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Abstract

In this article an efficient numerical method for finding solution of

the nonlinear Fredholm integro-differential equations on base of Bern-

stein polynomials basis would be presented. For this purpose at the

beginning we express briefly some properties of Bernstein polynomials

and after that with respect to relation between Bernstein and Legendre

polynomials, operational matrices of integration and product of Bern-

stein Polynomials and also dual operational matrix of Bernstein basis

vector, all will be presented. Then with approximate approach the so-

lution of integro-differential equation with CTφ(x) form (in which C is

the unknown coefficients vector and φ(x) is the Bernstein basis vector)

and it’s usage of presented matrices, mentioned equation and it’s initial

conditions will be converted to an equivalent matrix equation. Coeffi-

cients vector C is the solution of this matrix equation. At the end with

presentation of five numerical examples the method will be evaluated.
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ational matrix of product, Dual operational matrix, Integro-differential equa-

tion, Legendre polynomial

1 Introduction

One of the most important mathematical dialogs which has capture the at-

tention of authors, scientists which is foundation of researches is the fascinating

subject of integro-differential equations. These equations in the beginning of

nineteen hundred was presented by Volterra [1-3] and these equations were used

to provide solutions on the area of engineering, physics, chemistry and biology.

In the literature many analytical and numerical methods has been existed for

solution of these equations. Since solution of these equations in an analytical

form was not easy often time numerical method has been used to solve these

equations. In the recent years many different authors provided several numer-

ical methods for solving these equations. In this section some of these solution

methods will be presented. Ordokhani [4] has used Walsh functions opera-

tional matrix with Newton-Cotes nodes for solving of Fredholm-Hemmerstein

integro-differential equations. Authors [5] developed the Sinc method and used

it for solving a class of nonlinear Fredholm integro-differential equations. With

in [6] semi-orthogonal B-spline scaling functions and wavelets and their dual

functions are presented for approximate the solution of linear and nonlinear

second order Fredholm integro-differential equations. One dimensional nonlin-

ear integro-differential equations has been solved by the Newton’s method and

Tau method in [7]. Saberi nadjafi and Ghorbani in [8] have used He’s homo-

topy perturbation method for solving integral and integro-differential equations

and then has been compared with these traditional methods, namely the Ado-

mian decomposition method, the direct computation method and the series

solution method. For more information the interested reader could refer to

[9-14] which uses different numerical method for resolving linear and nonlinear

integro-differential equations.

In this article, firstly we present operational matrices of integration and

product for the Bernstein polynomials (B-polynomials) and also dual opera-

tional matrix of Bernstein basis vector, by the expansion of B-polynomials in

terms of Legendre polynomials. Then we utilize them for solving s-th order
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nonlinear Fredholm integro-differential equation

s
∑

j=0

ρj (x) y
(j) (x) = g (x) + λ

∫ 1

0

k (x, t) [y (t)]pdt, 0 ≤ x, t ≤ 1, (1)

with the initial conditions

y(k) (0) = bk, 0 ≤ k ≤ s− 1, (2)

where yj(x) is the j-th derivative of the unknown function that will be de-

termined, k(x, t) is the kernel of the integral equation, g(x) and ρj(x), j =

0, 1, . . . , s are known analytic functions, p is a positive integer and λ, bk, k =

0, 1, . . . , s−1 are suitable constants. The main characteristic of this technique

is that it reduces these equations to those of an easily soluble algebraic equa-

tion, thus greatly simplifying the equations. This method can be used to solve

all types of linear and nonlinear equations such as differential and integral

equations, so it is known as a powerful method.

The organization of this article is as follows: in Section 2, we introduce the

B-polynomials and their properties. Section 3 is devoted to the function ap-

proximation by using B-polynomials basis. Section 4 introduces the expansion

of B-polynomial in terms of Legendre basis and vice versa. The operational

matrices of integration product and dual operational matrix of Bernstein basis

vector will be derived in Section 5. Section 6 is devoted to the solution method

of integro- differential equations. In section 7, we provide some numerical ex-

amples. And the final Section offers our conclusion.

2 B-polynomials and their properties

The B-polynomials of m-th degree are defined on the interval [0, 1] as [15]

Bi,m (x) =

(

m

i

)

xi(1− x)m−i
, 0 ≤ i ≤ m,

where
(

m

i

)

=
m!

i! (m− i)!
.

