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Abstract

This paper studies the periodic solution for non-autonmous second order
Hamiltonian system by using the Saddle Point Theorem. Some new results are
obtained under suitable conditions which are extension of the corresponding

results in the literatures.
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1 Introduction

Consider the second-order Hamiltonian system

{U(t)+Au(t)—'VF(t,Lf) =h(t), (o], O
u(0)—u(T)=u(0)—u(T)=0.
where Ais a (N x N )-symmetric matrix , he L'([0,T],R"), F(t,.) is continuously

differentiable for a.e. t<[0,T] and F(,u) is measurable on [0,T] for each

ueR"

F: [0,T]xR" —» R satisfies the following assumption:

(A) : F(t,x) is measurable in t for every xeR" and continuously
differentiable in x for ae. te[0,T], and there exist aec[R",R'],

beL'([0,T],R")
such that
|F(t,x)|+|VF(t, )| < a(x)b(t) -

Under assumption (A), the existence of periodic solutions is investigated for
the problem (1) when A(t) =0, h(t) =0 (see[1-4][6-13][15]). Many solvability
conditions are given, such as the boundedness condition (see[8]), the coercivity
conditions (see[10]), the convexity condition (see[11]), the sub additive condition
(see[12]), the periodicity condition (see[15]).

In the case A(t)=k?w?l ,h(t)=0, where k is a nonnegative integer,

W= 2_]_—” and | is the unit matrix of order N, it has been proved by Mawhin and

Willem in [7] that problem (1) has at least one solution under the condition that
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VE(t, )| < g(t)
forsome gel'(0,T), VYxeR,andae. te[0,T]. When
LT F(t,acosmat +bsinmat)dt - as |(a,b)| > in R*".
Tang in [9] consider problem (1), where A=0,h(t) =0, under the sublinear
nonlinearity condition, that is, 3f,g e L'(0,T;R") a« [0,1), such that
IVE(tx)| < f(t)x“ +g(t).
forall xe R, and a.e. t<[0,T]. The author proved that problem (1) has at least

one solution when
2a (T R N
X jo F(t,x)dt >+ as [x > in R".
Han proved the problem (1) in [14], where A(t) =k’®’l ,h(t) =0, has at
least one solution under the sublinear nonlinearity condition when
|(a,b)|_2a'|‘0TF(t,acosma)t+bsinma)t)dt—>oo as [ —>o in R".

Tang proved the problem (1) in [5], where A(t) is a continuous symmetric

matrix of order N, h(t) =0, has at least one solution.
In the present paper, h=0 instead of h=0 is considered, and A is a
(N x N) -symmetric , which is more general than the previous condition.
Denote that

(i)suppose N(A)z{XeRN|Ax:O} , then dimN(A)=m>1 , and

47%k?

T2

zo(A);

(i) N(A) = spanfey o, } j=12-m [ <h(t).a; >dt=0;
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N —2a (T

(iii)vxeR" ae. te[0,t] ‘x| IO Ft,x)dt > —o as X —>o ac(0l].
Set H: be the Hilbert space, the inner product can be defined as follows

T T
<uV>= jo <u(t),v(t) > dt+j0 <u(t),v(t) >dt.
Denote the norm by|u|. It follows from assumption (A) that the functional
@ on Higiven by
1¢1., 2 1,7 T T
o(u) ZEJO u(t) dt—EL < Au,u >o|t+j0 F(t,u)o|t+j0 <h,u>dt.

It is well known that the critical points of ¢ are the solutions of the problem (1).

2 Main results and proof

In this section , main results are given by using Saddle Point Theorem.

2.1 Properties

Theorem 2.1.1: Suppose that F(t,x) =G(x)+ H(t,x) Satisfying assumption (A)

2

and (i), (ii), (iii).There exists r < —‘:_L, f,g0e}(0,T;R"),and < [0,1) such

2

that

(VG(X) ~VG(y), x—y) > —r[x— Y[ )

forall x,yeR" and
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|VH (t, X)| < f (t)|X|a +g(t) 3)
for all xeR" and ae. te[0,T]. Assume that there exists M >0,N >0,

such that

VG(x) - VG(y)|<M|x—y|+N. (4)

forall x,y e R". Then problem (1) has at least one solution in H7 .

