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Abstract 

We consider a 2d model for a rigid body with a cavity completely filled by a 

liquid and suspended by means of an elastic beam. The liquid is assumed to be 

“almost-homogeneous” and incompressible inviscid. From the equations of the 

system beam-container-liquid, we deduce the variational equation of the problem, 

and then two operatorial equations in a suitable Hilbert space.  We show that the 

spectrum of the system is real and consists of a countable set of eigenvalues and 

an essential continuous spectrum filling an interval. The existence and uniqueness 

of the associated evolution problem are then proved using the weak formulation. 
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1  Introduction 

The systems studied are close to various engineering applications, as for 

example in construction of tanks, of trucks for the companies of transport of 

liquids, etc... 

The theoretical results are very important for numerical and experimental 

calculations of hydroelastic properties and dynamic characteristics of such 

structures. 

The study of the classical case of a system formed by a rigid body containing 

a homogeneous ideal liquid, by means of the methods of functional analysis, has 

been the subject of very many works; see, for example, [15], [12]. 

On the other hand, the case of a heterogeneous incompressible liquid in a 

container was studied, first by Rayleigh and then, was the subject of limited 

number of works [13], [7], [1], [4]. 

The particular case of an “almost-homogeneous liquid”, i.e. a liquid whose 

density in equilibrium position is practically a linear function of the height 

differing a little bit from a constant, was treated in [2], [5], [6], [11].  

The aim of this work is to extend the precedent works by studying the case of 

a container submitted to elastic constraints, reserving for another work the general 

case of an elastic container. 

After writing the general equations of motion of the system, we linearize the 

problem assuming small displacements from an equilibrium position. 

As a second step, and under the hypothesis that the liquid is almost-homogeneous, 

we reformulate the equations as a variational problem and, finally, as an 

operatorial problem involving non bounded linear operators on suitable Hilbert 
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space. 

Finally, we compute the spectrum of the relevant operator, showing that this 

is composed by a discrete part and an essential part filling an interval and 

corresponding physically to a domain of resonance: we argue that the presence of 

the essential part of the spectrum is due the hypothesis of almost-homogeneity, in 

contrast to the classical case in which the fluid is homogeneous and the spectrum 

is entirely discrete [3]. 

The existence and uniqueness of the associated evolution problem are then 

proved using the week formulation. 

 

 
     Figure1 

 

 

2  Position of the problem 

Let OA L=  the free part of the beam. This one is clamped in O  in a fixed 

support and in A  in the rigid body. We suppose that the tangent in O  to the 

beam is the axis Ox  directed vertically downwards and the tangent AX  in A  

contains the centre of mass G  of the body ( AG a= ). Oy  is horizontal and AY  
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is perpendicular to AX . We denote by x , y  the unit vectors of Ox , Oy .   

The body is homogeneous and has a cavity, and both are symmetrical with respect 

to AX . The cavity is completely filled by an almost-homogeneous incompressible 

inviscid liquid.  

In the equilibrium position (resp. at the instant t ), the liquid occupies the domain 

Ω (resp. tΩ ) limited by the wall S  (resp. tS ). Obviously, tΩ (resp. tS ) and Ω  

(resp. S ) are isometric since the body is rigid. 

We denote by ( ),w s t , ( ),u s t the components on Ox , Oy  respectively of the 

displacement of the point 0M (abscissa s ) of the beam; after deformation, 0M  

comes in M , the coordinates of which are s w+ , u . We suppose that the beam 

is unextensible, hypothesis that is expressed by 

 ( )2 2 2 21 d dw u s s ′ ′+ + =    ;w uw u
s s

∂ ∂ ′ ′= = ∂ ∂ 
 

or 

 21
2

w u′ ′= −
 

(2.1) 

We are going to study the small oscillations of the system beam-body-liquid about 

its equilibrium position, obviously in linear theory. 

As usual, we are considering that the linearized velocities and accelerations are 

“true” velocities and accelerations, in order to avoid writing needless formulas in 

the following calculations. 

 

 

3  Equations of the motion of the system 

3.1  Equations of motion of the beam 

The beam, of constant density ρ , is submitted to the gravity, to the 

reactions in O and to the reactions of the body, the resultant of which being 
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x ymgR + mgR x y  and the moment about O : mgNz ( )= ×
 z x y . 

g is the acceleration due to gravity and we set 

 0m m m= +


 

0m and m


being respectively the mass of the body and the mass of the liquid.  

The boundary conditions in O are 

 (0, ) 0u t = ; (0, ) 0u t′ = ; (0, ) 0w t = . 

It is well-known that  ( ), ,Ox AX u L tθ ′= = . 

In order to obtain the equations of the small oscillations of the beam, it is 

convenient to use the Hamilton principle. 

