equation of the problem,
and then two operatorial equations in a suitable Hilbert space. We show that the
spectrum of the system is real and consists of a countable set of eigenvalues and
an essential continuous spectrum filling an interval. The existence and uniqueness

of the associated evolution problem are then proved using the weak formulation.
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1 Introduction

The systems studied are close to various engineering applications, as for
example in construction of tanks, of trucks for the companies of transport of
liquids, etc...

The theoretical results are very important for numerical and experimental
calculations of hydroelastic properties and dynamic characteristics of such
structures.

The study of the classical case of a system formed by a rigid body containing
a homogeneous ideal liquid, by means of the methods of functional analysis, has
been the subject of very many works; see, for example, [15], [12].

On the other hand, the case of a heterogeneous incompressible liquid in a
container was studied, first by Rayleigh and then, was the subject of limited
number of works [13], [7], [1], [4].

The particular case of an “almost-homogeneous liquid”, i.e. a liquid whose
density in equilibrium position is practically a linear function of the height
differing a little bit from a constant, was treated in [2], [5], [6], [11].

The aim of this work is to extend the precedent works by studying the case of
a container submitted to elastic constraints, reserving for another work the general
case of an elastic container.

After writing the general equations of motion of the system, we linearize the
problem assuming small displacements from an equilibrium position.

As a second step, and under the hypothesis that the liquid is almost-homogeneous,
we reformulate the equations as a variational problem and, finally, as an

operatorial problem involving non bounded linear operators on suitable Hilbert
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space.

Finally, we compute the spectrum of the relevant operator, showing that this
is composed by a discrete part and an essential part filling an interval and
corresponding physically to a domain of resonance: we argue that the presence of
the essential part of the spectrum is due the hypothesis of almost-homogeneity, in
contrast to the classical case in which the fluid is homogeneous and the spectrum
is entirely discrete [3].

The existence and uniqueness of the associated evolution problem are then

proved using the week formulation.

Figurel

2 Position of the problem

Let OA=L the free part of the beam. This one is clamped in O in a fixed
support and in A in the rigid body. We suppose that the tangent in O to the
beam is the axis Ox directed vertically downwards and the tangent AX in A

contains the centre of mass G of the body (AG=a). Oy is horizontal and AY
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is perpendicular to AX . We denote by X, y the unit vectors of Ox,Oy.

The body is homogeneous and has a cavity, and both are symmetrical with respect
to AX . The cavity is completely filled by an almost-homogeneous incompressible
inviscid liquid.

In the equilibrium position (resp. at the instant t), the liquid occupies the domain
Q (resp.Q,) limited by the wall S (resp. S,). Obviously, Q,(resp.S,) and Q
(resp. S) are isometric since the body is rigid.

We denote by w(s,t), u(s,t)the components on Ox, Oy respectively of the
displacement of the point M, (abscissa s) of the beam; after deformation, M,

comes in M, the coordinates of which are s+w, u. We suppose that the beam

IS unextensible, hypothesis that is expressed by

1+w) +u”? |ds? =ds? W’=%;u’=a—u
[(Lrw) +u]
0s oS
or
W':—%u'2 (2.1)

We are going to study the small oscillations of the system beam-body-liquid about
its equilibrium position, obviously in linear theory.

As usual, we are considering that the linearized velocities and accelerations are
“true” velocities and accelerations, in order to avoid writing needless formulas in

the following calculations.

3 Equations of the motion of the system

3.1 Equations of motion of the beam

The beam, of constant density p, is submitted to the gravity, to the

reactions in O and to the reactions of the body, the resultant of which being
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mgR, X+mgR y and the momentabout O: mgNZ (Z=XxY).
g is the acceleration due to gravity and we set

m=m,+m,
m, and m, being respectively the mass of the body and the mass of the liquid.
The boundary conditions in O are

u(0,t)=0;u’'(0,t)=0;w(0,t)=0.