Theorem 2.1.2: Suppose that F(t,x) = G(x) + H (t,x) satisfying assumptions (A)

(i), (ii), (iii) and (2), and there exist BeC(R",R),
such that

VG(x)-VG(y)| < B(x-). (5)
forall x,y eR".Assume that there exists g e L'(0,T;R") such that

VH(EX)[< g(t). (6)
forall xeR" and ae. te [O,T]. Then problem (1) has at least one solution in

HE.

2.2 Proof of theorem

For ueH;, let U= _I_iLTu(t)dt and U(t)=u(t)—-U(t). The one has
[ ||fo < I—ZLT |U(t)|2dt (Sobolev inequality) .

and
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TZ
4

T T 2 _ . .
jo a)| < 2'[0 u)|"dt  (Wirtinger inequality) .

By counting, it can be obtained that
<@'(u),v>= LT (<u,v>-<Au,v>+<VF(tu),v>+<hyv>)dt.
et 2 (A
let q(u) :EL u(o) olt—zj0 < Au,u > dt
12 11 1
=—lul" == <(A+Du(t),u>dt==< (1 —K)u,u>.
Sl =5 ], <A+ huw S <(1-K)
where K:H; — H; is the linear self-ad joint operator defined, using Riesz

representation theorem, by

[ <(A+1u®).v) > dt =< Ku,v >
(u,v e H7). The compact imbedding of H} into C([0,T],R") implies that K
is compact. By classical spectral theory, H; can be decomposed into the
orthogonal sum of invariant subspaces for | — K
Hi=H ®@H ®H"

where H°=N(I-N) and H* and H~ are such that, for some & >0,

a2l if ueH-

q(u)z%”u”2 if ueH”*
that is

o .
|q(u)|25||u||2 if ueH:.

2.2.1Proof of Theorem 1.

Step 1. We prove that ¢ satisfies the (PS) condition.
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Suppose that {u.} isa (PS) sequence for ¢;thatis, ¢'(u,) >0as n—ow

and {o(u,)} isbounded.

From Wirting’s inequality that

([ juo[* dt) <[ | <

Combining (3) and Sobolev’s inequality that
[} (o) - Heoe
=U0T [<VH@EO+sD),T > dsdt‘
<[ [ £+ sa[Teoydsdt + || [ g(0)t)jdsct
<[ 2t @(a]" +@facyt + | [ g®Emjdsat
<2(u" +Ju[)[a]. f; f @de+[a], | ot
3(47r - rT )|| ”

47rT

2 (T Cvea1 T o
* 3 eyl TO 2l [ fodeal, [ gat

Ar
162

IA

j ()] dt+cl|u “ie (j (e[ de) B +c(j luc)[ dt)2

forall ueH, andsome positive constants ¢, ¢, and c,.
It follows from (2) and Writinger’s inequality, it can be obtained that
T
[, (Gu®) -Gt
T el _ _
= J'O J'O (VG(U +sd(t)),U(t))dsdt

- LT [ "(VG(T +sT (1) - VG (), T (t))dsdt

(7)

(8)
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= jOT [ 0%(VG(U +sT(t)) - VG(), st (t))dsdt

rT?
872

> [ [ rs’@ o[ ydsdt >~ [ uof o, 9)

forall ueH, . Hence we obtain

IoT< VH (t,u, (1)), U, (t) > dt‘

4 z_ T2 . _ 2a ] a+l . 1
T e AAOE SRR (O EO RS (N CCLR
and
T ~ (T2 7. 2
jo <VG(un(t)),un(t)>dt2—8ﬂ2 L o, @) ct,

for all n. Hence we have
)= ]< ¢'(u,).d, >

T - ~ ~
J'O (<u,,u, >—-<Au ,u >+<VF(tu)u, >+<hu, >)dt‘

=‘ [ a0 dt ~[ < Au,, & > dt+ [ (VG(u, (1).d, )t
+j0T (VH (t,u, (1)), T, (t))dt +j0T< h,T,(t) > dt |

>

- 2 T ~
un(t)\ dt- [ < Au,T > dt

k

+UOT< hiT(t) > dt‘
[} (TR €, ©).8 O+ [ (YO, 0.8, )et

4r® —rT?
1672

1 _ . _ pa
> = ol + [l . ] - J, la, @ dt —ca,

T o T ToaT
—c ([, () dt) 2 —cy(] [d, () dt)? a7 [ lu, @f dt.

