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Causal Effect Estimation Methods
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Abstract

Relationship between two popular modeling frameworks of causal
inference from observational data, namely, causal graphical model and
potential outcome causal model is discussed. How some popular causal
effect estimators found in applications of the potential outcome causal
model, such as inverse probability of treatment weighted estimator and
doubly robust estimator can be obtained by using the causal graphical
model is shown. We confine to the simple case of binary outcome and
treatment variables with discrete confounders and it is shown how to
generalize results to cases of continuous variables.

Keywords: Causal graphical models; Potential outcome causal model; Con-

founders; Causal effect estimates

1 Introduction

In many real world situations it is of interest the estimation of causal ef-

fect of some treatment on a certain outcome. The causal effect of taking a

certain medicine for a certain disease by the patients and that of participa-

tion in a certain job training program by unemployed individuals in order to
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find employment in the future are two examples among many in medical and

socio-economic contexts respectively, among many others in a lot of disciplines.

Sometimes it may be unethical or infeasible to assign each subject either to the

treatment or to the control randomly in order to perform a randomized study

that is considered as the gold standard to estimate the causal effect of the treat-

ment. However it may be of interest of socio-economic policy makers, medical

professional, etc., to evaluate the causal effect of their treatments of interest

in order to plan for the future. In the absence of the randomized assignment

of the treatments they may only have observed data on collection of subjects

who either have taken the treatment or not. When the effect of a treatment

on an outcome needs to be identified from such observational data sample it

needs to control for (condition on) the confounders, i.e., subgroups with the

same confounder values in the treatment group and those in the control group

should be compared through their empirical mean values of the outcome and

then it should be taken the weighted average of them where weights are ob-

served proportions of sizes of the subgroups in the data sample to evaluate the

average causal effect of the treatment. For simplicity assume all confounders

are discrete. Note that the confounders are factors that affect the subjects to

take the treatment or not while simultaneously affecting the subjects’ outcome

in some way, therefore the effect of the treatment is confounded with the effects

of these confounding factors when they are present. So, these unnecessary ef-

fects should be removed otherwise the estimate of the average treatment effect

is biased. One can see that here the implicit assumption is that within each

subgroup of confounder value the treatment assignments are assumed to be

randomized, therefore comparisons are done subgroup-wise. But this assump-

tion is true when a ’sufficient’ set of confounders, perhaps not all of them are

considered.

However sometimes controlling for the confounders can be difficult, for

example, if they are high dimensional then it may be difficult to find treat-

ment and control subgroups of subjects of sufficient sizes with same confounder

values. A popular way to increase the sizes of these treatment and control sub-

groups that should be compared is to use so-called propensity scores [1]. The

propensity score is the conditional probability of receiving the treatment given

the values of observed pre-treatment confounding covariates of the treatment

and the outcome. Among others, they are used in the causal inference method
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of potential outcome framework [2, 3] for matching subgroups of treated sub-

jects with those with untreated, usually called stratification of data sample,

for estimating the causal effects of the treatments.

Finding a ’sufficient’ set of condounders on which the comparison should

be done is somewhat problematic and the potential outcome framework offers

no clear way to do it even when all pretreatment confounders of the treatment

and the outcome are available. Note that one does not need to control for all

the confounders since when some of the them are considered then some of the

others may become redundant. However causal graphical modeling framework

of Pearl and his colleagues (see [4] and references therein) offers one called

’back door criterion’ to choose a set of sufficient covariates in order to identify

the causal effect, i.e., to estimate without bias. When a graphical model is

done on the treatment variable and outcome variable and all their assumed

causal factors, both direct and indirect, the criterion can find a sufficient set of

covariates on which one should control for estimation of the causal effect. Then

such a set is called ’admissible’ or ’deconfounding’ set. However the selected

set is only sufficient for all the causal factors that are assumed but may not

be sufficient if some causal factors of treatment and outcome are omitted.