It is well-known that Ox, AX =6 =u'(L,t).
In order to obtain the equations of the small oscillations of the beam, it is

convenient to use the Hamilton principle.

We write

t El fL '

L {5T +OW +5(—7j0 u" ds)+ mgR,ow(L,t)+mgR Ju(L,t)+mgNsu (L,t)}dt
=0

(t, <t,) in the set of the functions u(s,t)that are twice continuously differentiable

with respect to tand four times continuously differentiable with respect to s,

verifying the boundary conditions in O and taking the same values for t=t and

t=t,.

T is the kinetic energy of the beam, i.e.%j;puz ds; W is the function of the force

of gravity, i.e W = LLpgwds, and %LLU"Z dsis the potential energy of the beam

(I moment of inertia of the section, E Young’s modulus, considered as constant).

At first, we have, using classically an integration by parts:

t LieL L. Ll e . .. L eL .

) é’TdtzJ'tl UO pu5uds}dt:j'o Utl pu&udt}ds=—jtl UO pu5uds}dt
After, we can write, using (2.1):

IOLst =j0Lwd(s— L)=[(s- L)w]g —IOL(S— L)w'ds :EIL(S— L)uds,

270

so that we have



50 Analysis of small oscillations of a rigid body elastically...

L L O ,
oW =j0 pgwds=—pgj0 g[(s— L)u'|suds.
Two integration by parts give
5(EILU”st): EIILu”Zéu"ds
2 Jo 0
_El [U"(L,t)au'(L,t)-u"'(L,t)au(L,t)+j0Lu'V5uds]
Finally, we have
5W(L,t):IOLW’(s,t)ds=—I0Lu'5u’ds=—u’(L,t)&u’(L,t)+IOLu”5uds
The Hamilton principle is expressed by the equation
IOL[—pU - pg %[(s ~L)u']-El" + ngXu"}éuds

Ez +[Elu"(Lt)-mgRu'(L,t)+ mgR, Jou(L.t) dt=0
+[~Elu"(L,t)+mgN Jou'(L,t)

from which we deduce the equations

.. a 2 v "
—|(s-L Elu™ —mgRu”"=0
pli+ pg a5[(3 Ju']+Elu" —mgR u

Elu”(L,t)-mgRu’(L,t)+mgR, =0 (3.1)
Elu”"(L,t)—mgN =0

to which we must add
u(0,t)=0; u'(0,t)=0. (3.2)

(3.1), (3.2) are the equations of motion of the beam.

3.2 Equations of motion of the liquid

Let us consider now the motion of the liquid.

At first, we suppose that the liquid is heterogeneous and we denote by

P’ (x,y,t)its density and by p*(x,y,t)the pressure.
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Let M, the particle of the liquid that occupies the position (x,y) at the instantt.

If V,(xy,t)is the velocity of M, with respect to the body, we set

U (x, y,t)=f\7r (x,y,7)dz
where t, is the date of the equilibrium position.

We have

ouU

G(xyt)=0: U=
(xyt,) ot

=V,

U can be considered as a small relative displacement of the particle.

By using the Coriolis theorem, the Euler’s equation takes the form:
p'U = —gradp’ + p'gx - p'u(L,t)y - p'0'(Lt)[(x—L)y—yx]in Q, (3.3)
We must add
divU =0 in Q, (incompressibility), (3.4)

a(; +div(pV,)=0in ©, (continuity equation), (3.5)

where V, is the velocity of the particle with respect to Oxy, and the kinematic
condition

J-fA=0on S,, (3.6)
where i is the unit vector of the external normal.
(3.3), (3.4), (3.5), (3.6) are the equations of motion of the liquid.

3.3 Equations of the system body- liquid

Finally, we study the motion of the system rigid body-liquid, which is
submitted to the gravity and to the reactions of the beam in A.

