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Oscillation of Neutral Delay Partial
Difference Equation

Guanghui Liu*

Abstract

In this paper, some sufficient conditions for oscillation of the neutral delay partial

equation :

A1,2('%n,n - CAn—t, n—c) + z I:)| (ma n)Anfki’ n-l, = 0

are established. Our results as a special case when ¢c=0, p=1, involve and

improve some well-known oscillation results.
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1 Introduction

It is well known that the partial difference equations appear in considerations of

random walk problems, molecular structure and chemical reactions problems
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[1-3].Oscillation and nonoscillation of solutions of delay partial difference

equations is receiving much attention [4-7].

In this paper, we consider the neutral delay partial difference equation

Al,z(An,n - CAn—r,nfc) + i F: (ma n)Anfki,n—li = 0 4 (1 . 1)

where  mneN;={0,1,2,...} and 1,0k,|(i=12,--,u) are nonnegative
integers, the coefficients {Pi(m,n)} c NO2 = {0,1,2,,,,}2 is a sequences of
nonnegative real numbers, and (0 <c¢<1. We defined

A(Znn) = Znin t ona = Zon> Znn = Ann ~CAL o
A solution {Amn} of (l.1) is said to be eventually positive if A >0 for all

large m and n. It is said to be oscillatory if it is neither eventually positive nor

eventually negative.

As a special case of Eq. (1.1), B.G.Zhang et al.[5] considered partial difference

equation
An+l,n + An,n+1 - An,n + Pm,n A‘n—k,n—l =0, (1 2)
And proved that: for all large m, n, and there exists & such that
(k+1)<
P >&>—" (1.3)
m,n 5 (k +1 +1)k+|+1

Then every solution of equation (1.2) oscillates.

2 Main Results

In this section, we give some oscillation for Eq.(1.1). In order to prove our main

results, we need the following auxiliary results.
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Lemma 1. Suppose that {Am,n} is an eventually positive solution of equation
(1.1), then :

(1) ASZ,,)S0, and Z is monotone decreasing in m , n , that is
Z

W <L L Lo

m+1, m,n+1 <
(i) z,,>0.
Proof. Since {Aﬂ n} is an eventually positive solution of (1.1), then there exists

enough M, N, when m>M, n> N, such that

Ao >0, A >0, A >0, 1=12,.,u.

From (1.1), we obtain

7

A1,2 (Zm,n) = _z I:)| (ms n)An—ki»”—li < O .
i=1

That is

Zon+Z 200 <0.Z000 <2002

m,n+l ~ “m,n

<Z, .

m+1,n m,n+1

Next, we show that 7 is eventually positive in m,n. If Z <0, then there

existsd > 0, for all large M ,N,, when m>M , n>N,,suchthat 7 ~<-d.

An,n - An—r,n—a S An,n _CAT]—‘[,I']—U = Zm,n S _d’ An,n S _d + An—r,n—o' .
Therefore,
An+hr,n+ho— <-d+ Am(h—l)r,m(h—na <-2d + An+(h—2)r,n+(h—2)a Seer S _(h + l)d + A’n—r,n—a

as h—ow,A , . ——oo .Which contradiction to {Amn} is an eventually

positive solution. This completes the proof. 0
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Theorem 1. Assume that

A A

)7
liminf(1+¢)) P(m,n) > !

e 2.1)
i (k+D (T +D™

where  k =min(k,,k,,....k,) » [=min(l,l,...,I,), then every solution of
equation (1.1) oscillates.

Proof. Suppose to the contrary that the equation (1.1) has a nonoscillatory

solution {Amn}.Without loss of generality, we may assume that {Amn} 1S an

eventually positive solution of equation (1.1), then from (1.1), we have
U
0=A,(Z, )+ RMMA_ .,
i=1

U
= Al,z (Zm,n) + Z Pl (m= n)(zm—ki n=l; + C'A\'n—ki —7,n—l; —cr)

i=1

M
> A, (Zy)+ D RMNZ, o +CZ

i=1

m—k;—z,n-l; —o‘)