And considering some covariates as confounders by ignoring such criterion or

similar one can cause introduction of further bias (p. 351 of [4]). So, in our

analysis we confine to the case of that taken confounders make a superset of

an admissible set and stated otherwise.

Often these two camps of causal inference methods have a lot of disagree-

ments between them, especially the applied users of them. However developers

of the two frameworks, if not theoreticians in them have remarked the relation-

ship between them. One such instance is reported in the journal ”NeuroImage”

under the section ”Comments and Controversies” about applying two model-

ing frameworks for brain image data [5, 6, 7, 8, 9]. Therein Pearl argues that

his group (in his words) has proved that two frameworks are logically equiv-

alent in the sense that a theorem in one is a theorem in the other and an

assumption in one has a parallel interpretation in the other. And Glymour

argues that (in his words) the potential outcome model is an special case of

the causal graphical model but with twists that make causal estimation impos-

sible except in restricted contexts. And others in the debate are of the opinion

that the two frameworks are close to each other. Though such arguements are
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around among the theoreticians of the two frameworks, the applied users still

seem to be unconvinced about it, and therefore they treat that they are very

different frameworks and often one is supeiror than the other. Or even worst,

one gives wrong answers while only the other gives correct answers. It is rare

that both frameworks are applied for same data. Furthermore due to different

numerical estimation methods one may obtain two numerically different causal

effect estimates when the two frameworks are used.

Here we show that two frameworks are equivalent in most contexts in the

sense that both give same analytical expressions for causal effect estimates or

rather any causal effect estimate in one modeling framework can be obtained

from the other. Since causal effect estimates are dependent on estimated prob-

abilities because they are functions of statistical conditional expectations of

outcome variable there can be differences in causal effect estimates numerically

if the used probabilities are estimated differently. But there are reasons, at

least operationally, to favor the graphical modeling framework over the other,

for example, it can be computationally efficient, for example, through control-

ling for a sufficient set of confounders rather than doing so for all the assumed

confounders. We show their equivalence at the basic level of their application.

Furthermore since the potential outcomes model has many forms causal effect

estimators we show how they can be derived through the graphical modeling

framework, thus providing some insight into the estimators. So, our discussion

here can be useful not only for researchers in these two modeling frameworks

but also especially for the users of them to understand each other.

2 Observational Studies

We consider the simple situation where one is interested in evaluating the

effect of some exposure or treatment on a certain outcome that can either be

a success or a failure. Let us denote the treatment by a binary variable Z

where Z = 1 when the treatment is implemented and Z = 0 when it is not and

the outcome by a binary variable Y where Y = 1 when a success is observed

and Y = 0 when a failure is observed for each subject concerned. In the

potential outcome framework for causal inference it is accepted existence of

pair of potential outcome variables, say, (Y1, Y0) where Yi is the outcome that
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would have been observed had the treatment Z = i for i = 1, 0. Note that then

the observable outcome Y satisfies the relation Y = ZY1 + (1 − Z)Y0. Then

a randomized experiment is when the potential outcomes are independent of

treatment assignment, written as (Y0, Y1) ⊥ Z; each subject receives treatment

without considering its future outcome. Then average causal effect for the

population τ is defined as follows.

τ = E[Y1]− E[Y0]

= E[Y1|Z = 1]− E[Y0|Z = 0] since (Y0, Y1) ⊥ Z

= E[Y |Z = 1]− E[Y |Z = 0]

Here we assume that 0 < P (Z = 1) < 1, i.e., in our sample of data we have

both treated and untreated subjects. If it is not the case then we are not able

to estimate τ since then only one of quantities in the expression is known.

But in observational data the independence assumption (Y1, Y0) ⊥ Z may

not hold because subjects do not receive the treatment independent of their

future outcomes, therefore characteristics of subjects in the treatment group

may differ from those of the control group. This is a situation where the

treatment effect is confounded with some external factors, i.e., the treatment

and the outcome are confounded. Therefore the treatment group and control

group cannot be compared directly to evaluate the effect of the treatment.