There are m+ 1, m-th degree B-polynomials. For mathematical convenience,

we usually set, Bi,m(x) = 0, if i < 0 or i > m. These polynomials are quite
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easy to write down: the coefficients can be obtained from Pascal’s triangle. It

can easily be shown that each of the B-polynomials is positive and also the

sum of all the B-polynomials is unity for all real x ∈ [0, 1], i.e,

m
∑

i=0

Bi,m (x) = 1, x ∈ [0, 1] .

3 Function approximation

B-polynomials defined above form a complete basis [16] over the interval

[0, 1]. It is easy to show that any given polynomial of degreem can be expressed

in terms of linear combination of the basis functions. A function f(x) defined

over [0, 1] may be expanded as

f(x) ' Pm (x) =
m
∑

i=0

ciBi,m (x) , m ≥ 1. (3)

Eq. (3) can be written as

Pm (x) = CTφ (x) ,

where C and φ(x) are (m+ 1)× 1 vectors given by

C = [c0, c1, . . . , cm]
T
, (4)

and

φ (x) = [B0,m (x) , B1,m (x) , . . . , Bm,m(x)]
T
. (5)

The use of an orthogonal basis on [0, 1] allows us to directly obtain the least-

squares coefficients of Pm(x) in that basis, and also ensures permanence of

these coefficients with respect to the degree m of the approximant, i.e., all the

coefficients of Pm+1 agree with those of Pm(x), except for that of the newly

introduced term. The B-polynomials are not orthogonal. But, these can be

expressed in terms of some orthogonal polynomials, such as the Legendre poly-

nomials. The Legendre polynomials constitute an orthogonal basis that is well

suited [17, 18] to least-squares approximation.
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4 Expansion of B-polynomials in terms of Leg-

endre basis and vice versa

To use the Legendre polynomials for our purposes it is preferable to map

this to [0, 1]. A set of shifted Legendre polynomials, denoted by {Lk(x)} for

k = 0, 1, . . ., is orthogonal with respect to the weighting function w(x) = 1

over the interval [0, 1]. These polynomials satisfy the recurrence relation [19]

(k + 1)Lk+1 (x) = (2k + 1) (2x− 1)Lk (x)− kLk−1 (x) , k = 1, 2, . . . ,

with
L 0(x) = 1,

L 1(x) = 2x− 1.

The orthogonality of these polynomials is expressed by the relation

∫ 1

0

Lj (x)Lk (x) dx =











1
2k+1

, j = k,

0, j 6= k,

j, k = 0, 1, 2, . . . . (6)

when the approximant (3) is expressed in the Legendre form

Pm (x) =
m
∑

j=0

ljLj (x) ,

by using Eq. (6) we can obtain the Legendre coefficients as

lj = (2j + 1)

∫ 1

0

Lj (x) f (x) dx, j = 0, . . . ,m.

Now consider a polynomial Pm(x) of degree m, expressed in the m-th degree

Bernstein and Legendre bases on x ∈ [0, 1]:

Pm (x) =
m
∑

j=0

cjBj,m (x) =
m
∑

k=0

lkLk (x) . (7)

We write the transformation of the Legendre polynomials on [0, 1] into the

m-th degree Bernstein basis functions as

Bk,m (x) =
m
∑

i=0

wk, iLi (x) , k = 0, . . . ,m. (8)
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The elements wk, i, k, i = 0, 1, . . . ,m, form a (m+1)× (m+1) basis conversion

matrix W. With respect to [20] the elements of W are as follows:

wk, j =
(2j + 1)

m+ j + 1

(

m

k

) j
∑

i=0

(−1)j+i

(

j

i

)(

j

i

)

(

m+j

k+i

) , k, j = 0, . . . ,m.

Similarly, we write the transformation of the B-polynomials on [0, 1] into m-th

degree Legendre basis functions as

Lk (x) =
m
∑

j=0

Λk, jBj,m (x) , k = 0, . . . ,m, (9)

The elements Λk, j, k, j = 0, 1, . . . ,m form a (m + 1) × (m + 1) basis conver-

sion matrix Λ. Replacing Eq.(9) into Eq.(7) and re-arranging the order of

summation, we obtain

cj =
m
∑

k=0

lkΛk, j, j = 0, . . . ,m. (10)

With respect to [20] the basis transformation (9) is defined by the elements

Λk, j =
1

(

m

j

)

min{j, k}
∑

i=r

(−1)k+i

(

k

i

)(

k

i

)(

m− k

j − i

)

,

r = max {0, j + k −m} ,

of the matrix Λ for k, j = 0, . . . ,m. If we denote the Legendre basis vector as

L (x) = [L0 (x) , L1 (x) , . . . , Lm(x)]
T
, (11)

using Eqs. (5, 8, 9) and (11) we have

φ (x) = WL (x) , (12)

and

L (x) = Λφ (x) .
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5 Operational matrices of integration,

product and dual of B-polynomials

5.1 B-polynomials operational matrix of integration

Let Pb be an (m+ 1)× (m+ 1) operational matrix of integration, then

∫ x

0

φ (t) dt ' Pb φ (x) , 0 ≤ x ≤ 1.