A4r® —rT?
1672

1o . 2 . a
226 [[lafat+[n] ([ o - [} u, 0 dt - ¢,
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T o T ToaT
=y, 0, @ d) 2 —cs(f a0 dt)? - [[fo, 0 dt

1 4 T? Za
> (50~ ”16+Z )| o) dt - i —c,([] jaof dby K —cg(j 0, @) dty?
5j u@)[ dt—c, o —c (j (e[ de) T ¢ (j ju, (Of dt)2 (10)

for large n. By (7) and (10), it can be obtained that
SN |un(t)|2dt); ¢,. (11)
forsome c¢>0, c,>0,andall large n.
Combimng (4), Wirtinger’s inequality and Cauchy-Schwarz inequality that
[ (G, 1) -G(g,)dt

= [ [[<VG(, + s, (1)).0,(t) >dsdt

= [ [[<VG(, +sT,(1) - VG(T,). 1, (t) >dsdt

= jOT jol% <VG(T, +si, (t) - VG(T,), si, (t) >dsdt

<[ [ sMd, ®f + NI, @)dsat
s% [} B de+NVT ([ [3,0Fd)?

MT?
< j lu, ()] dt +

NTAT (T 2 s
o 0@ d)? . (12)

for all n.From the boundedness of {@(u,)}, (8), (11)and (12) that
Ll p 1,7 T T
<o(u,) 'EL U, (0) olt—Ej0 < Au,,u, >dt+ | F(t,un)dt+J.O <hu, >dt

:%LT lu, (©) dt - %LT < Au,,u, >dt + LT (G(u, (t)) - G(T,))dt
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+[ (HEu,©) - HEo)dt+ [ FET)dt+ [ <hu, >dt

o 12 z_ T2 2MT2 i . a+l
<=l + =T S [l O e e [+ [ g, @ ) 2

NTAT +27c, (7 o T
2], 0@ d)? [l Ju, |+ [} Ft.0,)dt

_8 6 +127° —rT? 4+ 2MT? a+l
— 71T67r2r T [ o O dt o (] a0 dt) +

NTT +2 ) o B
+%(J‘OT lu, @®)F dt)? + |, | + J'OT F(t,a,)dt .

for all large n and some constant c,,as ue H".
It follows from the boundedness of {(u,)}, (8), (11) and (9) that
T
> o(u, )_—j U, (1) dt——j <Au,,u_ >o|t+j0 (G(u, (t)) - G(T,))dt

+jo (H (t,u, () - H(t,T))dt +j0 F(t,Un)dt+LT< h,u, > dt

= ﬁ|anm—%QMam02—%qhmmnz

o+ [} F .,
for all large n and some constant c,,as ue H".
Hence {u,} is bounded implied by (iii). In fact, if not, we may assume that

U, > as n—»o without loss of generality.
Then from (9) we have
limin[m,[** [ F(t,0,)dt > o0

which contradicts
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X [ F(txodt > o
Since H; is self-reflexive, there exists a subsequence of {u } which weakly
converge u.
Inview of ¢'(u,) >0 and {u,—-u} bounded, one has ¢'(u)(u,—u)—0
and, hence <¢'(u,)—-¢'(u),u,-u>—>0 (n —> o) which implies that

o, —ul.. >0

n

According to Wirtinger’s inquality, we have |u, —u|,, -0 as n—oo.

T

In H;, u, — u.Thengsatisfies the (PS) condition..

Step 2. Some properities of ¢ are discussedon H° @ H".
Combining (8) and (9) , it can be obtained

rT?
8r?

UOT Gu®) —G(O))dt‘ - joT o)t

and
[NGIEROREIO

4r® —rT?

[ ot ([ aofd) + ([ aof ay-.

<
If u=u’+u*eH’@H", then

Lokt e s+ [ Frudt+ [[<hut > d
p(u) =5 < (1 -K)u'u >+j0 (t,u) t+j0< ut > dt

1

>=JSu”
2

o+ [ G HEW)d [ <hu > dt
Hi o Jo ! 0 '
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1 ¢ 2
zzajo luct)[* dt
+[1(GU)-G(O)dt+ [ (H(tu)-H©O)dt+[ <hu’>dt

2
>0 j ' |u(t)|2 dt—2 7 [ ol

Ax
BT I u[*dt—c, (], Juo)[dt) B —c(j u(o)f dt)?

_8r 51(;T I i) dt-c (j |U(t)|dt) > (I |u(t)|dt)2

and hence ¢ is bounded below on H®+H*.Hence, if H =0,¢ is bounded
below on H; and has a minimum by Proposition 4.4 in [1]. We consider
dimH™ >0.