Then the assumption is modified and it says that the potential outcomes are

conditionally independent of the treatment assignment given some confounding

factors that makes (a superset of) an admissible set for confounding. When this

set of confounders are denoted by multivariate variable X then the assumption

is written as (Y1, Y0) ⊥ Z|X and it is sometimes called the assumption of no

unmeasured confounders to mean that all the confounding effects are removed

by X. In addition, for inference, similar to randomized experiment it needs to

have 0 < P (Z = 1|X) < 1, which is called assumption of common support.

That is, for each configuration (stratum) of X, we should have both treated

and untreated subjects otherwise, say for example, if P (Z = 1|X = x1) = 1

in our data sample then the causal effect for the subgroup with X = x1 may

not be calculated. Recall that we assume that X is discrete, therefore any

continuous covariate is discretized. That is, in each stratum of X the treatment

assignments are as if they are randomized and we have data on both treated
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and untreated subjects. This is to say that in observational data our objective

is to mimic the randomization within each stratum of X. Therefore, firstly

one should find a sufficient set of confounders X. However this assumption

cannot be tested even if all the potential confounders are found.

Now let us define that individual causal effect for an individual, say, j

with X = x is τ j(x) = Y j
1 − Y j

0 . The jth individual is the jth data case

of the sample and throughout any quantity referring to it is denoted with

the superscript j attached to the respective quantity. But it is clear that no

subject has both the values of Y1 and Y0 observed therefore we cannot have

τ j(x) numerically. So we need a mechanism to get it but it is right at our hands;

the randomization of the treatment assignments within each stratum of X, the

assumption of no unmeasured confounders (this is also called the assumption

of strong ignorable treatment assignment [1]). That is, within any stratum

X = x if we know a subject is treated (Z = 1) we observe Y1 = Y but Y0 is not

known, but the latter can be known by any other subject in the stratum who

is not treated (Z = 0); two quantities are conditionally exchangeable. Here

the word ’conditionally’ is to mean that within the stratum. And similarly for

any subject that is not treated (Z = 0). Therefore, as if the observed data are

from randomizations within each level x of X, we can calculate the average

causal effect for the subpopulation of all individuals with X = x, say, τ(x) by

τ(x) = E[Y1|X = x]− E[Y0|X = x]

= E[Y1|X = x, Z = 1]− E[Y0|X = x, Z = 0] since (Y1, Y2) ⊥ Z|X
= E[Y |X = x, Z = 1]− E[Y |X = x, Z = 0]

where the expectation E should be taken over whole subpopulation with X =

x. Since this mechanism applies for all the strata of X, we can calculate the

average causal effect for the whole population, say, τ

τ = Ex[E[Y |Z = 1, X = x]− E[Y |Z = 0, X = x]]

=
∑

x

∑
y

yp(Y = y|X = x, Z = 1)p(X = x)

−
∑

x

∑
y

yp(Y = y|X = x, Z = 0)p(X = x)

It is sufficient to estimate accurately the probabilities p(Y = y|X = x, Z = z)
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and p(X = x) for Z = 0, 1 and for all values of X in order to estimate τ

accurately but due to its definition it is not necessity. For example, if some

forms of errors have been introduced in calculation of p(Y = 1|X = x, Z = 1)

then similar errors in calculation of p(Y = 1|X = x, Z = 0) may make sure

that the correct value for τ is obtained. For these types of reasons or similar

ones sometimes researchers claim that even models, for example, those for

conditional probabilities, are misspecified correct estimates for causal effects

can be obtained. But here we avoid discussion on this topic.