We write 

( ) ( ) ( )2

1

2

0
d , , , d

2
0

t L

x yt

EIT W u s mgR w L t mgR u L t mgN u L t tδ δ δ δ δ δ
   ′′ ′+ + − + + +   

   
=

∫ ∫  

( )1 2t t< in the set of the functions ( ),u s t that are twice continuously differentiable 

with respect to t and four times continuously differentiable with respect to s , 

verifying the boundary conditions in O and taking the same values for 1t t=  and 

2t t= . 

T is the kinetic energy of the beam, i.e. 2

0

1 d
2

L
u sρ∫  ; W is the function of the force 

of gravity, i.e 
0

d
L

W gw sρ= ∫ , and 2

0
d

2
LEI u s′′∫ is the potential energy of the beam  

( I moment of inertia of the section, E Young’s modulus, considered as constant). 

At first, we have, using classically an integration by parts: 

 2 2 2 2

1 1 1 10 0 0
d d d d d d d

t t L L t t L

t t t t
T t u u s t u u t s u u s tδ ρ δ ρ δ ρ δ     = = = −          ∫ ∫ ∫ ∫ ∫ ∫ ∫      

After, we can write, using (2.1): 

 ( ) ( ) ( ) ( ) 2
00 0 0 0

1d d d d
2

L L L LL
w s w s L s L w s L w s s L u s′ ′= − =  −  − − = − ∫ ∫ ∫ ∫ , 

so that we have 
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 ( )
0 0

d d
L L

W gw s g s L u u s
s

δ ρ ρ δ∂ ′= = −  −  ∂∫ ∫ . 

Two integration by parts give 

 
( ) ( ) ( ) ( )

2 2

0 0

0

d d
2

, , , , d

L L

L IV

EI u s EI u u s

EI u L t u L t u L t u L t u u s

δ δ

δ δ δ

  ′′ ′′ ′′=   
  ′′ ′ ′′′= − +   

∫ ∫

∫
 

Finally, we have 

 ( ) ( ) ( ) ( )
0 0 0

, , d d , , d
L L L

w L t w s t s u u s u L t u L t u u sδ δ δ δ′ ′ ′ ′ ′ ′′= = − = − +∫ ∫ ∫  
The Hamilton principle is expressed by the equation 

 

( )

( ) ( ) ( )
( ) ( )

2

1

0
d

, , , d 0

, ,

L IV
x

t

x yt

u g s L u EIu mgR u u s
s

EIu L t mgR u L t mgR u L t t

EIu L t mgN u L t

ρ ρ δ

δ

δ

 ∂ ′ ′′− −  −  − +   ∂   ′′′ ′ + − + =  
 

′′ ′+ − +   
  

∫

∫



 

from which we deduce the equations  

 

( )

( ) ( )
( )

0

, , 0

, 0

IV
x

x y

u g s L u EIu mgR u
s

EIu L t mgR u L t mgR

EIu L t mgN

ρ ρ ∂ ′ ′′+  −  + − =  ∂ ′′′ ′− + =
 ′′ − =




  (3.1) 

to which we must add 

 ( )0, 0u t = ; ( )0, 0u t′ = . (3.2) 

(3.1), (3.2) are the equations of motion of the beam. 

 

 

3.2  Equations of motion of the liquid 

Let us consider now the motion of the liquid. 

At first, we suppose that the liquid is heterogeneous and we denote by 

( ), ,x y tρ∗ its density and by ( ), ,p x y t∗ the pressure. 
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Let M


the particle of the liquid that occupies the position ( ),x y  at the instant t . 

If ( ), ,r x y t


V is the velocity of M


with respect to the body, we set 

 ( ) ( ), , , , d
e

t

t
x y t x y τ τ= ∫

 

rU V  

where et is the date of the equilibrium position. 

We have 

 ( ), , 0ex y t =


U ; 
t

∂
=

∂



 



r
UU = V  



U can be considered as a small relative displacement of the particle. 

By using the Coriolis theorem, the Euler’s equation takes the form: 

 ( ) ( ) ( ), ,p g u L t u L t x L yρ ρ ρ ρ∗ ∗ ∗ ∗ ∗ ′− + − −  − −  




   



 U = x y y xgrad in tΩ  (3.3) 

We must add 

 div 0=


U  in tΩ (incompressibility), (3.4)

  

 ( )div 0
t
ρ ρ

∗
∗∂

+ =
∂



aV in tΩ (continuity equation), (3.5) 

where 


aV  is the velocity of the particle with respect to Oxy , and the kinematic 

condition 

 0⋅ =




U n on tS , (3.6) 

where n is the unit vector of the external normal. 

