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Abstract 

Breast cancer is the most common form of cancer among women. Since 
1945 the number of cases has almost doubled. However, since 1990 the 
survival rate has improved significantly.   
The literature discusses models of the age distribution of breast cancer 
mortality developed on the basis of a two-disease theory of breast cancer 
incidence called Clemmensen’s hook. 
On the basis of Danish data on the death rate from breast cancer the 
existence of Clemmensen’s hook is discussed critically.  
A model encompassing five discussed studies on the subject is developed. 
When the cohort effects are included in the model, the two-disease theory 
for breast cancer disappears. 
The paper concludes that Clemmensen’s hook does not exist as the 
overlapping of two curves corresponding to pre- and post-menopausal 
tumors for breast cancer, respectively. 

 

Mathematics Subject Classification: Statistics; numerical analysis; special 

functions 

Keywords: Cohort effects; Clemmensen’s hook; breast cancer; age-period-

cohort model 

 

1 University of Southern Denmark. E-mail: guk@sam.sdu.dk 
  
 Article Info: Received : April 1, 2014. Revised : May 2, 2014. 
                      Published online : May 15, 2014. 

                                                 

mailto:guk@sam.sdu.dk


16                                  Testing ‘Clemmensen’s hook’ in the death rate from breast cancer 

1  Introduction 
Breast cancer is the most common form of cancer among women. Since 

1945 the number of cases has doubled in Denmark. However, since 1990 the 
survival rate has improved significantly in the western world. Today, in 
summary, about 85% of the breast cancer patients are still free from breast 
cancer five years after treatment.   

The purpose of this article is to create an econometric model to make a 
prognosis for the development in the death rate from breast cancer. In that 
context, the  literature has argued for the existence of a Clemmensen’s hook in 
the modeling of death rates from breast cancer over lifetime. The model 
developed here questions its existence.  
Manton and Stallard [10] interpret Clemmensen’s hook as a result of breast 
cancer being two separate diseases. The curve indicating the death rate for 
breast cancer is thus interpreted as the overlapping of two curves corresponding 
to pre- and post-menopausal tumors, respectively. 
Clayton and Schifflers [3, 4] talk about Clemmensen’s hook as follows: “The 
age curve [of death rates] shows the phenomenon of Clemmensen’s hook; rates 
increase to a maximum at 50-54 then fall back slightly before continuing their 
upward trend from the age of 65 onwards”.  
Likewise, Cayuela et al. [2] mention that Clemmensen’s hook “has been 
observed in different countries with reference to both incidence and mortality 
and is interpreted as the overlapping of two curves corresponding to pre- and 
post-menopausal tumors, respectively. 

However, in more recent studies we see that Clemmensen’s hook 
disappears. 
Bouchardy et al. [1] write that “the typical age incidence curve of breast cancer 
described a progressive increase of risk with age, with a slope down around the 
menopause age, called Clemmensen’s hook. This typical curve by age is no 
longer observed in Geneva …”.  
Similarly, Fuglede et al. [5] conclude that “important changes over the past 
decade in the age-specific incidence pattern of breast cancer in particular 
around the time of menopause [commonly denoted Clemmensen’s hook] were 
indicated.” 

For a better description of the development of breast cancer over the 
lifecycle of women this article will present an econometric age-period-cohort 
model to test the existence of a Clemmensen’s hook in the death rate from 
breast cancer based on Danish data. The method is based on Kristensen [9] 
including secular cohort effects. For a discussion of the age-period-cohort 
models see also Clayton and Schifflers [3, 4], Holford [7], Osmond and 
Gardner [11], and Rostgaard et al. [12]. 
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2  Data 
The Danish data on the death rate from breast cancer are obtained from: 

The Danish Health and Medicines Authority (Statens Serum Institut): “Cancer 
in breast”, B-020. In principle, the present article is based on the total dataset 
for deaths from breast cancer in Denmark 1977-2012. The explanatory 
variables are:  

 
 T  period (or year), 1960 = 1 
 Age  age at death 

 Dbc  actual death rate from breast cancer. Dbc is shown 
in Figure 1. 
 CohBorn cohort indicated by the year of birth of the youngest 
person(s) in an age group. The cohort is followed by a dummy equal to one 
following an age group diagonal over period and age. 
 B Age            vector for age specific cohort coefficients that 
express protective and detrimental effects according to year of birth. This 
vector can with good reason be seen as the “susceptibility parameter s as 
systematically varying with birth cohorts” as mentioned by Manton and 
Stallard [10]. 

