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Abstract 

Natural convection with Soret and radiation effects in a binary fluid saturating a 

horizontal porous layer under the influence of magnetic field is investigated. 

Adopting the Rosseland approximation for the radiative flux, the onset of 

instability is studied using the linear stability analysis. The result shows that the 

radiation absorption parameter delayed the onset of instability with higher values 

leading to greater stabilization of the system. The Soret parameter has significant 

effect on convective instability and this is discussed. In the absence of the 

magnetic field, the effects of the results obtained are more significant. Effects of 

other governing parameters are quantitatively discussed.  
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1 Introduction 
Growing interest in the study of double-diffusive convection in porous 

media has been motivated by its wide range of applications. These include 

migration of solutes in water-saturated soils, migration of moisture through air 

contained in fibrous insulations, multi-component melts, storage of nuclear wastes, 

disposal of waste materials, grain-storage installation and others.  

Early studies on the phenomenon of double-diffusive convection are 

concerned with onset of motion in a horizontal porous layer. On the basis of linear 

stability theory [1, 2, 3] investigated the onset of double-diffusive convection in a 

horizontal porous layer. Criteria for the existence of steady and oscillatory 

convection were derived by these authors.  The effect of inclined temperature 

gradient on thermosolutal instability has been investigated by [4]. Review of 

convection with inclined temperature gradients can also be found in [5. 6, 7]. 

Using linear stability analysis [8] considered onset of thermosolutal convection in 

a horizontal porous layer subject to fixed temperatures and chemical equilibrium 

on the bounding surfaces when the solubility of the dissolved component depends 

on temperature. Their result shows that the reactive term may be stabilizing or 

destabilizing with subtle effects particularly when the thermal gradient is 

destabilizing but the solutal gradient is stabilizing.  

The study of convective flow taking into account Soret effect has also been 

considered by authors. The fact that Soret effect can give rise to overstable 

solutions has been demonstrated experimentally by [9]. Soret effect on the linear 

stability of a fluid mixture in a porous medium in the presence of temperature 

gradient was investigated in which the temperature gradient was assumed to vary 

periodically with respect to time by [10] while [11] reported the study on 
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analytical and numerical study of double-diffusive and Soret-induced convection 

in a horizontal porous layer. [12] have considered the combined effect of 

thermodiffusion and lateral heating on double-diffusive natural convection in a 

horizontal porous layer filled with a binary fluid and subjected to uniform fluxes 

of heat and mass on its long sides. Their results show that the heat transfer is 

considerably affected by the Soret effect.  

Many processes in engineering occur at high temperatures and the 

knowledge of radiative heat transfer becomes essential. The first study on the 

mixed free-forced flow of a radiating gas between two vertical plates using the 

small optical thickness approximation was carried out by [13]; while [14] studied 

radiation effects on MHD free convection of a gas past a semi-infinite vertical 

plate. For optical thick fluids where self absorption exists, the Rosseland 

approximation was used to describe the radiative heat flux in the energy equation.  

In this work, we adopt the classical linear stability theory [15] and the 

Rosseland differential approximation for the radiation absorption [16] to 

investigate magnets-thermosolutal instability where the buoyancy forces in the 

binary mixture are driven by Soret and double-diffusive convections. 

 

 

2 Mathematical Formulation 
We consider a laterally infinite horizontal porous layer of height H filled with 

binary fluid which is electrically conducting and bound between two impermeable 

parallel plates as shown in Figure 1. 

Different temperature and concentration are imposed between the bottom 

),( 11 CT  and the top ),( 22 CT respectively. We apply a magnetic field of 

magnitude B0 perpendicular to the plates. The binary fluid is assumed to be 

Newtonian and incompressible and to satisfy the Boussinesq approximation. Thus 

the density variation with temperature and concentration is described by the state 

equation.  
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Figure 1: Geometry of the problem. 
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where 0ρ  is the density of the fluid mixture at 0TT =  and 0CC = , and where 

T0 and 0C  are the initial temperature and solutal mass concentration inside the 

fluid layer respectively, CT and ββ  are the thermal and concentration expansion 

coefficients respectively. We consider the grey, absorbing/emitting characteristic 

of the fluid radiating in a non-scattering medium for which the optically thick 

approximation is valid. Thus under the consideration above, the governing 

equation are: 

  0. =
′

∇′V  

 
( )

( )

2
0 0 0

2
0 0 0

' ' ' ' ' '
'