The theorem of momentum gives easily the equations
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IQ p'(-0y+U,)dQ =mg(1-R,) (3.7)

t

mU(L,t)+[m0a+jQ P (x— L)th}ur(|_,t)+J'Q pU,dQ =-mgR, (3.8)
The theorem of moment of momentum gives, after a few calculations

|Au’(L,t)+[m0a+jQ P (x— L)th}U‘(L,t)+J.Q p'l(x-L)U, -yU, JdQ,
‘ ‘ (3.9)
:-[moa+J'Q‘ P (x— L)th}gu’(L,t)—gJ‘Qtp*Y dQ, —mgN
where 1,is the moment of inertia of the system about A.

(3.7), (3.8), (3.9) are the equations of motion of the system body-liquid.

3.4 Equilibrium equations

At the equilibrium position, we have u=0, U=0.
If p, and p, arethevaluesof p° and p° in this position, we must have

gradp, = p,0X,

sothat p, and p, are functionsof x only, with

L) (x)g

We suppose classically that the density is an increasing function of the depth, i.e.

that p(.)(x):d;;o_x(x) is positive.

The equations (3.1) give
R,=0, N=0,for t=t,
and the condition

J.Ql pYdQ, ‘l:te =0,

deduced from (3.9) is verified by symmetry.
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4 Transformation of the equation of motion

4.1 Transformation of Euler’s equation

We set
P = po(X)+ (X y,t)+-o-; P =Py (X)+ p(X y,t)+-r,
where p and p are of the first order with respect to the amplitude of the

oscillations.

The linearized continuity equation (3.5) is
2—€+(—u’(L,t)y+Ux)p(')(x)=O,
and then, integrating between t and t:
p==p(X)[-u'(Lt)y+U, ]
Consequently, the linearized Euler’s equation can be written

Py (¥)U = =g} (x)[-u'(L,t)y +U, ]x —gradp - p, (X)ti(L,t) y

(4.1)
- (M (LY[(x-1)7- %]

4.2 Transformation of the equation (3.8)

If b isthe distance from A to the centre of mass of the system body-liquid

in the equilibrium position, the linearized equation (3.8) can be written

mL'J‘(L,t)JrmbL'J"(L,t)+_[Q,oo(x)L'J'ysz—ngy (4.2)

4.3 Transformation of the equation (3.9)

In order to linearized the equation (3.9), we must calculate at the first order the

integral

J.Q( pYdQ, .
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Since x=L+Xcosf-Ysind~L+X-6Y (6=u'(Lt)),we have
J‘Qtp*Ythzj‘Q‘(poﬂé)Yth:jQpO(L+X—HY)YdQ+IQﬁYdQ

=[P (L+X)YdQ=6[ p(L+X)Y?dQ+| pYdQ
where Qis the domain occupied by the liquid at the instant t, geometrically

identical to ©Q, .

The first integral of the right-hand side is equal to zero by symmetry and we have,
in linear theory
[ AYda=| p(L+X)(-oY +U, )Y dQ,
so that
J‘le*Y dQ, =—[ py(L+X)U,YdQ,
or, Qbeing now the domain occupied by the liquid in the equilibrium position
IQ‘ pY A ==[ py(x)yU,dQ
Then, the linearized equation (3.9) becomes
107 (L,t)+mbu(L,t)+ IQpO (x)[(x -L)J, - yU'X]dQ

. (4.3)
=-mgbu’(L,t)+ ngpo (x)yU,dQ—mgN

4.4 New equation of the beam

Obviously by virtue of the equation (3.7), in the equations (3.1) of the motion
of the beam, we must replace R, by 1.

5 The particular case of an almost-homogeneous liquid

5.1 Definition of an almost -homogeneous liquid

Let h the vertical diameter of the domain Q. In Q, we have, if d is the
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distance from the center of mass of the liquidto A:
[x—L-d|<h
We suppose that the density of the liquid in equilibrium position has the form
po(X)= po[1+ B(x—L—d)]+0(ph),
where p,and g are positive constant, /3 such that (ﬂh)z, (ﬂh)3 ,...are negligible

with respectto gh.

