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Sequential Estimation of the Mean of a Class   

of Skewed Distributions   
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Abstract 

In this paper, we propose a sequential procedure )ˆ,( tt µ for estimating the mean, µ,  

of a class of  skewed probability density functions, subject to the loss 

function ,)ˆ( 22 taL ta +−= µµ where a is a given positive number, t is a stopping 

time of the type proposed by Robbins (1959) and tµ̂  is a bias-corrected estimator 

of µ. We provide a second-order asymptotic expansion, as a → ∞, for the regret 

with respect to the loss La. For the Pareto and Skew-uniform distributions, the 

proposed sequential procedure )ˆ,( tt µ performs better than the procedure 

),,( tXt in the sense that it has a lower asymptotic regret. Moreover, the regret is 

negative for large values of a under the Gamma, Pareto, Rayleigh and 

Skew-uniform distributions. Using the loss considered by Chow and Yu (1981) 

and Martinsek (1988), we propose a bias-corrected estimator of µ and provide a 

second-order asymptotic expansion, as a → ∞, for the incurred regret. 
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1  Introduction  
Let X1, X2, … be independent random variables with common probability 

density function )(xfθ , where the value of θ is unknown, but lies in some 

interval Ω ⊂ (-∞, ∞).  Suppose that X1, X2, … are to be observed sequentially up 

to stage n at a cost of one unit per observation and that when observation is 

terminated, the population mean  

( )xf x dxθµ
∞

−∞

= ∫  

is estimated by an appropriate estimator, nµ̂ , and the loss incurred is of the form 

                                                               

                    ,)ˆ(),ˆ( 22 naL nna +−= µµθµ                      (1) 

where a is a known positive number, determined by the cost of estimation relative 

to the cost of a single observation.  Robbins (1959) proposed the sequential  

procedure ),,( tXt which stops the sampling process after observing X1, …, Xt and 

estimates µ by ,ˆ tt X=µ where 
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with ma being a positive integer.   

 

Let C  denote the class of skewed probability density functions, ),(xfθ  

, Ω∈θ for which the skewness is independent of θ.  This class contains, among 
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others, the density functions of the following distributions: 

1- GAMMA(α, θ): the Gamma distribution with known shape parameter α and  

  scale parameter β  = θ.  Its density function is  

  0 ,
)(

1)( /1 >
Γ

= − xexxf x θα
αθ αθ

 and its  skewness is 2γ
α

= . 

 

2- PARETO(α, θ): the Pareto distribution with known shape parameter α > 0     

  and scale parameter β = θ.  Its density function is θαθ
α

α

θ ≥=
+

x
x

xf  ,)( 1
 and its  

  skewness is 
α

α
α

αγ 2
3

)1(2 −
−
+

=  for α > 3. 

 

3- RAYLEIGH(θ): the Rayleigh distribution with shape parameter α =θ.  Its  

  density function is 0 ,)( 2

2

2
2 >=

−
xexxf

x
θ

θ θ
and its skewness is .

)4(
)3(2

2/3π
ππ

γ
−

−
=  

 

4- SKEWUNIFORM(λ,θ): the Skew-uniform distribution with known λ and  

  unknown θ.  Its density function is  ],}},,[max{min{1)( 2 θθθλ
θθ +−= xxf   

  for θθ <<− x  and its skewness is 2/32

2

)3(5
)95(2

λ
λλγ
−

−
=  for .33 <<− λ  

 

 In this paper, we propose a bias-corrected estimator tµ̂  of µ. and provide a 

second-order asymptotic expansion, as a → ∞, for the regret )ˆ,( ta tr µ  with 

respect to the loss defined by (1). It is seen that the asymptotic regret is negative 

for the Gamma, Pareto, Rayleigh and Skew-uniform distributions.  We also 

provide second-order asymptotic expansion, as a → ∞, for the regret with respect 

to the more general loss function considered by Chow and Yu (1981) and 

Martinsek (1988). 
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In the Normal case, Starr and Woodroofe (1969) showed that )1(),( OXtr ta =  

as a → ∞. Woodroofe (1977) showed that )1(5.0),( oXtr ta += as a → ∞ if ma ≥ 4.   

For the Gamma and Poisson cases, Starr and Woodroofe (1972) and Vardi (1979) 

obtained bounded regret using stopping times different from the one in (2).  For 

the distribution-free case, Ghosh and Mukhopadhyay (1979) and Chow and Yu 

(1981) established asymptotic risk efficiency based on (2) under certain conditions. 