(3.3), (3.4), (3.5), (3.6) are the equations of motion of the liquid. 

 

 

3.3  Equations of the system body- liquid 

Finally, we study the motion of the system rigid body-liquid, which is 

submitted to the gravity and to the reactions of the beam in A . 

The theorem of momentum gives easily the equations 
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 ( ) ( )d 1
t

x t xy U mg Rρ θ∗

Ω
− + Ω = −∫  

 
(3.7) 

 ( ) ( ) ( )0, d , d
t t

t y t ymu L t m a x L u L t U mgRρ ρ∗ ∗

Ω Ω

  ′+ + − Ω + Ω = −  ∫ ∫ 

 

 
(3.8) 

The theorem of moment of momentum gives, after a few calculations 

( ) ( ) ( ) ( )

( ) ( )

0

0

, d , d

d , d

t t

t t

A t y x t

t t

I u L t m a x L u L t x L U yU

m a x L gu L t g Y mgN

ρ ρ

ρ ρ

∗ ∗

Ω Ω

∗ ∗

Ω Ω

  ′  + + − Ω + − − Ω    


  ′= − + − Ω − Ω −  

∫ ∫

∫ ∫

 

 

  (3.9)  

where AI is the moment of inertia of the system about A . 

(3.7), (3.8), (3.9) are the equations of motion of the system body-liquid. 

 

 

3.4  Equilibrium equations 

At the equilibrium position, we have 0u = , = 0


U . 

If 0p  and 0ρ  are the values of p∗

 and ρ∗

 in this position, we must have 

 0 0p gρ=


xgrad , 

so that 0p  and 0ρ  are functions of x  only, with 

 ( ) ( )0
0

d
d

p x
x g

x
ρ=  

We suppose classically that the density is an increasing function of the depth, i.e. 

that ( ) ( )0'
0

d
d

x
x

x
ρ

ρ =
 
is positive. 

The equations (3.1) give 

 0yR = , 0N = , for et t=  

and the condition 

 d 0
e

t
t t tYρ∗

=Ω
Ω =∫ , 

deduced from (3.9) is verified by symmetry. 
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4  Transformation of the equation of motion 

4.1  Transformation of Euler’s equation 

We set 

 ( ) ( )0 , ,x x y tρ ρ ρ∗ = + + ⋅ ⋅ ⋅ ; ( ) ( )0 , ,p p x p x y t∗ = + + ⋅ ⋅ ⋅ , 

where ρ  and p  are of the first order with respect to the amplitude of the 

oscillations. 

The linearized continuity equation (3.5) is 

 ( )( ) ( )'
0, 0xu L t y U x

t
ρ ρ∂ ′+ − + =
∂




 , 

and then, integrating between et  and t : 

 ( ) ( )'
0 ' , xx u L t y Uρ ρ= − − +    

Consequently, the linearized  Euler’s equation can be written 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

'
0 0 0

0

, ,

                 ,
xx x u L t y U p x u L t

x u L t x L y

ρ ρ ρ

ρ

 ′− − +  − −  


′−  − −   




 





 



U = x y

y x

grad
  (4.1) 

 

4.2  Transformation of the equation (3.8) 
If b  is the distance from A  to the centre of mass of the system body-liquid 

in the equilibrium position, the linearized equation (3.8) can be written  

 ( ) ( ) ( )0, , dy ymu L t mbu L t x U mgRρ
Ω

′+ + Ω = −∫ 

 

 
(4.2) 

  

 

4.3  Transformation of the equation (3.9) 

In order to linearized the equation (3.9), we must calculate at the first order the 

integral  

 d
t

tYρ∗

Ω
Ω∫ . 
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Since cos sinx L X Y L X Yθ θ θ= + − + −  ( )( ),u L tθ ′= , we have 

( ) ( )

( ) ( )

0 0

' 2
0 0

d d d d

                                                   d d d
t t

t tY Y L X Y Y Y

L X Y L X Y Y

ρ ρ ρ ρ θ ρ

ρ θ ρ ρ

∗

Ω Ω Ω Ω

Ω Ω Ω

Ω = + Ω = + − Ω + Ω

= + Ω − + Ω + Ω

∫ ∫ ∫ ∫
∫ ∫ ∫

 



 

where Ω is the domain occupied by the liquid at the instant t , geometrically 

identical to tΩ . 