The above estimate for τ is analytically equal to that we get by the es-

timation of the causal effects using interventions in causal graphical models

(also called do-calculus) [4, 10], that is another popular framework for the

task, therefore two frameworks are equivalent in this case. To recall the

reader with this calculus, first define the distribution with conditioning by

intervention or action; if we have observed a random sample of data on a

set of variable, say, X1, ..., Xn, we can find the probability distribution of the

set of variables, say, p(x1, ..., xn). We can have a factorization of probabil-

ity distribution p(x1, ..., xn); let it be that p(x1, ..., xn) =
∏n

i p(xi|pai) where

pai ⊆ {x1, ..., xi−1} with the exception of pa1 = Φ (empty set) using some

conditional independence assumptions within X1, ..., Xn. Note that to have a

causal representation in the factorization one can use, for example, the time

order to index the variables such that cause variables have higher indices than

those of effect variables’. Then, for i = 1, ..., n the probability distribution of

{X1, ..., Xn}\{Xi} when Xi is intervened to a particular value of it, say, xi,

written as do(Xi = xi), denoted by p({x1, ..., xn}\{xi}|do(Xi = xi)) is defined

as follows;

p({x1, ..., xn}\{xi}|do(Xi = xi)) =
p(x1, ..., xn)

p(xi|pai)
=

n∏

k=1:k 6=i

p(xk|pak)

6= p(x1, ..., xn)

p(xi)
=

1

p(xi)

n∏

k=1

p(xk|pak)

= p({x1, ..., xn}\{xi}|Xi = xi)

where the last expression is corresponding conditional probability distribution

when we have observed Xi = xi, which is generally different from that of

conditioning by intervention.
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p(y, z, x) = p(x)p(z|x)p(y|x, z)

Figure 1: Bayesian network for causal model

The causal relationships between X, Y and Z in our context can be rep-

resented as a causal network model p(y, z, x) = p(x)p(z|x)p(y|x, z) as shown

in the Figure 1. And if we intervene on Z as do(Z = z) for z = 0, 1, then the

intervention distribution

p(Y = y, X = x|do(Z = z) =
p(X = x)p(Z = z|X = x)p(Y = y|Z = z, X = x)

p(Z = z|X = x)

So we have p(Y = y|do(Z = z)) =
∑

x p(Y = y|Z = z, X = x)p(X = x). The

causal effect of the treatment option Z = 1 compared to the control option

Z = 0 is defined as

ρ =
∑

y

yp(Y = y|do(Z = 1))−
∑

y

yp(Y = y|do(Z = 0))

=
∑

y

y
∑

x

p(Y = y|Z = 1, X = x)p(X = x)

−
∑

y

y
∑

x

p(Y = y|Z = 1, X = x)p(X = x)

= τ

So we have seen that strong ignorable treatment assignment assumption in

potential outcome model is equivalent to implementing intervention operations

in probability distributions when the confounding factors are the same in both

cases, i.e., they yield analytically the same causal effect estimates. In fact,

for the above one can see that the probability distribution of the potential

outcome of a hypothetical treatment assignment under the strong ignorability

assumption and that of the outcome of the intervention of same value are the
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same. For i, j = 0, 1,

p(Yi = y) =
∑

x

p(Yi = y|x)p(x) =
∑

x

p(Yi = y|Z = j, x)p(x)

=
∑

x

p(Y = y|Z = i, x)p(x) = p(Y = y|do(Z = i))

Now suppose the case where treatment has also an indirect effect on the

outcome in addition to its direct effect. Suppose effect of Z on Y is also medi-

ated through Z ′ and a set of confounders among causal relationships between

them is denoted by X such that X is the union of distinct sets of confounders

X1, X2, X3 and X4 where X1 and X4 are the set of all direct confounders

for direct causal relation between Z and Z ′, Z, X2 and X4 are those between

direct causal relation between Z ′ and Y , and X3 and X4 together complete

the set of all confounders for the indirect causal relation between Z and Y .