As we did in [21], this matrix is given by

Pb = WPΛ,

where the (m+1)× (m+1) matrix P is the operational matrix of integration

of the shifted Legendre polynomials on the interval [0, 1] and can be obtained

as [22]

P =
1

2























1 1 0 0 · · · 0 0 0
−1
3

0 1
3

0 · · · 0 0 0

0 −1
5

0 1
5

· · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −1
2m−1

0 1
2m−1

0 0 0 0 . . . 0 −1
2m+1

0























.

5.2 B-polynomials operational matrix of product

In this Subsection, we present a general formula for finding the operational

matrix of product of m-th degree B-polynomials. Suppose that C is an arbi-

trary (m + 1) × 1 vector, then Ĉ is an (m + 1) × (m + 1) operational matrix

of product whenever

CTφ(x)φT (x) ' φT (x)Ĉ. (13)

Using Eq. (12) and since CTφ(x) =
m
∑

i=0

ciBi,m , we have
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CTφ(x)φT (x)

=
(

CTφ(x)
) (

LT (x)W T
)

=
[

L0 (x)
(

CTφ (x)
)

, L1 (x)
(

CTφ (x)
)

, . . . , Lm(x)
(

CTφ (x)
)]

W T

=

[

m
∑

i=0

ci (L0 (x)Bi,m (x)) ,
m
∑

i=0

ci (L1 (x)Bi,m(x)) , . . . ,
m
∑

i=0

ci (Lm(x)Bi,m(x))

]

W T

(14)

Now, the functions of Lk(x)Bi,m(x) is being approximate by the B-polynomials

in the form of bellow functions,

Lk (x)Bi,m (x) ' ηTk, iφ (x) , i, k = 0, 1, . . . ,m.

Using Eq. (10) we can obtain the elements of vector ηk,i, for i, k = 0, 1, . . . ,m.

As [21] we have
m
∑

i=0

ci (Lk (x)Bi,m(x)) ' φT (x)C̃k, (15)

where

C̃k = [ηk, 0, ηk, 1, . . . , ηk,m]C, k = 0, 1, . . . , m.

If we define a (m + 1) × (m + 1) matrix C̃ = [C̃0, C̃1, . . . , C̃m], then by using

Eqs. (14) and (15) we have,

CTφ (x)φT (x) ' φT (x)
[

C̃0, C̃1, . . . , C̃m

]

W T

= φT (x) C̃ W T ,

and so we have the operational matrix of product as

Ĉ = C̃W T .

5.3 Dual operational matrix

In this Subsection, we want to present dual operational matrix of φ(x).

With taking integration of cross product of two Bernstein basis vectors, a

matrix of (m+1)×(m+1) dimensional will be resulted which will be indicated

as:

H =

∫ 1

0

φ (x)φT (x) dx. (16)
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This matrix is known by dual operational matrix of φ(x) [23] and will be

calculated as follow:

Since the integrals of the products of Bernstein basis functions by using [23]

∫ 1

0

(1− x)rxidx =
1

(r + i+ 1)
(

r+i

i

) , i, r ∈ N ∪ {0} ,

is as follows:

∫ 1

0

Bk,m (x)Bi,j (x) dx =

(

m

k

)(

j

i

)
∫ 1

0

xk+i(1− x)m+j−k−idx =

(

m

k

)(

j

i

)

(m+ j + 1)
(

m+j

k+i

) .

Therefore we have

H =
1

2m+ 1

































(m0 )(
m

0 )
(2m0 )

(m0 )(
m

1 )
(2m1 )

(m1 )(
m

0 )
(2m1 )

(m1 )(
m

1 )
(2m2 )

· · ·
(m0 )(

m

m
)

(2m
m
)

· · ·
(m1 )(

m

m
)

( 2m

m+1)

...
...

(m
m
)(m0 )
(2m

m
)

(m
m
)(m1 )

( 2m

m+1)

. . .
...