The first integral of the right-hand side is equal to zero by symmetry and we have, 

in linear theory 

 ( )( )'
0d dXY L X Y U Yρ ρ θ

Ω Ω
Ω = + − + Ω∫ ∫ , 

so that  

 ( )'
0d d

t
t XY L X U Yρ ρ∗

Ω Ω
Ω = − + Ω∫ ∫ , 

or, Ω being now the domain occupied by the liquid in the equilibrium position 

 ( )'
0d d

t
t xY x yUρ ρ∗

Ω Ω
Ω = − Ω∫ ∫  

Then, the linearized equation (3.9) becomes 

 

( ) ( ) ( ) ( )

( ) ( )
0

'
0

, , d

, d

A y x

x

I u L t mbu L t x x L U yU

mgbu L t g x yU mgN

ρ

ρ
Ω

Ω

 ′  + + − − Ω 


′= − + Ω −

∫
∫

 

 

   (4.3) 

 

 

4.4  New equation of the beam 

Obviously by virtue of the equation (3.7), in the equations (3.1) of the motion 

of the beam, we must replace xR  by 1. 

 

 

5  The particular case of an almost-homogeneous liquid 

5.1  Definition of an almost -homogeneous liquid 

Let h  the vertical diameter of the domain Ω . In Ω , we have, if d  is the 
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distance from the center of mass of the liquid to A : 

 x L d h− − <  
We suppose that the density of the liquid in equilibrium position has the form 

 ( ) ( ) ( )0 0 1x x L d o hρ ρ β β=  + − −  +  , 

where 0ρ and β are positive constant, β such that ( )2hβ , ( )3hβ ,…are negligible 

with respect to hβ . 

In this case, the liquid is called almost-homogeneous in Ω . 

We restrict ourselves to this case. Then, like in the Boussinesq theory of the 

convection fluid motions [7, p 16], we replace in the equations of motion  

 ( )0 xρ by 0ρ ,  ( )'
0 xρ by 0ρ β . 

 

 

5.2  Elimination of the reactions of the rigid body 

At first, the Euler’s equation takes the form 

( ) ( ) ( ) ( )
0

1  , , , xp u L t u L t x L y g u L t y Uβ
ρ

′ ′− − −  − −  − − +    




   



 U = y y x xgrad    (5.1) 

On the other hand, since, after integration of (3.4) and (3.6) between et  and t , 

div 0=


U  in Ω , 0=⋅


U n  on S , we have 

 d 0yU d y
Ω Ω

Ω = ⋅ Ω =∫ ∫




U grad . 

so that the equations (4.2) becomes 

 ( ) ( ), , ymu L t mbu L t mgR′+ = −    (5.2)

Eliminating yR  and N  between (4.3), (5.2) and the equations of motion of the 

beam, we obtain 

 
( ) 0IVu g s L u EIu mgu

s
ρ ρ ∂ ′ ′′+  −  + − = ∂
   (5.3)
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 ( ) ( ) ( ) ( ), , , , 0mu L t mbu L t EIu L t mgu L t′ ′′′ ′+ − + =    (5.4)

 

 

( ) ( ) ( )

( ) ( )
0

0

, , d

, d , 0

A y x

x

I u L t mbu L t x L U yU

mbgu L t g yU EIu L t

ρ

ρ β
Ω

Ω

 ′  + + − − Ω 


′ ′′+ − Ω + =

∫
∫

 

 

    (5.5) 

 

 

5.3  New transformation of Euler’s equation  

In the following, we introduce the spaces [12] 

 ( ) ( ){ }22
0 ,  div 0,  0 on J L S Ω = ∈ Ω = ⋅ = 

   u u u n  

 ( ) ( ){ }1,  G p p HΩ = = ∈ Ω


u grad  

We have the well known orthogonal decomposition [12]: 

 ( ) ( ) ( )22
0L J G Ω = Ω ⊕ Ω   

In order to eliminate the pressure, we project the Euler’s equation (5.1) on ( )0J Ω . 

If 0P  is the orthogonal projector of ( ) 22L Ω  on ( )0J Ω , we obtain 

 ( ) ( ) ( ) ( )0 0P , K P , 0x L y u L t g y u L tβ′ ′+  − −  + − = 
 

  



U y x U x  (5.6) 

where K is the operator from ( )0J Ω in ( )0J Ω defined by 

 ( )0K P .xg Uβ=


U x  

 

 

5.4  The operator K  

The operator K has a basic role in the problem. It was studied by Capodanno 

[2]. It is self- adjoint and its spectrum is identical to its essential spectrum, denoted 

by ( )Kessσ , and it is the interval [ ]0, gβ . 

We sketch the proof. By a Weyl’s theorem [12], it is sufficient to prove that, for 

every 0 1µ< < , there exists a sequence { }k



U such that 
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1 K
0

k k

k

g
µ

β
−

→

 



U U

U
when k →+∞  

We construct a sequence { } n m



U such that { }
t

  
 

q q,  n m n m
n m y x

 ∂∆ ∂∆
= − ∂ ∂ 



U and  

( ) ( ) q q ,i nx my
n m e x y+= , ( ) ( ),q x y ∈ ΩD and equal to 1 in a circle 0x x r− ≤ , 

contained in Ω . 