Here we have taken all the confounders rather than respective admissible sets

for simplicity. Let us define the potential outcome Yij the outcome that would

have observed had Z = i and Z ′ = j and then Yi = Z ′Yi1 + (1 − Z ′)Yi0 for

i, j = 0, 1 and Y = ZY1 +(1−Z)Y0. Then we have strong ignorability assump-

tions Z ′
1, Z

′
0 ⊥ Z|{X1, X4} and Yi1, Yi0 ⊥ Z ′|{Z = i,X2, X4} for i = 0, 1 for

the direct causal relationships between Z → Z ′ and Z ′ → Y respectively. But

they do not imply ignorability assumption for (Y1, Y0) and Z. So we need to

assume, for example, safely that Y1, Y0 ⊥ Z|X. Note that there is no obvious

way to take a subset of X as the conditioning set. In this case also we get, for

i = 0, 1, p(Yi = y) =
∑

x p(Y = y|Z = i, x)p(x) for i = 0, 1. And in the causal

graphical model

p(x1, ..., x4, z, z′, y) = p(x1, ..., x4)p(z|x1, x3, x4)p(z′|z, x1, x2, x4)

×p(y|z′, z, x2, x3, x4)

p(x1, ..., x4, z
′, y|do(z)) = p(x1, ..., x4)p(z′|z, x1, x2, x4)p(y|z′, z, x1, x2, x3, x4)

p(y|do(z)) =
∑

x1,..,x4,z′
p(x1, ..., x4)p(z′|z, x1, x2, x4)

×p(y|z′, z, x1, x2, x3, x4)

=
∑

x1,x2,x3,x4

p(x1, x2, x3, x4)p(y|z, x1, x2, x3, x4)

Therefore, p(Yi = y) = p(y|do(Z = i)) for i = 0, 1. So we have seen
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the two frameworks are yielding same causal effect estimates, therefore two

frameworks are equivalent in this case too. However, since p(y|do(z)) =∑
x2,x3,x4

p(x2, x3, x4)p(y|z, x2, x3, x4) using graphical model is more efficient

compared to doing so the potential outcome framework.

Since one can encounter situations where the causal structures of the phe-

nomena are complex, it is advisable to use the causal graph interventions for

estimation of desired causal effect. If the confounding factors taken into con-

sideration in the potential outcome model and the graphical model are the

same then both models yield analytically the same causal effect estimates.

3 Some Differences in Two Modeling Frame-

works

As seen earlier, in order to have same numerical causal effect estimates

in both frameworks they should include supersets of similar admissible sets of

confounders and same probability density estimates. However, researchers who

use the potential outcome model tend to include pretreatment covariates that

are associative but not causal with both Z and Y too as confounders. This

can induce spurious bias as shown in literature using the graphical modeling

framework. Such factors may not be direct confounders but they are said to

be inducing so-called M-bias in casual effect estimation. Therefore researchers

argue that they should be neglected in causal effect estimation [11, 14, 13, 12].

However when a pretreatment covariate that is associative with both treatment

and outcome is found this may indicate that either there is another unmea-

sured confounder or two dependent unmeasured confounders in the system,

not necessarily two independent confounders as considered in the above de-

bate. If former two are the cases (either single unmeasured confounder or two

dependent confounders) whether conditioned on associative confounder or not

causal effect estimates are biased. In a forthcoming paper [15] it is shown

that in these two cases it is more beneficial to condition on the associative

confounder than not doing so. We avoid discussion on this topic here.

Another difference is caused by discriminative and generative estimation

of probabilities where in the potential outcome model often individual condi-
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tional probabilities are estimated discriminatively, for example, using logistic

regression for propensity score estimation whereas in the graphical model of-

ten joint likelihood is maximized to obtain component conditional probabil-

ities of the factorization of joint density of Z, X and Y . The factorization

p(X = x, Z = z, Y = y) = p(X = x)p(Z = z|X = x)p(Y |Z = z,X = x)

includes propensity scores and therefore if two estimation methods yield two

numerically different estimates for propensity scores then it can result in two

different causal effect estimates. See below for further comments.