Step 3. Some properities of ¢ are discussed on H"™.

u=u eH",then

L ' dt+[ <hus>d
(p(U)=§<(I—K)u,u>+I0 F(t,u) t+J'O< U >dt

<-Z j )| dt +

16—2 Cz(_[ |U(t)| dt) 2 +c;3(J. |U(t)| dt)2

8775+ 1T+ 4n” m et 1
= 2:_6:[2 [ d ey (] Jacof 2+ ([ ey

and p(u) > - as |u| > in H".
Step 4. Using the Saddle Point Theorem to complish the proof.

LetX =H;, X =H , X"=H°®H".

It follows from dim X~ < o, there existsR > 0, such that
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supgo<|nf(p,

Sr

where S, ={u e X"||u|| =R}.
@ can be proved that satisfies the all conditions of the Saddle Point Theorem.

Then problem (1) has at least one solution in HZ .

2.2.2Proof of Theorem 2:

First we prove the ¢ satisfies the (PS) condition. Suppose {u.} is a (PS)

sequence for ¢. Thatis {e(u,)} isbounded, thatis ¢'(u,) >0 as n— o
Using (2) and (6), Sobolev’s inequality and Wiringer’s inequality. We obtain

[0,]1> < ¢'(u,). 0, >|

T < ~ ~
=), (<u,,u, >—<Au,,u, >+<VF(tu,),u, >+<h,u, >)dt‘

:‘E|un(t)|2dt—ﬂ< Au,, T >dt+ [ (VG(u, (1) - VG(T,).T, ()t
+ [ (VH (U, ). T,@)dt+ [ <h,T, ) >dt |

1o . _ _

220 [ o, de—r [ o, @ dt—[,], [ at+[a, ], [ ncet
1oy > . u 3

Z§5L |un(t)|zo|t—mj0 lu, (©)"dt —c, (jo u, ()] dt)?

rT?

_(_5_4 _

j u, () dt—c (j u, ) dt)2. (13)

for large n and some positive constant c,.

2

Since r< —A_'riz, (13) and (7) imply that
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o[ <ce. (14)
forall n and some positive constant c,.
Now it follows from the boundedness of {@(u,)}, (5)(6)(14) and Sobolev’s
inequality that
C9 S(D(Un)
17, 2 1 T T
:EL U, (0) dt—E_[O <Au,u >dt+j0 F(t,u)olt+j0 <h,u>dt
A 2 1, T _
_EL U, (©)] olt—Ej0 <Au,u >o|t+j0 F(t,0,)dt
"(F(tu, ()= F T )dt+ [ <h,u>dt
+ (Fu,@)-FEo))dt+ | <hu>
1m,. 2 1 T ol _ ~ L~
ZEL U, (0) olt—Ej0 < Au,u> o|t+j0 jo (VG(T, +si, (1)) - VG(T,), T, (t))dsdt
T el _ _ _ T
+j0 jo (VH(t,T, +sun(t)),un(t))ols,olt+jO <h,u>dt
1 ¢7,. T _ - T ol -
<->o jo U, (t)[dt + jo F(t,0,)dt+[T, . jo jo B(sU, (t))dsdt

+I][ gt + [, [ ht
1 .7, 2 T _ T2y
S‘§5L ju, O dt+ | F(t,T,)dt+c,o (] [u, ] dt)?. (15)

forall n and some real constants ¢, and c,, as ue H"~
1,7, 1, T _
Cs 2 p(U,) =3 jo lu, ()| dt -3 jo < Au_,u_ >dt + jo (G(u, (t)) - G(T,))dt

[ (HtU,@) - HET)dt+ [ FEa)dt+ [ <hu, > dt

a+l

)j u()[*dt—c (j u(ldt) 2 —c (j |u(t)|dt)2

T +4n°

1
> (=6 -
(2 1672

+ OTF(t,Un)dt.
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some real constants ¢, as ueH".

So using (iii)(7)(14)(15),we obtain [U,|<c,,,

for all n and some positive c,,. Furthermore {u.} is bounded by (14). Hence

the (PS) condition is satisfied. In a way similer to the proof of the Theorem 1, we

can prove that ¢ satisfies the other conditions of Saddle Point Theorem.

Hence Theorem 2 holds, That is the problem (1) has at least one solution in H, .
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