We can prove that  

 
t3 3

  
 3 2

q q1 K ,  n m n m
n mg y x yβ

 ∂ ∂
= − ∂ ∂ ∂ 



U  

and that 

 ( )
2

2 2
  2 2

1 K n m n m
n o n m

g n mβ
− = +

+

 

U U  

where 
( )2 2

2 2

o n m
n m

+

+
is uniformly bounded in Ω . 

For every 0ε > , it is possible to find a rational number m
n


  
such that 

 
2

2 2

n
n m

µ µ ε< < +
+


 

 

Choosing m km=  , n kn=  , we can prove that the sequence { } kkn m 



U satisfies the 

Weyl’s theorem. 

 
 

5.5  Introduction of new operators 

In the following, we introduce the operators L and M from ( )0J Ω  in 

 defined by 

 ( )L dy xx L U yU
Ω
 = − − Ω ∫



U ; M dxyU
Ω

= Ω∫


 U . 
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It is easy to see that L and ( )0P x L y − −  
 y x  and M  and ( )0P yx  are mutually 

adjoint. 

 

 

6  Operatorial equations of the small motion of the system 

6.1  A formal variational equation 

The equations of motion are (5.3); (5.4); (5.5); (5.6); (3.2). 

We multiply the equation (5.3) by a smooth function ( )u s such that ( )0 0u = , 

( )0 0u′ = ; we integrate on ( )0, L and we perform integrations by parts. After, we 

multiply the equation (5.4) by ( )u L and equation (5.5) by ( )u L′ . Adding the 

results, we obtain after little long, by easy calculations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

0

0 0 0

0

d , , , ,

L d d ,

M 0

L

A

L L

uu s mu L t u L mb u L t u L u L t u L I u L t u L

u L EI u u s g L s m u u s mbgu L t u L

g u L

ρ

ρ ρ

ρ β

 ′ ′ ′ ′ + + + + 


′ ′′ ′′ ′ ′ ′ ′+ ⋅ + +  − +  +  


′− ⋅ =


∫
∫ ∫

        







   







U

U

  (6.1)

  

 

 

6.2  The space V    

We introduce the space 

 ( ) ( ) ( ){ }2 0, ;  0 0;  0 0V u H L u u′= ∈ = =  

By virtue of the generalized Poincaré inequality [17], we see that 

 ( )
1 2

2 2

0 0
d d

L L
EI u s g L s m u sρ ′′ ′+  − +    ∫ ∫  

defines on V a norm, that is equivalent to the classical norm 
2

u of ( )2 0,H L . 

Then, by virtue of a trace theorem, 
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 ( ) ( ) ( ) ( )
0 0

, d  d
L L

V
u u EI u u s g L s m u u s mbgu L u Lρ′′ ′′ ′ ′ ′ ′= +  − +  + ∫ ∫    , 

can be taken as a scalar product in V , the associated norm 
V

u being equivalent 

in V  to 
2

u . 

 

 

6.3  The space H    

Now, we denote by H the completion of V for the norm associated to the 

scalar product 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0
, d , , ,

              ,

L

H

A

u u uu s mu L t u L mb u L t u L u L t u L

I u L t u L

ρ ′ ′ = + + + 
′ ′+

∫    



 

It is a scalar product, since the quadratic form 

 ( ) ( ) ( ) ( )2 22 Amu L mbu L u L I u L′ ′+ +  

is positive, by virtue of the well-known inequality 2
AI mb> . 

The imbedding from V  in H  is obviously dense, it is continuous by virtue of a 

trace theorem in ( )2 0,H L . Finally, it is compact. Indeed, let a sequence { }nu V∈  
that converges weakly in V  to u V∈ . 

This sequence converges strongly in ( )2 0,L L  and the sequence of traces ( ){ }nu L , 

( ){ }nu L′ converge strongly to ( )u L , ( )u L′  in  . 

 

Remark. 