 
The article applies 5-year age groups. From the age group 30-34 to the age 

group 85+ there are no years in which the death rate is zero in the Danish data. 
Simplified, 30 indicates the age group 30-34, and similarly 35 indicates the age 
group 35-39, etc. In the empirical estimations the youngest included cohort 30-
34 (where the youngest member was 30 years old) started in 1977. The age-
specific death rate from breast cancer is shown in Figure 1. 

Looking back, the death rate was increasing from 1945 onwards. For 
women in the age group 55-59 the highest death rate was reached in 1992. That 
is, the death rate in that age group was (in the data set) increasing in the period 
1977-1992 and declining from 1992. For women in the age group 65-69 the 
highest death rate was reached in 2000 and started declining after 2000. No real 
decline is seen in the age groups above 80. 
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Figure 1:  Death rate from breast cancer in Denmark 1977-2012 distributed               
                 into 5-year age groups from 30-34 to 85+. 
 

 
 
3  Model for death rates 

The above- mentioned articles talk about the death rate from breast cancer 
being exponentially increasing with age. Simplified and in the present notation 
that is: 

 Dbc = αe 1Ageα                    (1) 

The “new mortality trend” (Gavrilova and Gavrilov, [6]), which lets the death 
rate curve at all ages decline with almost the same percentage, was added to 
equation (1) in a semi- logarithmic version: 

 Log(Dbc) = α 0  + α 1  Age - α 2 T                 (2) 

This formula was the basis for developing equation (3). 
The equation for the death rate from breast cancer including the cohort effects 
is: 
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 Log(Dbc) =  α 1 /Age  + α 2 Age + α 3 Age 2    
                 + α 4 /T + α 5 Age/T 2  + α 6 Age 2 /T 3   
                + β 1 Coh1892 + β 2 Coh1893 +…..+ β 91 Coh1982                         (3) 

There is no constant element (origo regression), and therefore we can use 
dummies for the entire period 1892-1982. The equation was estimated by WLS 
using Age as weight. 

Log(Dbc)*Age =   α 1   + α 2 Age 2   + α 3 Age 3   
            + α 4 Age/T + α 5 Age 2 /T 2  + α 6 Age 3 /T 3  
             + β 1 Coh1892*Age + β 2 Coh1893*Age +…. 
                             .+ β 91 Coh1982*Age                                                         (4) 

A new time series, formed by the beta coefficients in (4) from β 1  to β 91 , in total 
91 observations, is shown in Figure 2. B Є{ β 1 , β 2 , β 3 ……… β 91 }. 
The cohort coefficients relating to earlier and recent periods are based on fewer 
age-specific rates and are hence less reliable than in the central period. Thus, 
we see the central period 1932-1952 as having the lowest variance.   

  The beta coefficients (the cohort effects) can be seen as related to age 
groups as shown below in Table 1. Applied for forecasting, the middle of Table 
1 shows in the estimated.  
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Figure 2: The estimated beta coefficients from equation (4) seen as a time 
series. 
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Table 1. The β coefficients seen as time series variables 
          
Age 30 35 40 ::

: 
65 70 75 80 85

+ 
          
Year\B
Age   

B
30   

B
35   

B
40   

::
: 

B
65  

B
70    

B
75  

B
80    

B
85   

          
Ex post 
fc 

         

          
1965 β

44  
β
39  

β
34  

::
: 

β 9  β 4  na na na 

:::          
1971 β

50  
β
45  

β
40  

::
: 

β
15  

β
10  

β 5  na na 

1972 β
51  

β
46  

β
41  

::
: 

β
16  

β
11  

β 6  β 1  na 

1973 β
52  

β
47  

β
42  

::
: 

β
17  

β
12  

β 7  β 2  na 

1974 β
53  

β
48  

β
43  

::
: 

β
18  

β
13  

β 8  β 3  na 

1975 β
54  

β
49  

β
44  

::
: 