Tahir (1989) proposed a class of bias-reduction estimators of the mean of the 

one-parameter exponential family and provided a second order approximation for 

the regret. 

 

 

2  Preliminary Notes 

Let t be as in (2).  Martinsek (1988) indicated that  

                     





+−=

a
o

a
XE t

1
2

][ γµ                         (3) 

as a → ∞, provided that E[|X1|8+p] < ∞ for some p > 0, where γ denotes the 

population skewness;  that is, ])[( 3
1

3 µσγ −= − XE , where σ is the population 

standard deviation. Thus, tX  is an asymptotically biased estimator of µ if  

∈)(xfθ C..  Consider the bias-corrected estimator 

                           
a

X nn 2
ˆ γµ +=                          (4) 

 for n ≥ 1.  Then, )1(]ˆ[ oE t += µµ  as a → ∞, by (3). 

 

In order to define the regret incurred by the sequential procedure )ˆ,( tt µ under the 

loss (1), we first assume that X1, …, Xn have been observed sequentially up to a 

predetermined stage n from a population with  density function ∈)(xfθ C. The 

risk incurred by estimating µ by (4), subject to the loss (1), is 
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This risk is minimized with respect to n by choosing n as the greatest integer less 

than or equal to na = aσ.  The minimum risk is  

4
2),()(

2
* γσθθ +== anRR aaa  

for a > 0.  Since σ is unknown, there is no fixed-sample-size procedure that 

attains the minimum risk in practice.  Therefore, we propose to use the sequential 

procedure ),ˆ,( tt µ  where t be as in (2).   The performance of this procedure is 

measured by its regret, which is defined below.  

 

Definition 2.1 The regret of the procedure )ˆ,( tt µ  under the loss (2) is defined as 

      
4

2])ˆ([)()]ˆ,([)ˆ,(
2

22* γσµµθµµ −−+−=−= ataERtLEtr tatata           (5) 

for a > 0.   

 

The stopping time t in (2) can be rewritten as 

         ,:inf
2/1
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where                         ∑
=

−=
n

i
nin XXV

1

2)(                    (6) 

for n ≥ 1.  Let atVtU ta −= − 2/1)/(  denote the excess over the stopping 

boundary. Chang and Hsiung (1979) showed that Ua converges in distribution to a 

random variable U as a → ∞. 
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Lemma 2.2.  Let t be as in (2). Then, σ→
a
t   w.p.1 as a → ∞. Moreover, If 

E[|X1|8+p] < ∞ for some p > 0, then 

)1()1(
8
35.0][ 4 oatE +−−−+= κσν  

as a → ∞, where ν =E[U] is the asymptotic mean of the excess over the boundary 

and ])[( 4
1

4 µσκ −= − XE  is the population kurtosis. 

Proof:  The first assertion follows from Lemma 1 of Chow and Robbins (1965). 

The second assertion is adopted from Chang and Hsiung (1979). 

 

 

3  Main Results  

3.1 Asymptotic regret under the loss (1) 

Let  X1, X2, … be as in Section 1.  The following theorem provides a  

second-order asymptotic expansion for the regret in (5). 

 

Theorem 3.1. Let t be defined by (2) with ma being such that δ√a ≤ ma = o(a) as a 

→ ∞ for some δ > 0.  For any probability density function )(xfθ ∈C   with 

respect to which E[|X1|8+p] < ∞ for some p > 0,  

)1(
2

275.075.2)ˆ,( 2 otr ta +−+−=
γγκµ    

as a → ∞. 

Proof:  Substituting (4) in (5) yields 

        
)][(),(               

)][(]2)([ )ˆ,( 22

µγ

µγσµµ

−+=

−+−+−=

tta

ttta

XEaXtr
XEaatXaEtr

        (7) 

for a > 0.  Moreover, 

    )1(2/)][( oXaE t +−=− γµ  and )1(275.075.2),( 2 oXtr ta ++−= γκ       (8)         
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as a → ∞, by (3) and Martinsek (1983).  Take the limit as a → ∞  in (7) and use  

(8) to complete the proof. 