If u H∈ , there exists a sequence { }nu V∈  such that  0n H
u u− →  and 

consequentl, 0n m H
u u− → when ,n m →∞ . Then, we have 

( ) ( ) 0n mu L u L− → , is that ( )nu L  has a strong limit in  , that we call 

naturally ( )u L . So, we give a sense to ( )u L , and in same manner, to ( )u L′ , 

when u H∈ . 
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6.4  Transformation of the equation (6.1) 

Then, the equation (6.1) is equivalent to the equation 

 ( ) ( ) ( ) ( )0 0, L , M 0H Vu u u L u u g u Lρ ρ β′ ′+ ⋅ + − ⋅ =
 



 

    U U  u V∀ ∈ .       (6.2) 

 

 

6.5  Reduction of the equation (6.2) to an operatorial equation 

From the inequality 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 22A AI u L mbu L u L mu L I mb u L′ ′ ′+ + ≥ − , 

we deduce  

 ( ) ( ) 1 22
A H

u L I mb u
−

′ ≤ −  

so that  

 ( ) ( ) 1 22L LA H
u L I mb u

−
′⋅ ≤ −

 

 

 U U , 

Consequently, there exists a bounded operator L̂ from ( )0J Ω in H such that 

 ( ) ( )ˆL L ,
H

u L u′⋅ =
 



 U U  

In the same manner, we can write 

 ( ) ( )ˆM M ,
H

u L u′⋅ =
 



 U U  

The equation (6.2) becomes 

 ( ) ( ) ( ) ( )0 0
ˆ ˆ, L , , M , 0

H VH H
u u u u u g uρ ρ β+ + − =

 

    U U  u V∀ ∈ . 

Classically [14], if 0A  is the unbounded operator of ,H  which is associated to 

the sesquilinear form ( ), Vu u  and to the pair ( ),V H , the precedent equation is 

equivalent to the operatorial equation  

 0 0 0
ˆ ˆL A M 0u u gρ ρ β+ + − =
 



 U U ,    ( )0A .u D V H∈ ⊂ ⊂  (6.3) 
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6.6  Transformation of Euler’s  equation in operatorial  

     equation 

We have, for each ( )0J∈ Ω


U , and with obvious notations for the scalar 

products: 

 

( ) ( )( )
( )

( )( ) ( )( )
( ) ( )

( )

0

0

0P , , , ,L L , ,

ˆ ˆ                                                         L , ,L

ˆ                                                         

J

H J

x L y u L t u L t u L t

u u

Ω

∗

Ω

′ ′ ′ − −  = = 

= =

=

 

  

 

    

  

 

 

 

y x U U U

U U

( )
( )0

L ,
J

u∗

Ω





 U
 

where we denote by L̂∗  the adjoint of L̂ . 

Therefore, we can write  

 ( ) ( )0
ˆP , Lx L y u L t u∗′ − −  = 

 

 y x  

and, in the same manner  

 ( ) ( )0
ˆP , My u L t u∗′ =

x  

Taking the scalar product by 


U  in ( )0J Ω  of the members of the Euler’s 

equation (5.6), we obtain, using the precedent results 

 ( )
( )0

ˆ ˆL K M , 0,
J

u g uβ∗ ∗

Ω
+ + − =



 





U U U    ( )0J∀ ∈ Ω


U   

and finally the operatorial equation 

 ˆ ˆL K M 0.u g uβ∗ ∗+ + − =
 



U U   (6.4) 

(6.3) and (6.4) are the operatorial equations of the problem, for the unknowns 

,u V∈ ( )0J∈ Ω


U . 

 

 

6.7  Operatorial equations with bounded operators  

In order to eliminate the unbounded operator 0A , we set 
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 1/2
0ˆ Au u H= ∈  

The equation (6.3) and (6.4)become  

 1 1/2 1/2
0 0 0 0 0

ˆ ˆˆ ˆA A L A M 0u u gρ ρ β− − −+ + − =
 



 U U , (6.5) 

 1/2 1/2
0 0

ˆ ˆˆ ˆL A M A K 0u g uβ∗ − ∗ −+ − + =
 



 U U ,  (6.6) 

where all the operators are bounded. 

 

 

7  Study of the spectrum of the problem 

We will prove, at the end of the paper, that the spectrum of the problem 

exists and lies on the positive real semi-axis. 

Then, we seek the solutions of the form 

 ( ) ( )i, e tu s t u sω= ; ( ) ( )i, , e ,tx y t x yω=
 

U U (ω real) 

The precedent equations give 

 ( )2 1 1/2 1/2
0 0 0 0 0

ˆ ˆˆ ˆA A L A Mu u gω ρ ρ β− − −+ = −
 

U U ,  (7.1) 

 ( )2 1/2 1/2
0 0

ˆ ˆˆ ˆL A M A Ku g uω β∗ − ∗ −+ = − +
 

U U   (7.2) 

 

 

7.1  The spectrum in the interval ω2> βg 

We set 2µ ω−= , so that ( ) 1gµ β −< . 