β
19  

β
14  

β 9  β 4  na 

1976 β
54  

β
50  

β
45  

::
: 

β
20  

β
15  

β
10  

β 5  na 

          
Estimat
ed 

         

          
1977 β

56  
β
51  

β
46  

::
: 

β
21  

β
16  

β
11  

β 6  β 1  

1978 β
57  

β
52  

β
47  

::
: 

β
22  

β
17  

β
12  

β 7  β 2  

1979 β
58  

β
53  

β
48  

::
: 

β
23  

β
18  

β
13  

β 8  β 3  

1980 β
59  

β
54  

β
49  

::
: 

β
24  

β
19  

β
14  

β 9  β 4  

::: ::: ::: ::: ::
: 

::: ::: ::: ::: ::: 

2011 β β β :: β β β β β
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90  85  80  : 
55  50  45  40  35  

2012 β
91  

β
86  

β
81  

::
: 

β
56  

β
51  

β
46  

β
41  

β
36  

          
Ex ante 
fc 

         

          
2013 na β

87   
β
82  

::
: 

β
57   

β
52  

β
47  

β
42  

β
37  

2014 na β
88  

β
83  

::
: 

β
58  

β
53  

β
48  

β
43  

β
38  

2015 na β
89  

β
84  

::
: 

β
59  

β
54  

β
49  

β
44  

β
39  

2016 na β
90  

β
85  

::
: 

β
60  

β
55  

β
50  

β
45  

β
40  

2017 na β
91  

β
86  

::
: 

β
61  

β
56  

β
51  

β
46  

β
41  

2018 na na β
87  

::
: 

β
62  

β
57  

β
52  

β
47  

β
42  

::::          
2022 na na β

91  
::
: 

β
66  

β
61  

β
56  

β
51  

β
46  

 
 

beta coefficients. Above “Ex post fc” shows the estimated coefficients as 
applied in ex post forecasts. Below “Ex ante fc” shows the estimated 
coefficients applied in ex ante forecasts.  

We cannot say anything for β x > β 91  or β y < β 1 . However, for the 
individual age groups we can, within limits, make ex ante and ex post forecasts.  
The origo (English: origin) for the cohort coefficients is age group 85+ in 1977. 
For simplicity, we treat it as an age group 85-89.  
From origo you can go back in time:   1977- 85 = 1892 (the 
oldest born 1888). 
From 2012 the age group 30-34 reaches back to:  2012- 85 = 1927 (the 
oldest born 1922).   
From origo you can go forward in time:    1977+85 = 2062 (the 
oldest born 2066). 
 

Figure 3 shows the estimated data distributed on age groups, the middle 
group in Table 1. When ex post and ex ante beta values are included for the 
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individual age groups, all curves are identical for the individual age groups and 
equal to the beta coefficient curve in Figure 2. 

 
 
4  Ex post and ex ante forecast  

Forecasts become increasingly unsure when moving away from actual data. 
The ex-post forecast is therefore limited to 1972, and the ex-ante forecast is 
limited to 2022. Likewise, it is not convenient to apply very high (e.g. 2022) or 
negative values of T because T 2  and T 3  will then get different signs. 
Consequently, T=1 for 1960 was applied. 
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Figure 3: The estimated beta coefficients related to age groups 
 

 

An irreversible decline in the death rate from breast cancer is estimated to 
start in 2014 for the age group 80-84, and in 2015 for the age group 85+.  
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4.1  The disappearance of Clemmensen’s hook 
       In order to show more clearly the disappearance of Clemmensen’s hook 
the curves in Figure 4 are smoothed out by only including every fifth year 
from1972 and forward to 2022. The outcome is shown in Figure 5. 

Following the *’s in 1972 and the o’s in 2022 we see the disappearance of 
Clemmensen’s hook. It is seen that the model result from equation (4) is in 
accordance with all the above- mentioned models in literature from 1980 to 
2006. However, there are not two diseases. Clemmensen’s hook is a result of 
the (former) lifestyle until 1932, where the beta-coefficient curve has its kink.  
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Figure 4:  The calculated death rate 1977-2022 
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            Figure 5: Stylistic calculation of the end of “Clemmensen’s hook”  
                           1972-2022 

 

 

5  Conclusion 
The cases of breast cancer increased rapidly after the Second World War. 

However, from 1990 the progress in treatment was accelerating, and the death 
rate started to decline, first for the younger age groups, and will from 2015 
include all age groups.  