' '

T z

C z

V V V P V g T T e
t

Vg C C e B V
k

ρ µ β ρ

β ρ µ σ

∧

∧

 ∂ ′ ′ ′+ ∇ = −∇ + ∇ − − ∂ 

′ ′+ − − −

              
(3)

 

  2
0

' ' ' ' ' .
' r

TC V T k T q
tρρ ∂  ′ ′ ′+ ∇ = ∇ − ∇ ∂ 

                               (4) 

  ( )2 * 2
0

' ' ' ' ' '
'

Ck V C D C D C T
t

ν∂  ′ ′+ ∇ = ∇ + ∇ ∂ 
                       (5) 

where  *,, DandDκ  are thermal conductivity mass diffusivity of species and 

B0 

H 

g 

  0 

   

 
   

    

 



C. Israel-Cookey and E. Amos                                             75 

thermo-diffusion coefficients respectively. Also g is the acceleration due to 

gravity, 







=

0ρ
µν  is the kinematic viscosity, 'V is the velocity vector, ρ′  is the 

pressure, 
∧

ze  is a unit vector in the upward direction, rq'  is the radiative flux, 

00 '' TandC  are dimensional solutal mass concentration and temperature 

respectively at the centre of the cavity, σ is electrical conductivity.  

The boundary conditions are 

 11 ',',0' CCTTV ===  at  
2
Hz =                  (6) 

 22 ',',0' CCTTV ===  at  
2
Hz =  

For optically thick fluids where self – absorption exists, the Rosseland 

approximation is adopted for the radiative heat flux in the energy equation as [17] 

  
δ
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where *σ  is the Stephen – Boltzmann constant, δ  is the mean absorption 

coefficient. We now assume that the temperature differences within the fluid and 

the porous medium is sufficiently small such that 4T  may be expressed as a 

Linear function of temperature about a free stream temperature 0T  using Taylor’s 

expansion and neglecting higher order terms we yields  
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Substituting Equation (9) into Equation (4) the energy equation becomes  
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 We introduce the following non-dimensional variables into equations  
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(2) , (3) , (5), (6)  and (9) 
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Under these non-dimensional variables, the governing equations now take the 

form 

  0. =∇V                               (12) 
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where TR  is the thermal Rayleigh number, cR  the solutal Rayleigh number, Pr

the Prandtl number, Le  the Lewis number, S , the Soret parameter, ,2M the 

magnetic parameter, and 2χ , the porosity parameter.  

The boundary conditions are 

   1 1 10, , .
2 2 2

C at zθ= =± =± =V                 (16) 
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3 Linear Stability Analysis  

3.1 Basic state and flow linearization 

The basic state of the system is given by the static solution 0=V  of 

equation (12) - (16). Thus the static temperature, sT , solutal mass concentration, 

sC and pressure, sP are given by 
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The solutions to the equations (17) subject to (18) are 
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To access the stability of the steady state, we let the initial solutions described by 

equations (19) be slightly perturbed. Thus, we define a perturbation of the form 

[18] 

     θθ +=+= STwvuV ,),,(0 , CCC S += , PPP S += ,      (20) 

Upon substituting these perturbations into the non-dimensional equations 

(12) – (15) and neglecting the products of disturbances, the linearized perturbation 

equation are obtained as 
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now with the boundary condition  

    1 10, .
2 2

w C at zθ= = =±            (25) 

Proceeding on the analysis, we reduce equation (22) to a scalar equation by 

taking the double curl of it, using the equation of continuity (equation 21) and 

keeping only the vertical component of the velocity yields. 
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=∇  is the Laplacian operator in the horizontal plate. 

 

 

3.2 The dispersion relation  

We next examine the reaction of the system to all possible disturbances. This 

can be accomplished by expressing an arbitrary disturbance as a superposition of 

certain modes. Accordingly following [18], we apply the normal mode 

representation of the form 
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Where CR iΩ+Ω=Ω  is complex and CR ΩΩ ,  are real numbers. Substituting 

equation (27) into equation (22), (23), (24) and (25), we obtain 

    ( ) WaD αα −=ΘΩ−− 22      (28)    

2 2 2 2( ) WD a S D a
Le Le

ϕΩ − − = − Θ− 
 

                            (29) 

   ( )( )2 2 2 2 2 2 2 21 1 0
Pr PrT CD a D a M W a R R aχ ϕ− − − − −Ω − Θ+ =        (30)  

subject to 

    φ=Θ==0W   at   
2
1

±=z                (31a) 



C. Israel-Cookey and E. Amos                                             79 

   02 =WD  on a free surface          (31b) 

where 2a  is a wave number arising from the separation of variables.   