· · ·
(m
m
)(m

m
)

(2m2m)

































.

Also by using Eq. (12), we have

H =
∫ 1

0
φ (x)φT (x) dx =

∫ 1

0
(WL (x)) (WL (x))Tdx

= W
[

∫ 1

0
L (x)LT (x)dx

]

W T = WDW T ,

where D is a (m+ 1)× (m+ 1) matrix and by using Eq. (6) is defined as,

D =

















1 0 0 · · · 0

0 1
3

0 · · · 0

0 0 1
5

· · · 0
...

...
...

. . .
...

0 0 0 0 1
(2m+1)

















.
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6 Method of Solution

Consider the s-th order nonlinear Fredholm integro-differential equation

(1) with the initial conditions (2).

Step 1: The functions of yj(x), j = 0, 1, . . . , s is being approximate by the

B-polynomials. Therefore with approximation ys(x) in the form of

y(s) (x) = CTφ (x) , (17)

where C is defined similar to Eq. (4), we have

y(j)(x) = QT
j φ(x), j = 0, 1, . . . , s, (18)

where Qj’s are (m + 1) × 1 vectors and details of obtaining these vectors is

given in [21].

Step 2: The function of k(x, t) is being approximate by the B-polynomials in

the form of bellow function,

k (x, t) = φT (x)Kb φ (t) , (19)

where Kb is a matrix of (m+ 1)× (m+ 1) dimensional and will be calculated

as follow:

If we approximate k(x, t) with the shifted Legendre polynomials on the interval

[0, 1] as

k (x, t) = LT (x)Kl L (t) , (20)

in which Kl is a (m+1)× (m+1) matrix and the entries can be calculated as

Kli, j =
(Li (x) , (k (x, t) , Lj (t)))

(Li (x) , Li (x)) (Lj (t) , Lj (t))
, for i, j = 0, 1, . . . ,m,

where (., .) denotes the inner product. Then by using Eqs. (12, 19-20), Kb will

be as:

Kb = (W T )−1Kl W
−1.

Step 3: In this step, we present a general formula for approximate yp(t) with

the B-polynomials. To do so, by using Eqs. (18, 13) we have

y2(t) = QT
0 φ(t)φ

T (t)Q0 = φT (t) Q̂0Q0,
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y3(t) = QT
0 φ(t)φ

T (t) Q̂0Q0 = φT (t) (Q̂0)
2Q0,

and so by use of induction yp(t) will be approximated as

yp(t) = QT
0 φ(t)φ

T (t) (Q̂0)
p−2Q0 = φT (t) (Q̂0)

p−1Q0. (21)

Now, with approximate g(x) and ρj(x), j = 0, 1, . . . , s in the forms of GTφ(x)

and ρj(x) = Pj
Tφ(x), j = 0, 1, . . . , s, respectively in which G and Pj, j =

0, 1, . . . , s, are the coefficients which are defined similarly to Eq. (4) and using

Eqs. (18-19, 21) into Eq. (1) we have

s
∑

j=0

P T
j φ(x)φ

T (x)Qj = GTφ(x) + λ

∫ 1

0

φT (x)Kb φ(t)φ
T (t) (Q̂0)

p−1
Q0 dt,

using Eqs. (13, 16) we obtain

s
∑

j=0

φT (x) P̂j Qj = φT (x)G+ λφT (x)Kb H (Q̂0)
p−1Q0,

and therefore we get

s
∑

j=0

P̂j Qj = G+ λKb H (Q̂0)
p−1Q0, (22)

The matrix equation (22) gives a system of m+1 nonlinear algebraic equation

which can be solved for the elements of C in Eq. (17). Once C is known, y(x)

can be calculated from Eq. (18).

7 Illustrative Examples

In this section, we apply the method presented in this article and solve five

examples. The computations associated with the examples were performed

using Matlab 7.1.

Example 1. Consider the first-order nonlinear Fredholm integro-differential

equation [5]

y′(x) = 1−
1

3
x+

∫ 1

0

x y2(t) dt, 0 ≤ x ≤ 1,
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with the initial condition y(0) = 0. In this example we have

ρ0 (x) = 0, ρ1 (x) = 1, g (x) = 1− 1
3
x, k (x, t) = x, p = 2.