Clemmensen’s hook (according to this study) mirrors a shift in lifestyle 
among different generations or cohorts modeled by the cohort coefficients. The 
changing lifestyle forms a beta coefficient curve with a kink in 1932 that 
creates the impression of a “Clemmensen’s hook”. 
Thus, Clemmensen’s hook does not indicate the existence of two diseases in 
breast cancer. 
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Appendix 
Residual  analysis 

 
The error structure 
       This appendix gives an overview of the residual in a model which include a 
cohort effect, with special focus on the residual autocorrelation. This 
demonstrated pattern is seen not only in death rate from breast cancer but also in 
death rate from: malnutrition, lung cancer, COLD, stroke, and heart attack. 

 Let us start with the simplest case: First order autocorrelation 

 e t  = ρ e 1t−  + v t                       (1a) 

the assumptions on v t  are initially: serially uncorrelated with a normal 
distribution with constant variance: v t ≈ N(0, σ 2 )  

   However, when v t  is not normal independent but has negative 
autocorrelation we e.g. have 

  v t  =  - r v 1t−  + ξ t  ,                     (2a) 

where ξ t ≈ N(0, 1σ
2 ) . 

Therefore the estimation must be made in two rounds where in first round is 

 e t  = a e 1t−  + res                     (3a) 

The residual is used as an estimator (substitute) for v t , and applied as an extra 
explaining variable to e t  and make a second round estimation 

 e t  = a e 1t− - b v t  + error                     (4a) 

a and b, the estimates for ρ and r can both become bigger than one although  ρ and 
r both are smaller than one. 

 
Empirical evidence 
Above, initially, a WLS estimation of equation (4) was made without including 
the dummies for the cohort effects, that is: 

 Log(Dbc)*Age =   α 1   + α 2 Age 2   + α 3 Age 3   
 + α 4 Age/T + α 5 Age 2 /T 2  + α 6 Age 3 /T 3                (5a) 

The classical test values became 
 

R 2  = .986  DW = .46             Obs. = 432 
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The DW statistic seems to indicate highly significant positive autocorrelation. 
However, the DW statistic only test for first order autocorrelation, and is not 
suitably but highly misleading in this case as shown below. 

     Instead of removing the autocorrelation in (1a) by the cohort dummies we 
include the lagged residual, actually we use WGLS estimation:  

Log(Dbc)*Age =    α 1   + α 2 Age 2   + α 3 Age 3    

 + α 4 Age/T + α 5 Age 2 /T 2  + α 6 Age 3 /T 3   

 +  ρ 1 e(-1)                                                                       (6a) 

The estimated residual coefficient became: 

 ρ 1  = .766 
 t      (24.61) 

The classical test values became 

R 2  = .994  DW = 2.80                 Obs. = 420 

We see that ρ 1  is highly significant; however, the DW statistic (for the remaining 
residual) now indicates significant negative autocorrelation, indicating that the 
residual in (1a) was not first order autocorrelated.   

    We now repeat the procedure – and repeat it again until the remaining residual 
is white noise. 

Log(Dbc)*Age =    α 1   + α 2 Age 2   + α 3 Age 3    
 + α 4 Age/T + α 5 Age 2 /T 2  + α 6 Age 3 /T 3   
 +  ρ 1 e(-1)  +  ρ 2 ee(-1)                                         (7a) 

Estimated residuals coefficients became: 

 + 1.022*e(-1) - .644*ee(-1) 
t         (29.478)          (-11.56)        

and the classical test values became 

R 2  = .996  DW = 2.32                 Obs. = 408 

Now there is no significant autocorrelation in the residuals. Monte Carlo 
experiments show that DW in cases like this is upward biased. 
The autocorrelation pattern found in (1a) must in principle be equal to the 
autocorrelation in the variable B Є{ β 1 , β 2 , β 3 ……… β 91 } shown above in 
Figure 2 and in Table 1 for the individual age groups. 
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The autocorrelation in the B-variable 
Estimating the entire function the formula 