In this case, the liquid is called almost-homogeneous in Q.
We restrict ourselves to this case. Then, like in the Boussinesq theory of the

convection fluid motions [7, p 16], we replace in the equations of motion

pO(X)by Lo s p(-)(x)by Pol -

5.2 Elimination of the reactions of the rigid body

At first, the Euler’s equation takes the form

G =L gradp —u(Lt)y-'(LO[(x-L)y-yx]-po[u(Lt)y+U,]x  (B.1)

Po

On the other hand, since, after integration of (3.4) and (3.6) between t, and t,
divU=0 in Q, U-i=0 on S, we have
_[QUydfz:IQU-gradydgzo.

so that the equations (4.2) becomes
mui(L,t)+mbu’(L,t)=-mgR, (5.2)

Eliminating R, and N between (4.3), (5.2) and the equations of motion of the

beam, we obtain

pU+pg%[(s—L)u']+Elu'V -mgu”=0 (5.3)
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ma(L,t)+mbu’(L,t)-Elu"(L,t)+mgu’(L,t)=0 (5.4)

1,0 (L,t)+mbi (L) + gy [ [ (x—=L)U, = yU, |dQ 69
+mbgu’(L,t) poﬂg_[ yu, dQ+ EIu”(Lt):O

5.3 New transformation of Euler’s equation
In the following, we introduce the spaces [12]
3(Q)={ae[L}(@)], divi=0, a-i-0ons|
G(Q)={u=gradp, pe H'(Q)}
We have the well known orthogonal decomposition [12]:
[L(@)] =3, (Q)@c(Q)

In order to eliminate the pressure, we project the Euler’s equation (5.1) on J,(Q).
If P, is the orthogonal projector of [L?(2)]on J,(<), we obtain

U +P,[(x-L)y-yxJu'(L,t)+ KU - BgP, (yx)u'(L,t) =0 (5.6)
where Kis the operator from J;(Q)in J,(<)defined by

KU =BgP,(U,X).

54 The operator K

The operator K has a basic role in the problem. It was studied by Capodanno
[2]. It is self- adjoint and its spectrum is identical to its essential spectrum, denoted
by o (K),anditis the interval [0,Ag].
We sketch the proof. By a Weyl’s theorem [12], it is sufficient to prove that, for

every 0 < u <1, there exists a sequence {U, } such that
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1 - -
EKUK —pU,

|,
t
We construct a sequence {U, | such that {Unm}z[aAq”m,—aAq"m ]and

oy OX

G =€™™0q(xy), g(xy)e2(Q)and equal to 1 in a circle [x—x|<r ,

—0when k — +o

contained in Q.

We can prove that

By o ' oxy’
and that
2
ﬂiKUnm— ML J,n=0(n*+m?)
g n*+m
o(n*+m’) _
where ——-———=is uniformly bounded in Q.

n~+m

For every ¢ >0, itis possible to find a rational number 2 such that
fi

ﬁ2

U<——<u+E
A +m

Choosing m=kifi, n=kfi, we can prove that the sequence {U,;,,|satisfies the

Weyl’s theorem.

5.5 Introduction of new operators

In the following, we introduce the operators L and M from J,(Q) in

C defined by
LU =[ [(x-L)U,-yU, JdQ; MU =] yU,dQ.



58 Analysis of small oscillations of a rigid body elastically...

It is easy to see that Land P,[(x-L)y-yx] and M and P,(yX) are mutually

adjoint.