4 Some Causal Effect Estimators

Let us see how the graphical model estimator can be used to derive the

causal effect estimators such as inverse probability of treatment weighted es-

timator, stratified estimator and doubly robust estimator commonly found in

the potential outcome model applications. In the following we avoid direct def-

inition of those estimators but derive them by manipulation of the graphical

model estimator.

4.1 Inverse Probability of Treatment Weighted Estima-

tor

The graphical model causal effect estimator ρ is equivalent to inverse prob-

ability of treatment weighted estimator (IPTW ) described [16].

ρ =
∑

y

yp(Y = y|do(Z = 1))−
∑

y

yp(Y = y|do(Z = 0))

=
∑

y

y
∑

x

p(Y = y|Z = 1, X = x)p(X = x)

−
∑

y

y
∑

x

p(Y = y|Z = 0, X = x)p(X = x)

=
∑

y

y
∑

x

p(Y = y, Z = 1, X = x)

p(Z = 1|X = x)
−

∑
y

y
∑

x

p(Y = y, Z = 0, X = x)

p(Z = 0|X = x)

=
∑

x

p(Y = 1, Z = 1, X = x)

p(Z = 1|X = x)
−

∑
x

p(Y = 1, Z = 0, X = x)

p(Z = 0|X = x)
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=
∑

x

1

e(x)

N(Y = 1, Z = 1, X = x)

N
−

∑
x

1

1− e(x)

N(Y = 1, Z = 0, X = x)

N

=
∑

i

1

e(xi)

I(Y i = 1)I(Zi = 1)I(X i = xi)

N

−
∑

x

1

1− e(xi)

I(Y i = 1)I(Zi = 0)I(X i = xi)

N

=
1

N

∑
i

ZiY i

ei
− 1

N

∑
i

(1− Zi)Y i

1− ei
= IPTW

where N(.) denotes the number of data cases satisfying its arguments, I(.) = 1

when its argument is true and I(.) = 0 otherwise and p(Zi = 1|X i = xi) =

e(xi) = ei. Therefore, analytically the graphical model intervention estimator

is the IPTW estimator. However often they can be different numerically, for

example, when the propensity score estimates, e(x) for all x, differ in the two

contexts as discussed in Section 3.

4.2 Stratified Estimator

Essentially we can obtain the propensity score stratified estimator [17] from

IPTW since it is just a stratification of range of propensity score values into

several bins where within each bin it is assumed the propensity scores are

approximately the same. In fact it is an algebraic simplicity (summing up

fractions by assuming some of them have equal denominators) but what it is

important to note is that in the stratified estimator those common propen-

sity scores for corresponding sets of approximately equal propensity scores

are estimated by the sample proportions of treated subjects related to those

propensity scores. In fact, the estimates are maximum likelihood estimates

for P (Z|X ′) from the likelihood for the joint density where X ′ obtained from

X through a ’new’ definition on the state space of X. For clarity we can see

how stratified estimator is related with IPTW estimator. Note that since it

is implicit that common propensity score values are in fact used in stratified

estimator, for most applied researchers it is not clear about it. Suppose we

write propensity score estimates in increasing order for all the subjects, say,

e(1), ..., e(N) in the sample, and we stratify the sequence into K number of

bins such that the bin s has Nrs number of propensity scores (corresponding
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subjects) where vector (r1, ..., rK) satisfies
∑

s rs = 1. And for each subject

define the variable S ∈ {1, ..., K} to denote its propensity score bin, i.e., ei is

related with some S = s. Then the bin s has many different propensity score

values but in the stratification we assume that they can be represented by a

single score, say, es, for s = 1, ..., K. Then by estimating unknown es with the

proportion of treated subjects in the bin s, i.e., es = N1s/Nrs where N1s and

N0s are number of treated and untreated subjects that belong to the bin s, so

Nrs = N1s + N0s. Then

ρ =
1

N

∑
i

ZiY i

ei
− 1

N

∑
i

(1− Zi)Y i

1− ei

≈ 1

N

∑
s

∑
i

ZiY i

es
I(Si = s)−

∑
s

1

N

∑
i

(1− Zi)Y i

1− es
I(Si = s)

=
∑

s

rs

∑
i

ZiY i

N1s

I(Si = s)−
∑

s

rs

∑
i

(1− Zi)Y i

N0s

I(Si = s) = ρs

which is the stratified estimator. Due to these approximations stratified es-

timator may not be equal to IPTW estimator. Usually in practice K = 5,

therefore in the estimator there are only 5 possible values of propensity scores

are used even though there should be N number of propensity scores.