Log(Dbc)*Age =    α 1   + α 2 Age 2   + α 3 Age 3    

                             + α 4 Age /T + α 5 Age 2 /T 2  + α 6 Age 3 /T 3   

                            + β 1 Coh1892 + β 2 Coh1893 +  + β 91 Coh1982                     (8a)       

gives the classical test values:   

R 2  = .997  DW = 2.01             Obs. = 424 

Here the DW statistic shows no autocorrelation at all. As the residual is white 
noise the DW test is “feasible”. 
As mentioned above, the inclusion of the cohort dummies removed the 
autocorrelation in (5a). Consequently, the variable B must include (or have 
similarities to) “e” in (4a). Treating “B” as “e” we get: 

  B =  γ 1  B(-1)                     (9a) 
  B =  1.0052* B(-1)  
 t        (252.26) 

 
R 2  = .965  DW = 2.80                 Obs. = 90 

Including the lagged residual gives: 

  B =  1.0058* B(-1) - .4266*eb(-1) 
 t         (276.02)            (-4.37)  

R 2  = .971  DW = 2.18                 Obs. = 89 

The confusing outcome here is that the coefficients to e(-1) and B(-1) are bigger 
than one although both theoretically are smaller than one. However, that this is not 
a problem can be demonstrated by a Monte Carlo experiment.  

  
 
Creating second order negative autocorrelation 
For simulation purposes (1a) can be rewritten as 

ε t  = v t  + ρ v 1t−   +  ρ 2 v 2t−  +  ρ 3 v 3t−   +  ρ 4 v 4t−   +  ρ 5 v 5t−  +   ρ 6 e 6t−  ...         (10a) 

However, when v t  is not normal independent but has negative autocorrelation we 
have 

 v t  =  -r v 1t−  + ξ t   
 v 1t−  =  -r v 2t−  + ξ 1t−   
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 v 2t−  =  -r v 3t−  + ξ 2t−   
 v 3t−  =  -r v 4t−  + ξ 3t−   
 v 4t−  =  -r v 5t−  + ξ 4t−                     (11a) 
 v 5t−  =  -r v 6t−  + ξ 5t−  
 v 6t−  =  -r v 7t−  + ξ 6t−  
 v 7t−  =  -r v 8t−  + ξ 7t−  
 v 8t−  =  -r v 9t−  + ξ 8t−  
 ::::::::::::,  

which inserted in (10a) gives 

 ε t   = ξ t  
 + (ρ – r) ξ 1t−        
 + (ρ 2 + r 2 - ρr) ξ 2t−    
 + (ρ 3 + ρr 2 - r 3 - ρ 2 r) ξ 3t−   
 + (ρ 4 + ρ 2 r 2 - ρ 1  r 3 - ρ 3 r) ξ 4t−   
 + (ρ 5 + ρ 3 r 2 -  ρ 2 r 3 - ρ 4 r) ξ 5t−  
 + (ρ 6 + ρ 4 r 2 -  ρ 3 r 3 - ρ 5 r) ξ 6t−                                         (12a)          
 + (ρ 7 + ρ 5 r 2 -  ρ 4 r 3 - ρ 6 r) ξ 7t−   
 + ( ρ 8 + ρ 6 r 2 - ρ 5 r 3 - ρ 7 r) ξ 8t−   
 :::::::::: 

Therefore the estimation must be made in two rounds as shown in (3a) and 
(4a).  
ρ and r are e.g. given the values: ρ  = .90;  r  = -.55 (inserted as .55), and an  e t  is 
calculated as a proxy for ε t , here based on 30 lag.   

A first order autocorrelation coefficient is calculated as:  

e t  = .640 e 1t−   
       (83.27)       

R 2  = .410  DW = 2.61                 Obs. = 9.969 

The residual is called v t . Second step is calculated as: 

e t  = 1.079 e 1t− - .743 v t   
       (102.20)    (-54.09) 

R 2  = .544  DW = 2.01                 Obs. = 9.968 
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We see that a Monte Carlo experiment based on 10.000 random numbers can 
produce the same result as the empirical data for breast cancer. 

 

 
 