6 Operatorial equations of the small motion of the system

6.1 A formal variational equation
The equations of motion are (5.3); (5.4); (5.5); (5.6); (3.2).

We multiply the equation (5.3) by a smooth function @(s)such that G(0)=0,
a'(0)=0; we integrate on (0,L)and we perform integrations by parts. After, we
multiply the equation (5.4) by G(L)and equation (5.5) by @' (L). Adding the
results, we obtain after little long, by easy calculations:

jOLpuﬁds+ mii (L, t)d (L)+mb[ a(L,t)d"(L)+u'(L,t)a(L)]+1,0(Lt)a(L)

+p, LU -T(L)+El foLu"ﬁ"ds + gJ.OL[p(L—s)+ mJu'd’ds+mbgu’(L,t)d'(L)  (6.1)

~p,BgMU -T'(L)=0

6.2 Thespace V

We introduce the space
V ={ueH?(0,L); u(0)=0; u'(0)=0}
By virtue of the generalized Poincaré inequality [17], we see that
[EI jOL|u"|2 ds + gjoL[p(L —s)+m]uf dST/Z
defines on V a norm, that is equivalent to the classical norm |ju||,of H*(0,L).

Then, by virtue of a trace theorem,
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(u,a), =El jOLu”ﬁ”ds + gIOL[p(L—s)+ m Ju'@ ds +mbgu'(L)T(L),
can be taken as a scalar product in V, the associated norm ||u|, being equivalent

in Vv to |uf,.

6.3 Thespace H

Now, we denote by H the completion of V for the norm associated to the

scalar product
(u,0),, =JOLpuﬁds+mu(L,t)ﬁ(L)Jrmb[u(L,t)u:’(L)Jru’(L,t)u:(L)]
+1,u(Lt)a'(L)
It is a scalar product, since the quadratic form
mu?(L)+2mbu(L)u’(L)+1,u(L)

is positive, by virtue of the well-known inequality I, > mb®.
The imbedding from V in H is obviously dense, it is continuous by virtue of a
trace theorem in H?(0,L). Finally, it is compact. Indeed, let a sequence {u,}eV
that converges weakly in V to ueV.

This sequence converges strongly in L*(0,L) and the sequence of traces {un (L)} :

{u; (L)} converge strongly to u(L),u’(L) in C.

Remark.

If ueH , there exists a sequence {u,}eV such that |u,—u, -0 and

consequentl, |u,-u,[, —>0 when nm-—c . Then, we have

n

un(L)—um(L)‘—>O, is that u,(L) has a strong limit in C, that we call

naturally u(L). So, we give a sense to u(L), and in same manner, to u’(L),

when ueH.
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6.4 Transformation of the equation (6.1)

Then, the equation (6.1) is equivalent to the equation

(4,0),, +p, LU -F(L)+(u,0), - p,BgMU -F(L)=0 VeV . (6.2)

6.5 Reduction of the equation (6.2) to an operatorial equation

From the inequality
1,u%(L)+2mbu(L)u’(L)+ muz(L)z(IA —mbz)u'Z(L),
we deduce
(L= (1 -mb) ™ ul,
so that
LG -@(L)[<(1,-mp?) *|CG|a],,.

Consequently, there exists a bounded operator L from Jo(Q)in H such that

c

LU-T(L)=(LU.0)

H

In the same manner, we can write

c

MU -T(L)=(MUa),

The equation (6.2) becomes

(4,0),, + 2, (LU, 0) +(u,0), - pfg(MU,G) =0 VeV
Classically [14], if A, is the unbounded operator of H, which is associated to
the sesquilinear form (u,d), and to the pair (V,H), the precedent equation is

equivalent to the operatorial equation

i+ p, LU +A,U-p,BgMU =0,  ueD(A,)cV cH. (6.3)
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6.6 Transformation of Euler’s equation in operatorial
equation

We have, for each UeJ,(Q), and with obvious notations for the scalar

products:

(RL(x-L)3- yX]U’(L,t),lj)J ~(wr (L), EG)

where we denote by L the adjoint of L.