4.3 Doubly Robust Estimator

So called doubly robust (DR) estimator (see [18] and references therein) is

a popular one in potential outcome framework. To understand how it is related

to graphical model estimator let us suppose the case that in the causal network

we use predicted outcome, say, Ŷ instead of what is really observed Y ; that

is we can use two separate regression model, say, Ŷ1 := E{Y |Z = 1, X} and

Ŷ0 := E{Y |Z = 0, X} to predict possible outcomes for each subject. By this

task which is done external to the causal graphical model, we have data for a

pair of variables Ŷ0 and Ŷ1 for Z = 0 and Z = 1 respectively for each subject

even though each subject has either Z = 0 or Z = 1. Firstly for simplicity let

us assume that both Ŷ0 and Ŷ1 take only values from the set {0, 1} (as if the

regression functions are classifiers). Then, the average causal effect estimate
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based on predicted outcome, say, ρp;

ρp =
∑

y

yp(Ŷ = y|do(Z = 1))−
∑

y

yp(Ŷ = y|do(Z = 0))

=
∑

y

y
∑

x

p(Ŷ = y|Z = 1, X = x)p(X = x)

−
∑

y

y
∑

x

p(Ŷ = y|Z = 0, X = x)p(X = x)

=
1

N

∑
i

ZiŶ i
1

ei
− 1

N

∑
i

(1− Zi)Ŷ i
0

1− ei

Note that the above estimator is dependent of the used regression models. One

drawback of the ρp is that it is not using both predictions for each subject even

though both are available. So, let us consider the following modification to it

to get another estimate, say, ρ′p;

ρ′p = ρp −
{

1

N

∑
i

Ŷ i
1 −

1

N

∑
i

Ŷ i
0

}

=
1

N

∑
i

{
ZiŶ i

1

ei
− Ŷ i

1

}
− 1

N

∑
i

{
(1− Zi)Ŷ i

0

1− ei
− Ŷ i

0

}

=
1

N

∑
i

(Zi − ei)Ŷ i
1

ei
+

1

N

∑
i

(Zi − ei)Ŷ i
0

1− ei

Now ρ− ρ′p is

1

N

∑
i

{
ZiY i

ei
− (Zi − ei)Ŷ i

1

ei

}
− 1

N

∑
i

{
(1− Zi)Y i

1− ei
+

(Zi − ei)Ŷ i
0

1− ei

}

which is called the doubly robust estimator (DR). That is, we can have the

DR estimator from the graphical model estimator if we use both the observed

outcome and some predicted outcome in the graphical model. Note that ρ′p
can be effectively zero if our propensity score estimates are equal to respec-

tive sample proportions i.e., the maximum likelihood estimates from the joint

likelihood for p(y, z, x). Then we get the DR and the IPTW the same in this

case. Furthermore numerically the IPTW is just the maximum likelihood pa-

rameter estimate based graphical model estimate when the propensity scores
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are sample proportions. So we have that the DR is numerically equal to the

basic graphical model estimator in this case.

Often researchers estimate propensity scores through a model, for example,

a logistic regression with independent variables X (as a linear or/and non-

linear combination of them). But generally no one knows the true model in a

given empirical context therefore DR estimate may be affected by the propen-

sity model specification. When propensity scores are consistently estimated

the IPTW estimator is a consistent to the average causal effect, therefore so

does the DR estimator. Note that the result is true irrespective of specification

of the two regression models E{Y |Z = 1, X} and E{Y |Z = 0, X} -whether

they are true or not. However for small samples, DR estimate may depend

on the used regression models if estimated propensity scores are different from

corresponding sample proportions.