The equation (7.2) can be written 

 ( )( ) ( )
0

1/2
0

ˆ ˆ ˆI K L M AJ g uµ µβ∗ ∗ −
Ω − = − +



U  

Since K gβ= , ( )0
I KJ µΩ −  has an inverse ( )R µ , which is a self-adjoint and 

holomorphic operatorial function in ( ) 1gµ β −< and we have 

 ( )( ) 1/2
0

ˆ ˆ ˆR L M Ag uµ µβ∗ ∗ −= − +


U  
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Substituting in the first equation, we obtain 

( ) ( ) ( )( )1 1/2 1/2
0 0 0 0 0

ˆ ˆ ˆ ˆˆ ˆL I A A L M R L M A 0Hu g g uµ µ ρ µβ µ µβ− − ∗ ∗ − = − + + + =      (7.3) 

( )0L µ  is a self-adjoint and holomorphic operatorial function in ( ) 1gµ β −< . 

We have 

 ( ) 1 1/2 1/2
0 0 0 0 0

ˆ ˆL 0 A A LL Aρ− − ∗ −= − +  

 ( ) ( )1/2 1/2 1/2 1/2
0 0 0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆL 0 I A M L LM A A LK L AH gρ β ρ− ∗ ∗ − − ∗ −′ = + + +   

( )0L 0  is compact, like 1
0A− and 1/2

0A− . ( )0L 0′  is strongly positive like I ,H  if 

gβ  is sufficiently small. 

Therefore [12, p 74], for every ε such that ( ) 10 gε β −< < , there is, in the interval 

] [0,ε , a countable set of positive real eigenvalues kµ , which tend to zero when 

k →+∞ . 

The eigenelements form a Riesz basis in a subspace of H , which has a finite 

defect. 

For our problem, there is a countable set of positive real eigenvalues 2 1
k kω µ−= , 

which tend to infinity, when k →+∞ . 

 

 

7.2  The spectrum in the interval  0 ≤ ω2 ≤ βg 

The equation (7.1) can be written 

 ( ) ( )2 1 1/2
0 0 0

ˆ ˆˆI A A M LH u gω ρ β− −− = +


U  

Since 2 gω β≤ , 2 1
0I AH ω −−  has an inverse if gβ  is sufficiently small and we 

have 

 ( ) ( )12 1 1/2
0 0 0

ˆ ˆˆ I A A M LHu gρ ω β
−− −= − +



U  
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Substituting in (7.2), we obtain 

 ( )2 2
0K W ω ω− =

  

U U U , ( )0J∈ Ω


U , 

with 

 ( ) ( ) ( ) ( )12 2 1/2 2 1 1/2 2
0 0 0 0 0

ˆ ˆ ˆ ˆW L M A I A A L MHg gω ρ ω β ω ω β
−∗ ∗ − − −= + − +  

( )2
0W ω  

is an analytical function in [ ]0, gβ and, for each 2ω ,  ( )2
0W ω  

is a 

compact self-adjoint operator, since 1/2
0A−  is compact from H onto H . 

Setting 

 ( ) ( )2 2
0Z K Wω ω= − , 

we obtain the equation  

 ( ) ( )( )0

2 2Z I 0Jω ω Ω− =


U , ( )0J∈ Ω


U  (7.4) 

Let ( ) [ ]2
1 K 0,ess gω σ β∈ = . By a classical Weyl’s theorem [Kopachevskii 2001], 

the operator ( )2
1Z ω verifies 

 ( ) ( ) [ ]2
1Z K 0, .ess ess gσ ω σ β  = =   

For each ( )2 2
2 1Zessω σ ω ∈   , there exists a “Weyl’s  sequence“  [12] 

{ } ( )0J∈ Ω




nU , that depends on 2
1ω and 2

2ω , such that  

 0→




nU weakly; inf 0>




nU ; ( ) ( )( )0

2 2
1 2Z I 0Jω ω Ω− →





nU  in ( )0J Ω . 

Choosing 2 2
2 1ω ω= , the corresponding Weyl’s sequence  

 
 







nU depends on 2
1ω  only 

and verifies ( ) ( )( )0

2 2
1 1Z I 0Jω ω Ω− →







nU in  ( )0J Ω , so that 2
1ω  belongs to the 

spectrum of the problem (7.4). 2
1ω  being arbitrary in [ ]0, gβ , the spectre of the 

problem in this interval coincides with its essential spectrum [ ]0, gβ . 
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7.3  Conclusion 

The spectrum of the problem is composed by an essential part, which fills the 

closed interval [ ]0, gβ , and a discrete part  that lies outside this interval and is 

comprised of a countable set of positive real eigenvalues, whose accumulation 

point is the infinity. 

Physically, the eigenvalues of the point spectrum are a denumerable set of values 

of resonance, where as the interval [ ]0, gβ  is a domain of resonance. 