   

The distributions considered in Tables 1-5 in Section 4 below are positively 

skewed, except for the Skew-uniform distribution with 
5

33 −<<− λ  and 

Skew-Laplace distribution with λ = 0.5. For Table 1, the minimum value of ρ* is 

75/28  ≈ 2.68, which is attained when α = 49.  The tables show that 

1- the sequential procedure )ˆ,( tt µ  is a clear improvement over the procedure  

  ),( tXt  since its asymptotic regret is lower, except for the Skew-uniform  

  distribution with λ = -1.4. 

2- the asymptotic regret of the procedure )ˆ,( tt µ  under the PARETO(5, θ) and  

  SKEWUNIFORM(λ, θ) distributions is negative; which means that, for large  

  values of  a that the procedure )ˆ,( tt µ performs better for these distributions  

  than the best fixed-sample-size procedure. 

 

 

3.2 Asymptotic regret under a more general loss function 

Let X1, X2, … be as in Section 1 and suppose that the loss function for 

estimating µ is of the form considered by Chow and Yu (1981) and Martinsek 

(1988); that is,                                                  

              naL nna +−= − 2*222* )(),( µµσθµ β                   (9) 

for  a > 0, where β  is a given positive number and *
nµ  is an estimator of µ.  If  

θ  is estimated by ,*
nn X=µ  Martinsek (1988) proposed to use the stopping 

time 
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and showed that the regret of the procedure ),( TXT under the loss (9) is 
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         (11) 

as a → ∞, provided that E[|X1|8+p] < ∞ for some p > 0.  Straightforward  

calculations yield that, for large values of a, 

1) ),(*
TXTr

a
is negative under the Gamma distribution with α = 0.5 if 0 < β < 0.1. 

2) ),(*
TXTr

a
is negative under the Pareto distribution with α = 5 if 0 < β < 1.24. 

Martinsek (1988) also indicated that 

                    





+−= − a

o
a

XE T
1

2
][ 1βσ

βγµ                       (12) 

as a → ∞.  Thus, if the distribution of X1 is not symmetric, then TX is biased for 

large values of a.   

 

Proposition 3.2: Suppose that γ  does not depend on θ and let 

ββ

βγµ /11/1
*

2 −+=
na

X nn  

for n ≥ 1, where β > 1.  Let T be defined by (10) with ma being such that δ√a ≤ 

ma = o(a) as a → ∞ for some δ > 0.  For any probability density function 

)(xfθ ∈C  with respect to which E[|X1|8+p] < ∞ for some p > 0,  

E[ *
Tµ ] = µ +o(1) as a → ∞. 

Proof: For a > 0, 

                .
2

][][
)/11(

*


















+−=−

−− ββγµµµ
a
TEXaEaE TT

             (13) 

Next, ββ σ −−− → 1)/11( ])/[( aTE as a → ∞ if β  > 1, by the fact that T/a → σβ 
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w.p.1 as a → ∞ and (2.2) of Martinsek (1983).  Taking the limit as a → ∞ in (13), 

using this fact and (12) yields the desired result. 

 

Let ),( **
TTr

a
µ denote the regret of the biased-corrected procedure 

),( *
TT µ under the loss (9). Then, 

( )

( )

* * 2 2 2 2 2 2 2 1/
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Lemma 3.3:  Let T be as in (3.2) with β > 1.  If E[|X1|8+p] < ∞ for some p > 0, 

then 
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Proof: First, observe that 
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for a > 0.  Moreover, 

                       )1(
2

][ 1 oXaE T +−=− −βσ
βγµ                   (16) 

as a → ∞,  by (12) .  Next,  expand g(y) = 1/y 1-1/β  at y = σβ, substitute y = a/T 

and multiply by ( )µ−TXa  to obtain 

            ),(11)(1 2/1
*1/11

/11

µσ
β

µ
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ββ

β
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− −

−−

−

TT Xa
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TTXa

T
a           (17) 

where *T is a random variable such that | *T - σβ| ≤ |T/a - σβ|. Next, rewrite T in 

as T = inf{ n ≥ ma: n(Vn/n)-β/2 > a}, where Vn is as in (6), and let 
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denote the excess over the stopping boundary. Expanding  h(y) = y-β/2 at y = σ2, 

substituting  y = VT/T and multiplying by T yields 
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for a > 0, where λT is a random variable between VT/T and σ2.  Furthermore, 
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Substituting (18) in (17) yields 

 