Next we reduce the system (28) – (30) to a single scalar equation by 

eliminating Θ  and φ  to obtain 
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For the dispersion relation (32) in which the boundary condition (33) holds, 

we assume the solution of (33) for the lowest state in the form [15] 

    0W w Sin zπ= , aw0  constant             (34) 

Substituting equation (34) into (32) and simplifying for TR  we obtain  

))(
1
Pr)(

)(()1(

22
2

222

22222

222

2

Le
a

R
aM

aa

Le
aa

RRT

Ω
++

+
Ω

++Ω+

++++






 Ω

++

+
=

ππ

χππ
π                   

)(
11Pr

22
2

2

2
22

2

a
R
Ra

R
Pa

Le
Ra crc +

+
+








+
Ω

+++ ππ                    (35) 

The transition from stability to instability occurs via a stationary state. Thus 

to study the case of marginal stability which corresponds to stationary convection, 

we set 0=Ω  in Equation (35) to obtain  
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4 Results and discussion 

Let caa =  and the corresponding thermal Rayleigh number be TcriR  in 

Equation (36) then we have 
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where ca  is the critical wave number and TcriR  is the critical thermal Rayleigh 

number. The critical wave number for the onset of instability is therefore 

determined by the condition [15] 

 0=
∂
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a
c
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a
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Using condition (38) on Equation (37) and simplifying yields the following sixth 

order polynomial in 2
ca   

( ) 0)Pr3(Pr2 6224242226 =++−+++ πππχχπ rcc PMaMa     (39) 

In order to compare our solutions with those in the literature we choose 

12.0=χ and 1.0=M and solve the sixth order polynomial equation (39) using 

the software mathematica [19]. The solution yield six roots of which only one 

( )22236.2=ca is real and positive. This is in agreement with the Rayleigh-Bernard 

problem of [15].  

In order to understand the physical situation of the problem, we computed 

the numerical value of the critical wave number for the onset of instability for 

various values of the radiation parameter, R , the porosity parameter, χ , the 

magnetic parameter, M , the Lewis number, Le, and the Soret parameter, S .                      
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Figure 2:  Influence of radiation on the onset of instability for     

               𝜒 = 0.2,𝑀 = 0.2, 𝐿𝑒 = 1, 𝑆 = 1, 𝑃𝑟 = 1. 

 

 

Figure 2 shows numerically computed results for 0.2, 0.2, 1M Leχ = = =

and 1S =  for various values of R. It is observed that as R increases, the onset of 

instability is delayed. Higher values of the radiation parameter, R leads to greater 

stabilization of the system. In Figure 3, we, computed the results with 1=R , 

1,1,2.0 === SLeχ , while M varies. It is noted that as M increases the values of 

the thermal Rayleigh number increases thereby stabilizing the system. Greater 

stabilization is achieved at higher values of the magnetic parameter. Thus the 

onset of instability is delayed by the magnetic parameter. Figure 4 shows the 

graph of numerically computed results for 1,1,1 === SMR  for various values 

of χ . 
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Figure 3:  Influence of magnetic field on the onset of instability for    

               𝜒 = 0.2, 𝑅 = 1, 𝐿𝑒 = 1, 𝑆 = 1, 𝑃𝑟 = 1. 
 

 

 
Figure 4:  Influence of porosity on the onset of instability for    

         𝐿𝑒 = 1, 𝑅 = 1, 𝑆 = 1, 𝑃𝑟 = 1. 
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Table 1: Influence of the Lewis number on the onset of instability for    