 

 

8  Existence and uniqueness theorem 

The equation (6.3) and (6.4) can be written, setting 

( ) ( )
t

0,u H Jζ χ= ∈ = ⊕ Ω


U : 

 B Q 0ζ ζ+ = , ζ χ∈   (8.1) 

with 

 
( )0

0

0 0

ˆI L
B

L̂ I
H

J

ρ

ρ ρ∗
Ω

 
 =
 
 

;    0 0

0 0

ˆA M
Q

M̂ K

g

g

ρ β

ρ β ρ∗

 −
=   −   

 

 

8.1  Properties of the operator B    

B is obviously bounded from χ into χ and self-adjoint. It is easy to see, that 

B  is strongly positive if the body is preponderant. 

Indeed, by direct calculation, we have 

 ( )
( ) ( )0 0

22 0
0 2B , 2 A

H HJ J
A

I
u u

I mbχ

ρ
ζ ζ ρ

Ω Ω
≥ + −

−


 

U U , 

where AI


is the moment of inertia of the liquid about A . 
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The right-hand side is a positive quadratic form with respect to 
H

u , 
( )0J Ω



U
 
if 

 2
A AI mb I− >



, 

that is verified if the body is preponderant. 

 

 

8.2  The space ν  and properties of the operator Q  

We introduce the space ( )0V Jν = ⊕ Ω equipped with the norm 

 
( )( )

0

1/222

V J
u

ν
ζ

Ω
= +



U . 

The imbedding from ν into χ is obviously dense and continuous but it is not 

compact, because the identical operator ( )0
IJ Ω is not compact. 

Q is unbounded and self-adjoint operator of χ . 

By direct calculations, we obtain, λ being a positive real number: 

 
( )

( )

( ) ( )

0

2
0

22 2

2 2 2 20
0 2

Q ,
2

2

V J

A
xH LJ

A

u

I
u g U g

I mb

χ χ

χ

λζ ζ λ ζ

ρλ λ ρ β β ζ

Ω

ΩΩ

 + ≥ +


+ + + −
 −







U

U
 

so that , if gβ  sufficiently small 

 ( )
( )( )

0

22 2 2Q , min 1, min 1,
2 2V J

u
χ χ χ

λ λζ ζ λ ζ ζ
Ω

   + ≥ + =   
   



U  

Consequently, the form ( ) ( ), Q ,a
χ

ζ ζ ζ ζ= 

 
is a sesquilinear, hermitian, 

continuous and ν coercive with respect to χ  form. 

 

 

8.3  Existence and uniqueness theorem 

Then, we can apply to the (8.1) a known theorem [8, p. 667-670]. 
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If the initial data verify 

 ( ) ( )
( )
0

0
0

u
ζ ν

 
= ∈ 
 


U
; ( )

( )
( )
0

0
0

u
ζ ν

 
 = ∈
 
 







U
, 

the problem has one and only one solution such that 

 ( ) ( )2 0, ;Lζ ν⋅ ∈ T ; ( ) ( )2 0, ;Lζ ν⋅ ∈ T , 

where T is a positive constant. 

 

 

8.4  Existence of the spectrum 

Setting 1/2B ζ η χ= ∈ , we replace the equation (8.1) by 

 C 0η η+ = ,  (8.2) 

where 1/2 1/2C B QB− −=  is a self-adjoint unbounded operator of χ . 

We are going to prove that C  is positive definite, so Q  is positive definite. 

0A  being strongly positive in H , we have 

 ( ) 2
0A , H H
u u k u≥ , 0k > . 

By direct calculations, we obtain easily 

 ( ) ( ) ( )( )2

222
0 0 0 0Q , xH L H

k g u g U u
χ

ζ ζ ρ β ν ρ β ν
Ω

≥ − + −   

with  

 
( )1/2

2

0 2

d

A

y

I mb
ν Ω

Ω
=

−

∫  

2
0 0k gρ β ν−  being positive if gβ  is sufficiently small, we have 

 ( )Q , 0
χ

ζ ζ ≥ ,  equal to zero only for 0u = , 0xU = . 

But since ( )0J∈ Ω


U , we have 0yU
y

∂
=

∂  
in the sense of distributions and it is 

known [16, p. 57] that yU  is absolutely continuous function on each parallel to 
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Ox limited to S , that has almost everywhere a derivative equal to zero. Since 

0⋅ =


U n on S , we have 0yU = and then 0=


U . 

Q,  and therefore C,  is positive definite. 

Seeking the solution of (8.2) in the form 

 ( ) ( )., e .ttη ηΛ= , 

we obtain  

 2Cη η= −Λ  
C , being self-adjoint, has a real spectrum. Since it is positive definite, this 

spectrum lies on the positive real semi-axis. Therefore, 2−Λ  is real positive and 

we can set iωΛ = , ω  real, according to the calculations in the paragraph 7. 
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