Therefore, we can write
P[(x-L)y-yxu'(Lt)=L"u
and, in the same manner
Py (yX)u'(L,t)=M"u
Taking the scalar product by U in Jo(€©) of the members of the Euler’s
equation (5.6), we obtain, using the precedent results

(G+£*U+K0—ﬁg|\7|*u,lj) —0, v0el,(Q)
J

o(2)
and finally the operatorial equation
U+l t+KU=BgM u=0. (6.4)
(6.3) and (6.4) are the operatorial equations of the problem, for the unknowns

ueV,Uel,(Q).

6.7 Operatorial equations with bounded operators

In order to eliminate the unbounded operator A,, we set
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=Aj’ueH
The equation (6.3) and (6.4)become
AG+ o, AM2LU +0- p, fg A2 NG =0, (6.5)
I:*Agl’zﬁ+d—ﬂgl\?I*Agl'zl]+KU=O, (6.6)

where all the operators are bounded.

7 Study of the spectrum of the problem

We will prove, at the end of the paper, that the spectrum of the problem
exists and lies on the positive real semi-axis.

Then, we seek the solutions of the form
u(s,t)=e“u(s); U(x,y,t)=e“U(x,y)(wreal)
The precedent equations give

(A u+pOA1’2LU) (- p,Bg AN MU, (7.1)

o (LA G+U)=-pgM A G+ KU (7.2)

7.1 The spectrum in the interval o> fg

Weset u=w",sothat |u<
The equation (7.2) can be written
(Vo= #K)0 ==(C+ pg M)A G

Since |K|=89, I, ,—-uK has an inverse R(x), which is a self-adjoint and

%(9)

holomorphic operatorial function in || < (/3g)'1 and we have

U=-R(u)(L+ppgM A"
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Substituting in the first equation, we obtain
Ly (x)d= [/HH = A+ 9o A (L ugM)R (1) (L + 1By M*)Aa”z}ﬂ =0 (7.3)
L,(«) isaself-adjoint and holomorphic operatorial function in || < (ﬂg)’l.

We have

L5 (0) = ly+ pBY A (ML+ LM ) A+ p, A2 LKL A
L,(0) is compact, like Aj'and A;?. L;(0) is strongly positive like 1, if
£9 is sufficiently small.
Therefore [12, p 74], for every & such that 0<g<(ﬁ'g)’1, there is, in the interval
]0.¢[, a countable set of positive real eigenvalues ., which tend to zero when

K — +o0.
The eigenelements form a Riesz basis in a subspace of H, which has a finite
defect.

For our problem, there is a countable set of positive real eigenvalues o’ = 1",

which tend to infinity, when k — +oo.

7.2 The spectrumin theinterval 0<w’<pfg
The equation (7.1) can be written
(li-0” A)a=p, A (BgM+ L)U
Since o’ <pBg, l,-o*A;' has an inverse if g is sufficiently small and we

have

0= p, (1 - A) A (pg M+ L)0
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Substituting in (7.2), we obtain
KU —WO(a)Z)U = U, Ue JO(Q),
with
W, (@)= py (@ L+ g M) A2 (1, - 0 A) A2 (o L+ pg )
W, (") is an analytical function in [0,8g]and, for each »*, W,(o’) is a

compact self-adjoint operator, since A,"* is compact from Honto H .
Setting
2(07) =KW, o7),
we obtain the equation
(2(@®)-01,0)U =0, Uely(Q) (7.4)
Let o eo, (K)=[0,49]. By a classical Weyl’s theorem [Kopachevskii 2001],

the operator  Z(«? ) verifies

0| Z(e) |= 0y (K) =[0, A9].

For each ofeco,[Z(wf)], there exists a “Weyl's  sequence”  [12]
{Gn}eJO(Q), that depends on @/and ?, such that

Gn — 0weakly; inf‘ﬁn

>0; (Z(0f)- 21,4 )0, >0 in 3 (Q).