             𝜒 = 0.2, 𝑅 = 1,𝑀 = 1, 𝑆 = 1 and  𝑃𝑟 = 1 

  𝑎 𝐿𝑒 = 0  𝐿𝑒 = 1  𝐿𝑒 = 5   𝐿𝑒 = 10 

1.0 2839.91 2837.06 2835.34 2834.77 

1.2 2219.61 2216.75 2215.04 2214.46 

1.4 1863.44 1860.58 1858.86 1858.29 

1.6 1651.49 1648.63 1646.91 1646.34 

1.8 1526.81 1523.95 1522.24 1521.67 

2.0 1459.76 1456.91 1455.19 1454.62 

2.2 1433.89 1431.03 1429.32 1428.75 

2.4 1439.65 1436.79 1435.08 1434.50 

2.6 1471.40 1468.54 1466.83 1466.26 

2.8 1525.83 1522.97 1521.26 1520.68 

3.0 1601.06 1598.2 1596.49 1595.92 

3.2 1696.19 1693.33 1691.62 1691.04 

3.4 1810.95 1808.09 1806.38 1805.81 

3.6 1945.56 1942.71 1940.99 1940.42 

3.8 2100.58 2097.72 2096.01 2095.44 

4.0 2276.83 2273.97 2272.25 2271.68 

4.2 2475.34 2472.49 2470.77 2470.20 

4.4 2697.35 2694.49 2692.78 2692.21 

4.6 2944.22 2941.36 2939.65 2939.08 

4.8 3217.45 3214.60 3212.88 3212.31 

5.0 3518.68 3515.83 3514.11 3513.54 
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Table 2: Influence of Soret on the onset of instability for               

      𝜒 = 0.2, 𝑅 = 1,𝑀 = 1, 𝑃𝑟 = 1 and 𝐿𝑒 = 1. 

𝑎 𝑆 = 0 𝑆 = 0.25 𝑆 = 0.5 𝑆 = 0.75 𝑆 = 1 

1.0 2819.91 2824.91 2829.91 2834.91 2839.91 

1.2 2199.61 2204.61 2209.61 2214.61 2219.61 

1.4 1843.44 1848.44 1853.44 1858.44 1863.44 

1.6 1631.49 1636.49 1641.49 1646.49 1651.49 

1.8 1506.81 1511.81 1516.81 1521.81 1526.81 

2.0 1439.76 1444.76 1449.76 1454.76 1459.76 

2.2 1413.89 1418.89 1423.89 1428.89 1433.89 

2.4 1419.65 1424.65 1429.65 1434.65 1439.65 

2.6 1451.40 1456.40 1461.40 1466.40 1471.40 

2.8 1505.83 1510.83 1515.83 1520.83 1525.83 

3.0 1581.06 1586.06 1591.06 1596.06 1601.06 

3.2 1676.19 1681.19 1686.19 1691.19 1696.19 

3.4 1790.95 1795.95 1800.95 1805.95 1810.95 

3.6 1925.56 1930.56 1935.56 1940.56 1945.56 

3.8 2080.58 2085.58 2090.58 2095.58 2100.58 

4.0 2256.83 2261.83 2266.83 2271.83 2276.83 

4.2 2455.34 2460.34 2465.34 2470.34 2475.34 

4.4 2677.35 2682.35 2687.35 2692.35 2697.35 

4.6 2924.22 2929.22 2934.22 2939.22 2944.22 

4.8 3197.45 3202.45 3207.45 3212.45 3217.45 

5.0 3498.68 3503.68 3508.68 3513.68 3518.68 
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It is noted that greater stabilization is achieved as χ  increases. This again, 

delayed the onset of instability. We further performed numerical evaluations for 

the thermal Rayleigh number using 1,1,2.0,1 ==== SMR χ  for various values 

of ,Le  and the result displayed in Table 1. It is noted that increase in values of 

,Le  increases the onset of instability. Table 2 shows the effect of the Soret 

parameter on the onset of instability. The numerically computed results were done 

with 1, 0.2, 1R Mχ= = =  and 1Le= . It is observed that increase in the Soret 

parameter delay the onset of instability. The variation increases with lower values 

of the magnetic parameter. In the absence of the magnetic parameter, the 

stabilizing effect of the Soret parameter is more significant.  

 

 

5  Conclusion 

Natural convection of a binary fluid saturating a horizontal porous medium 

under the influence of radiation, Soret and magnetic field is investigated. This 

study show that linear stability analyses successfully captures the processes 

around the onset of instability and in particular that the critical wave number does 

not depend on the radiation parameter.  

While the results presented here were obtained for a rather idealized geometry, 

we expect our qualitative findings to be more widely applicable. From a particular 

point of view, the key implication of our results is that when simulating 

geothermal system where the onset of convection may substantially increase the 

heat flux in the system; our result suggest that magnetic stabilization on the 

process could be very important. The main results show that increases in the 

radiation, Soret, porosity and magnetic parameters delay the onset of instability 

with higher values of the parameters leading to greater stabilization of the system 

while increases in the Lewis number increases the onset of instability.  
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