1 1/
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*1 1/ 1
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say.  Let ,1 nn XXS ++=   n ≥ 1.  Then, 
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→

as a → ∞, by Hölder’s inequality, the fact that *T  → σβ (| *T - σβ| ≤ |T/a - σβ|→ 

0 w.p.1 since T/a → σβ, as in the first assertion of Lemma 1), 
βσ
µ

a
TST − converges in 

distribution to a Standard Normal random variable by Anscombe’s theorem, the 

facts that ∞<→ ][][ 22 UEUE a and )1(][ 2 OE T =ξ  as a → ∞ and (2.3), (2.8) and 

(2.9) of Martinsek (1983).   To evaluate E[I2(a)], observe that 
22 2
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as a → ∞, by Anscombe’s theorem and the fact that *T  → σβ w.p.1 as  a → ∞, 

where Z is a random variable having the Standard Normal distribution.  Thus,        

                   1 2
2[ ( )] 4 (1)E I a oβσ −= +                         (22) 

as a → ∞, by (21) and (2.3) and (2.4) of Martinsek (1983).  Taking expectation 

in (19) and using (20) and (22) yields             

                ( )
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1 1/ 1 2 1

1 2(1 ) (1)T
aE a X o
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β β β

βµ
σ σ

−

− − +

   −
− − = +  

  
        (23) 

as a → ∞.  The lemma follows by taking the limit, as a → ∞, in (15) and using 

(23) and (16). 
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Theorem 3.4: Let T be defined by (3.2) with ma being such that δ√a ≤ ma = o(a) 

as a → ∞ for some δ > 0 and β > 1.   Then, for any probability density function 

)(xfθ ∈ C    with respect to which E[|X1|8+p] < ∞ for some p > 0,  

)1(
42
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44

3),(
222

3
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** oTr Ta

++−
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+++
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γγβ
σ

γββγββκββββµ    

as a → ∞. 

Proof:  The theorem follows by taking the limit, as a → ∞, in (14) and using 

(11), Lemma 3.3 and the fact that 

)1(1
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β

σ
 

as a → ∞ if β  > 1, by the fact that T/a → σβ w.p.1 as a → ∞ (see the first 

assertion of Lemma 2.2) and (2.2) of Martinsek (1983) . 

 

 

4  Tables 
The tables below show the values of ρ and ρ* for certain skewed 

distributions, where 
2

* γρρ −=  is the asymptotic regret incurred by the procedure 

)ˆ,( tt µ  and 2275.075.2 γκρ +−=  represents the asymptotic regret incurred by the 

procedure ),( tXt .   

 

Table 1: GAMMA(α, θ) with known α 

γ κ ρ ρ* 

α
2  

α
6  α

5.375.2 +  
αα
15.375.2 −+  
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Table 2: PARETO(5, θ) 

γ κ ρ ρ* 

6476.42
3

)1(2
=

−
−
+

α
α

α
α  8.733

)4)(3(
)26(6 23

=+
−−
−−+

ααα
ααα  -9.4 -11.7238 

 

Table 3: RAYLEIGH(θ) 

γ κ ρ ρ* 

6311.0
)4(

)3(2
2/3 =

−
−

π
ππ  2451.3

)4(
162463 2

2

=
−

+−
−

π
ππ

 1.11245 0.7969 

 

 

Table 4: SKEW-UNIFORM(λ, θ) with λ = -1.4 and λ = 1.35 

2/32

2

)3(5
)95(2

λ
λλγ
−

−
=  2/32

2

)3(5
)95(2

λ
λλκ
−

−
=  ρ ρ* 

 γ < 0  

 if 






∪






 −−∈
5

3,0
5

3,3λ  

 γ > 0 if 0
5

3
<<− λ  

0>κ  

if 33 <<− λ  

-29.9109  

(λ = -1.4) 

-0.7671 

(λ = 1.35) 

-29.6997 

(λ = -1.4) 

-0.7909 

(λ = 1.35) 
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5  Conclusion 

We have proposed a bias-corrected estimator of the mean of a class of  

skewed probability density functions and provided a second-order asymptotic 

expansion for the regret under the squared error loss. The results indicate that the 

proposed procedure performs better than the best fixed-sample-size procedure 

when the observations are taken from the Gamma, Pareto, Rayleigh or 

Skew-uniform distribution.  For a more general loss function, we have proposed 

bias-corrected estimator of the mean and provided a second-order asymptotic 

expansion for the incurred regret. 
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