Jo
Choosing ’ =/, the corresponding Weyl’s sequence{ljn}depends on @ only
and verifies (Z(wf)—wfljo(g))ﬁnéoin J,(Q), so that @ belongs to the

spectrum of the problem (7.4). @] being arbitrary in [0, 3g], the spectre of the

problem in this interval coincides with its essential spectrum [0, 8g].
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7.3 Conclusion

The spectrum of the problem is composed by an essential part, which fills the

closed interval [0,sg], and a discrete part that lies outside this interval and is

comprised of a countable set of positive real eigenvalues, whose accumulation
point is the infinity.
Physically, the eigenvalues of the point spectrum are a denumerable set of values

of resonance, where as the interval [0, 8g] is a domain of resonance.

8 Existence and unigueness theorem

The equation (6.3) and (6.4) can be written, setting
¢=(uU) ez=H®J,(Q):

BE+QC =0, Cey (8.1)

B IHA* oL ; Q=[ A, ) _poﬁgM]
Pl Py IJO(Q) —poBIM P K

with

8.1 Properties of the operator B

Bis obviously bounded from yinto yand self-adjoint. It is easy to see, that
B is strongly positive if the body is preponderant.

Indeed, by direct calculation, we have

Pol A,
I, —mb2

-2
(Bé”é’)l Z||"‘I|||2—| *Po HU 3,(Q) )”u”H'

where 1, is the moment of inertia of the liquid about A.
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The right-hand side is a positive quadratic form with respectto |Ju, , “UHJ o if

2
l,—mb*>1,,

that is verified if the body is preponderant.

8.2 Thespace v and properties of the operator Q
We introduce the space v =V @ J,(€)equipped with the norm

- 1/2
= (1 +[o; )

The imbedding from v into yis obviously dense and continuous but it is not

¢

compact, because the identical operator L, is not compact.

Q)

Q is unbounded and self-adjoint operator of .

By direct calculations, we obtain, A being a positive real number:

(¢.6), + 2l > +2{0[;

pOIA/
2
l,—mb

Al=112
+210], 0+ A + 289U o) - B9 <1

sothat, if Ag sufficiently small
. A —|2 . A
(Q¢:¢), k¢l = min{ 1.5 (ju +JOT;, )= minf 1.2 )il

Consequently, the form a(¢,£)=(Q¢.¢) is a sesquilinear, hermitian,
X

continuous and v coercive with respectto y form.

8.3 Existence and uniqueness theorem

Then, we can apply to the (8.1) a known theorem [8, p. 667-670].



H. Essaouini, L. Elbakkali and P. Capodanno 67

If the initial data verify

(WO (30)
((0)—(0(0))@/, g“(O)—[lj(o)]ev,

the problem has one and only one solution such that
() el’(0,7v); £()el?(0,Tv),

where T is a positive constant.

8.4 Existence of the spectrum
Setting BY2¢ =n e y, we replace the equation (8.1) by
7+Cn=0, (8.2)
where C=BY2QB™? is a self-adjoint unbounded operator of .
We are going to prove that C is positive definite, so Q is positive definite.
A, being strongly positive in H , we have
(Aju,u), = k||u||i1 , k>0.

By direct calculations, we obtain easily

2
L) Vo ||u||H )

(Q¢.6), = (k= puBvi lull, + o (U,

with

k—p,B9v¢ being positive if pg is sufficiently small, we have

(Q¢.¢), 20, equaltozeroonly for u=0, U, =0.

. ~ oJ . L o
But since U eJ;(Q), we have —X=0 in the sense of distributions and it is

known [16, p. 57] that U, is absolutely continuous function on each parallel to
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Ox limited to S, that has almost everywhere a derivative equal to zero. Since

U-i=0on S,wehave U,=0andthen U=0.

Q, and therefore C, is positive definite.
Seeking the solution of (8.2) in the form
n(-t)=e*n(),
we obtain
Cn=-A%
C, being self-adjoint, has a real spectrum. Since it is positive definite, this

spectrum lies on the positive real semi-axis. Therefore, —A? is real positive and

wecanset A=iw, o real, according to the calculations in the paragraph 7.
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