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On a Two-machine Flow-shop Scheduling Problem 

with a Single Server and Unit Processing Times 
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   Abstract 

We consider the problem of two-machine flow-shop scheduling with a single 

server and unit processing times, and show that this problem is NP -hard in the 

strong sense. 
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1 Introduction  

In the two-machine flow-shop scheduling problem we study, the input instance 

consists of n  jobs with a single server and unit processing times. In the 

two-machine flow-shop scheduling problem we study, the input instance consists 

of n  jobs with a single server and unit processing times. Each job jJ  requires 
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two operations jO ,1  and ),...,2,1(,2 njO j  , which are performed on machine 

1M  and 2M , respectively. The processing times of job jJ  on machine iM , i.e., 

the duration of operation jiO , , is , 1i jp  , ( 1, 2)i  . For each job, the second 

operation cannot be started before the first operation is completed. A setup times 

jis ,  is needed before the first job is processed on machine iM .Each setup 

operation must be performed by the server SM , which can only perform one 

operation at a time. The objective is to compute a non-preemptive schedule of 

those jobs on two machines that minimize makespan. In the standard scheduling 

notation [5], the problem can be described as the max, 11,2 CpSF ji  problem. 

It is well known, S.M. Johnson [4], the max2 CF  problem has a maximal 

polynomial solvable. P. Brucker [1] has shown that the max,1,2 CppSF ji   

problem is NP -hard in the ordinary sense. The max, 11,2 CpSF ji   problem is 

still open problem [3].  In this paper, we will show that the max, 11,2 CpSF ji   

problem is NP -hard in the strong sense. 

 

2  Complexity of the max, 11,2 CpSF ji  problem 

Lemma 1 [3] Consider the max11,2 CpSF ij  problem with unit processing 

times 1, jip , where 2,1i  and .,...,2,1 nj   Then 
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where )(1 k  and )(1 k  denote the positions of job k  in sequences   and 

 , respectively. 

For a schedule S , let ( )iI S  , ( 1, 2)i   denote the total idle times on machine iM , 

we have  
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Theorem 1 The max, 11,2 CpSF ji   problem is NP -hard in the strong sense. 

Proof We prove the NP -hardness by a reduction from Partition3  [2], which is 

known to be NP -hard in the strong sense. An instance of the Partition3  

problem consists of 23 n natural numbers bn, , and nxxx 321 ,...,,  with 

2/4/ bxb i   for ni 31   and nbx
n

i
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.Does there exist a partition of the 

set }3,...,2,1{ n into n  sets nXXX ,...,, 21  of triples such that bx
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Given any instance of Partition3 , we define the following instance of the 

max, 11,2 CpSF ji  problem with two types of jobs: 

(1) P -job: 1,0,1, ,2,2,1,1  jjjjj pspxs   )3,...,2,1( nj   

(2) U -job: 1,1,1,0 ,2,2,1,1  jjjj psps    ),...,2,1( nj   

The threshold bnny )1(24   and the corresponding decision problem is:  

Is there a schedule S  with makespan )(SC not greater than 

bnny )1(24  ? 

Observe that all processing times are equal to b . To prove this theorem we 

construct instance of the max, 11,2 CpSF ji  problem a schedule 0S  satisfying 

bnnySC )1(24)( 0max   exists if and only if Partition3  has a solution. 

Suppose that Partition3  has a solution, and ),...,2,1( njX j  are the required 
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subsets of set X . Notice each set jX  contains precisely elements, since  

2/4/ bxb j   ,  and  nbx
m

j
j 



3

1

  for all nj ,...,2,1 . 

Let  denote a sequence of the elements of set X for which 

)},3(),13(),23({ jjjX j   for nj ,...,2,1 .The desired schedule 0S  

exists and can be described as follows. 

(a)  No machine has intermediate idle time, 

(b)  Machine 1M  process the P -jobs and U -jobs in order of the sequence  , 

(1,1) (1,2) (1,3) 1,1 (1,4) (1,5) (1,6) 1,2 (1,3 2) (1,3 1) (1,3 ) 1,( , , , , , , , ,..., , , , )n n n nP P P U P P P U P P P U          
 

(c) While machine 2M  process the P -jobs and U -jobs in the order of 

sequence ,  

),,,,...,,,,,( )3,2()13,2()23,2(,22,2)3,2()2,2()1,2(1,2 nnnr PPPUUPPPU    

as indicated in Figure 1. 

 

 

 

Figure 1:  Gantt chart for the max, 11,2 CpSF ji  problem 

Then we define sequences   and   shown in Figure 1. Obviously, these 

sequences   and   fulfills yC ),(  . Conversely, assume that this 

flow-shop scheduling problem has a solution   and   with yC ),(  . By 

setting )3,2,1()(  jjj  in (1), we get for all sequences   and  : 
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Thus, for these sequences   and   with yC ),(  . We may conclude that: 

(3) machine 1M  process jobs in the interval [ )3()1(,0 bnn  ], without idle 

times. In the interval [(3 1) , ( 1)(3 )]b j j j b     , ( 1, 2,..., 1)j n  , machine 

1M  process P -jobs, in the interval [ 1 (3 ), (3 1)]j j b j b     , ( 1, 2,..., )j n  

machine 1M  process U -jobs, (4) machine 2M  process jobs in the interval 

])1(24,3[ bnnb  , without idle times. In the interval 

[9 10 (3 ), ( 10 (3 ) 1]j j b j j b b        , ( 1, 2,..., )j n  machine 2M  process 

U -jobs, in the interval [( 1) (3 1), ( 1) (3 ) 1 3)]j j b b j j b b            

machine 2M  process P -jobs. Now, we will prove that the  
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then 21U -job cannot start processing at time b4 , which contradicts (4). If 
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ii bps , then there is idle time before machine 1M  process job 1,1U , 

which contradicts (3). Thus, we have 
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The set 1X  give a solution to Partition3 . 

Analogously, we show that the remaining sets nXXX ,...,, 32  separated by the 

jobs n,...,2,1 contain 3-element and fulfill bx
jXi

i 


for nj ,...,2,1 . Thus, 

nXXX ,...,, 21 define a solution of Partition3 .                          
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