By applying the method in Section 6, the expression of equation matrix

will be as follow,

Q1 −G−Kb H Q̂0Q0 = 0,

where for m = 1 we have

Q1 = C =

[

c0

c1

]

, G =

[

1
2/3

]

, Kb =

[

0 0

1 1

]

,

H = 1
6

[

2 1

1 2

]

, Q0 =
1
12

[

c0 − c1

7c0 + 5c1

]

, Q̂0 =
1
12

[

2c0 −(c0 + c1)

c0 + c1 6c0 + 4c1

]

.

Therefore this algebraic equation system

{

c0 − 1 = 0,

c1 −
2
3
−

19 c2
0
+22 c0 c1+7c2

1

144
= 0,

will be resulted. In which by solving above expression c0 = c1 = 1, will be

obtained. Then by substituting values of c0, c1 by y(x) = Q0
Tφ(x), the result

will be as y(x) = x, that is the exact solution. It is noted that with N = 5,

the maximum absolute error on the grid points Sinc [5] in the Sinc method [5],

is 1.52165 × 10−3; but in the present method with m = 1 (namely only with

2 basis function ) the maximum absolute error on the grid points Sinc is equal

to zero.

Example 2. Consider the first-order nonlinear Fredholm integro-differential

equation [4]

x y′(x)− y(x) =
4

5
x2 −

1

6
+

∫ 1

0

(x2 + t)y2 (t) dt, 0 ≤ x ≤ 1,

with the initial condition y(0) = 0. In this example we have

ρ0 (x) = −1, ρ1 (x) = x, g (x) = 4
5
x2 − 1

6
, k (x, t) = x2 + t, p = 2.
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By applying the method in Section 6, the expression of equation matrix

will be as follow,

P̂1 Q1 −Q0 −G−KbH Q̂0Q0 = 0,

where for m = 2 we have

P̂1 =

















1
20

−1
10

1
20

1
4

1
2

−1
4

−1
20

1
10

57
60

















, Q1 = C =







c0

c1

c2






, Q0 =

















1
60
c0 −

1
30
c1 +

1
60
c2

5
12
c0 +

1
6
c1 −

1
12
c2

19
60
c0 +

11
30
c1 +

19
60
c2

















,

G =

















−1
6

−1
6

19
30

















, Kb =

















0 1
2

1

0 1
2

1

1 3
2

2

















, H =
1

5

















1 1
2

1
6

1
2

2
3

1
2

1
6

1
2

1

















,

Q̂0 =

















67
1050

c0 −
1
75
c1 −

1
2100

c2 − 93
2100

c0 −
1
25
c1 −

33
2100

c2 − 3
1050

c0 +
1
50
c1 +

69
2100

c2

57
420

c0 +
1
10
c1 −

1
70
c2

31
105

c0 +
1
6
c1 +

4
105

c2 − 1
70
c0 −

1
10
c1 −

57
420

c2

− 69
2100

c0 −
1
50
c1 +

3
1050

c2
33

2100
c0 +

1
25
c1 +

93
2100

c2
701
2100

c0 +
182
525

c1 +
283
1050

c2

















.

That by solving above matrix equation c0 = 0, c1 = 1, c2 = 2 will be ob-

tained. Then by substituting values of c0, c1, c2 by y(x) = QT
0 φ(x), the result

will be as y(x) = x2, that is the exact solution.

Example 3. Consider the second-order nonlinear Fredholm integro-dif-

ferential equation [7]

y′′(x)+x y′(x)−x y(x) = ex− sin(x)+

∫ 1

0

sin(x). e−2ty2 (t) dt, 0 ≤ x ≤ 1, (23)
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with the initial conditions y(0) = y
′

(0) = 1 and the exact solution y(x) = ex.

We solve Eq. (23) by using the method in Section 6 with m = 5. The

comparison among the present method and method in [7] is shown in Table 1.

As we see from this Table, it is clear that the result obtained by the present

method is very superior to that by the method in [7]. Thus the result for

m = 7, in this Table will be presented. As we observed in this Table with

increasing the value of m, the resulted accuracy increased as well. Figure 1(a,

b).