By Lemma 1, we have
7]
A Z,,)+ 2(1 +oP(mn)Z . <0,
=1 ’
That is
7
+Zpni =L <2 (1+CPMMZ . (2.2)

i=1

z

m+1,n

dividing the both sides of (2.2) by Z , we have

Z VA # Z . -
T 1) (14 0P (m,n) (2.3)
Zm,n Zm,n i=1 Zm,n
yA Z .
Set r, , =—""t, A =—"—.ltiseasytoseethat r >1, t >I, foralllarge
4 v Z : ’
m+1,n m,n+1

m and n. {rm’n },{tm’n} are bounded. Let liminft, , =b>1, then from (2.3),

m,n—o0

we have
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1 1 Z Zm—R n—i
—t—<1- 1+c)P (m,n)———
rm,n tm,n IZ=1:( ) I ( ) Zm,n
i
o Z(l + C)P (m r])rm K,n m Retn rm—l,“tm—f,ntm—hl,n a m -Ln (2 4)
i=1
from (2.4), we get

hmsupi+hmsupi=l+é <1- llmll’le(l-l-C)P(m n)a ot
a

mn—w I mnoo Lo

or

hmnrgan(Hc)P(m n)<(1___%)a;b'" L@ kl?g’l D_ tan)

Now it is easy to see that

A A

max f(a,b)=— . Alh ,
a>1,b>1 (k+1)k+1 (I +1)|+l

hence we obtain

A A

|
K+ D (@ +n+

M
liminf )" (1+¢)P,(m,n) <
m,n—o0 o1

which is a contradiction to (2.1).this completes the proof. 0

According to theorem 1, if ¢ =0, 1z =1, we obtain the following result:

Corollary 1. Forall large m, n, there exists £ such that

k* §
. 2.5
Fn 26> k+D"" 1+ @)

Then every solution of equation oscillates.

Remark 1. From Corollary 1, compare (2.5) with (1.3), obviously
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k* | § (k + 1)+
k+D*" A+D"  (k+ 1)<

Theorem 2. Assume that

liml}}_i)r;fi(l 1 ¢)P (M, n)2% % 1, 2.6)

where & = min(k;,1.),i =1,2,--- 1, then every solution of equation (1.1) oscillates.
Proof. Suppose to the contrary that {Am n} is an eventually positive solution of

Zm,n

equation (1.1). Set s =

. It is easy to see that s >1, for all large m
7 ,

m+1,n+1

and n,s . isbounded. Let liminfs, & = /4 >1,then from (1.1) and by Lemma 1,

we have
7]
A1,2(Zm,n) + Z(l + C)P| (ma n)zm—g‘i,n—ﬁi < 0 :
i=1
That is
2 Zm+1 n Zm n+l1 Z Zm_é n-¢
< —+——<1-)> (1+c)P,(m,n)—————,
Soa Zmn Zmn zl( JRmn) Zon
2 H
— <1 _Z(l + C)P| (ma n)Smf.fi,n—gi Sm—§i+1,n—§i+1 e Sm—l,n—l ’ (27)
Sm,n i=1

Taking supremun limit on both sides of (2.7),we have
2 PR £
3 <1-liminf ) (1+c)R(m,n)A ,
m,n—o0 i1

which implies g >2 and

liminfi(lJrc)Pi(m,n) g 5_]2 <1. (2.8)

m,n—o 4=
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Noticed that

N R i
nﬂlgl(ﬂ_) 2 £ ’

Hence we have

11m1an(I+C)P(m n)25 % <1,

which contradicts (2.6). This completes the proof. O

Corollary 2. Assume that

u H — _E
a((Tlimint > (1+ )P, (m,m)* > 25_‘5— (2.9)

where g:l(ié), & =min(k,,l.), i=1,2,..., . Then every solution of (1.1)

oscillates.

Proof. In fact, from (2.8) we have

1

i Gi+l -
121iminf2(1+c)e(m,n)§ . > u(Tliminf(1+ )P (m, n))*
m,n—oo o1 — i=1 m,n—>ow

Hence
1> ,u(l_[hmmf(l—i-C)P(m ot € ;1)5“ .
That is
1 55
(Hhmmf(l +C)P.(m,n))* <

25 (E +)T

which contradicts (2.9).The proof is completed. 0
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