Likewise it may be of interest to see that what can the DR estimator be if

we have true outcome regression models. First consider the following writing

of the DR estimator.

DR =
1

N

∑
i

{
(Y i − Ŷ i

1 )
Zi

ei
− (Y i − Ŷ i

0 )
(1− Zi)

1− ei

}
+

{
1

N

∑
i

Ŷ i
1 −

1

N

∑
i

Ŷ i
0

}

And from the above we know that ExEy{Y |Z = 1, X} =
∑

x,y yp(y|Z =

1, x)p(x) = 1
N

∑
i

Y iZi

ei and therefore ExEŷ{Ŷ |Z = 1, X} =
∑

x,ŷ ŷp(ŷ|Z =

1, x)p(x) = 1
N

∑
i

Ŷ iZi

ei . Now consider the case of Z = 1. Since for each X = x,

Ŷ is a single value, say, ŷ(Z = 1, x) then we have
∑

x,ŷ ŷp(ŷ|Z = 1, x)p(x) =∑
x ŷ(Z = 1, x)p(x). If we take ŷ(Z = 1, x) =

∑
y yp(y|Z = 1, x) for each x,

i.e., if we let our regression function at X = x to be the empirical mean of Y

values at X = x then we get
∑

i
Y iZi

ei =
∑

i
Ŷ iZi

ei . And in the similar way, for

the case of Z = 0 we get
∑

i
Y i(1−Zi)

1−ei =
∑

i
Ŷ i(1−Zi)

1−ei . Both of them imply that

DR =
1

N

∑
i

Ŷ i
1 −

1

N

∑
i

Ŷ i
0

=
1

N

∑
x

NxŶ (Z = 1, x)− 1

N

∑
x

NxŶ (Z = 0, x)

=
∑

x

Ŷ (Z = 1, x)p(x)−
∑

x

Ŷ (Z = 0, x)p(x)
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That is, if the outcome regression model Ŷ (Z = z, X = x) has its value at

X = x as the mean of the observed Y values at X = x for Z = z, for z = 0, 1

or in other words when our two regression models are the true models then the

DR estimator has the above simple form, that is independent of propensity

score model -whether it is correct or not.

In fact we do not need to have above restriction on values of Ŷ0 and Ŷ1 for

the validity of the above discussion. Generally a regression model predicts a

continuous variable and for any continuous random variable Y when we have

a random sample of n observations, say {y1, ..., yn},
∫

y
yp(y) is estimated by∑n

i=1 yi/n. In general when Y is continuous and X is mixture of discrete and

continuous then writing all summations of X as integration, if any, we have

that

∫

x

∫

y

yp(y|z, x)p(x)dydx =

∫

x

1

N(z, x)

∑
j

yjI(Z = z)I(X = x)

=
1

N

∑
x

N(x)

N(z, x)

∑
j

yjI(Zj = z)I(Xj = x)

=
1

N

∑
j

yj
∑

x

I(Zj = z)I(Xj = x)

N(z, x)/N(x)

=
1

N

∑
j

yj I(Zj = z)I(Xj = xj)

P (Zj = z|Xj = xj)

Therefore
∫

x

∫
y
yp(y|Z = 1, x)p(x) = 1

N

∑
j

yjzi

ej and
∫

x

∫
y
yp(y|Z = 0, x)p(x) =

1
N

∑
j

yj(1−zi)
1−ej . So, when Ŷ0 and Ŷ1 are continuous random variables then

ρp =
∫

y
yP (Ŷ = y|do(Z = 1)) − ∫

y
yP (Ŷ = y|do(Z = 0)) that can be es-

timated with summations, thus above formulas can be obtained. From above

it is clear all the discussion can be generalized to the case of when Y and X

have any finite state spaces.
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