Table 1: Numerical results for Example 3

x presented method method of [7] presented method

for m=5 for m=5, n=5 for m=7

0.0 2.5065E − 006 0 3.2038E − 009

0.2 3.8332E − 007 4.0000E − 007 7.1841E − 010

0.4 1.4274E − 007 8.1000E − 006 1.4151E − 010

0.6 2.5813E − 007 7.7300E − 005 4.0671E − 011

0.8 4.7475E − 007 4.2480E − 004 9.1044E − 010

1.0 2.5068E − 006 1.6413E − 003 3.7002E − 009

Example 4. Consider the first-order nonlinear Fredholm integro-differential

equation [6]

y′(x) + y(x) =
1

2
(e(−2) − 1) +

∫ 1

0

y2 (t) dt, 0 ≤ x ≤ 1,

with the initial condition y(0) = 1. The exact solution of this example is

y(x) = e−x. The absolute difference error for m = 3, 5, 7 in Table 2 is being

observed. In addition the last column of this Table indicates the existed result

in [6] for 34 basis function. As you can observe in the presented method for

the less basis function the more accuracy with respect method [6], can be seen.

Figure 1(c, d).
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Table 2: Numerical results for Example 4

x presented method method of [6]

m=3 m=5 m=7 for m=4

0.125 1.3471E − 004 1.7053E − 007 2.4509E − 010 9.4E − 006

0.250 9.4839E − 005 4.4145E − 007 1.0202E − 010 5.1E − 006

0.375 7.0662E − 005 1.9861E − 007 1.6139E − 010 3.0E − 005

0.500 1.3596E − 004 3.7164E − 008 3.2362E − 010 4.9E − 005

0.625 4.3458E − 005 3.3857E − 007 1.9197E − 010 5.5E − 005

0.750 1.1598E − 004 6.2605E − 007 6.6120E − 011 4.5E − 005

0.875 1.2047E − 004 9.7392E − 008 2.2417E − 010 2.1E − 005

Table 3: Numerical results for Example 5

x presented method

m=3 m=5 m=9

0.0 9.9522E − 004 2.5022E − 006 2.4740E − 012

0.2 4.2859E − 004 3.8321E − 007 1.9780E − 012

0.4 1.7370E − 004 1.4740E − 007 2.5981E − 012

0.6 2.2852E − 004 2.6432E − 007 3.8940E − 012

0.8 4.3482E − 004 4.7009E − 007 5.7709E − 012

1.0 9.4787E − 004 2.4950E − 006 3.3360E − 012

Example 5. Consider the first-order nonlinear Fredholm integro-differential

equation [5]

y′(x) = ex −
1

5
e−x2

(e5 − 1) +

∫ 1

0

e2t−x2

y3 (t) dt, 0 ≤ x ≤ 1, (24)

with the initial condition y(0) = 1 and the exact solution y(x) = ex. The

absolute difference error for m = 3, 5, 9 in Table 3 is being observed. As we

observed in this Table with increasing the value of m the resulted accuracy

increased as well. It is noted that with N = 5, the maximum absolute error on

the grid points Sinc in [5], is 3.72499 × 10−3; but in the present method with

m = 10, for equality basis function(11 basis function) the maximum absolute

error on the grid points Sinc is 3.4916× 10−11. Figure 1(e, f).



28 Application of the Bernstein Polynomials ...

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

y(
x)

(a)

 

 

approximate solution
exact solution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

−6

x

ab
so

lu
te

 d
iff

er
en

ce
 e

rr
or

(b)

 

 
m=5
m=6
m=7

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y(
x)

(c)

 

 
approximate solution
exact solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

x 10
−7

x

ab
so

lu
te

 d
iff

er
en

ce
 e

rr
or

(d)

 

 

m=5
m=6
m=7

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

y(
x)

(e)

 

 
approximate solution
exact solution

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x

ab
so

lu
te

 d
iff

er
en

ce
 e

rr
or

( f )

 

 
m=2
m=3
m=4

Figure 1: (a, c) Exact and approximate solution of Examples 3 and 4 for

m = 7, respectively; (b, d) Absolute difference error of Examples 3 and 4 for

m = 5, 6, 7, respectively; (e) Exact and approximate solution of Example 5 for

m = 9 and (f) Absolute difference error of Example 5 for m = 2, 3, 4.
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8 Conclusion

In this article, a numerical method for solving nonlinear Fredholm integro-

differential equations was purposed. As observed in this method, at first the

result of equation was considered in the form of expansion of Bernstein basis

functions of m-th degree. Then by using operational matrices of these polyno-

mials the mentioned equation was converted to a system of nonlinear algebraic

equations. One of the most important properties of this method is that when

the result of equation is in the form of a polynomial of degree ≤ m, the exact

solution is obtained. In addition this method has high relative accuracy for

small values of m, specially the time of calculations is short. Also between

value of m and accuracy of result is a direct relation, namely by increasing the

value of m the accuracy of result is increased as well.
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