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The dynamical behavior of a SEI model

with Acute and Chronic Stages

and nonlinear incidence rate
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Abstract

According to consequent system of a SEI model, a model with vi-

tal dynamical and nonlinear incidence rate of saturated mass action is

proposed. By making use of differential equation and characteristic of

hepatitis C, we analyze the equilibria of the model with nonlinear inci-

dence rate. When the basic reproduction number R0 < 1, the disease

free equilibrium is stable and there are no endemic or two endemic .

And we obtain the condition of a unique endemic equilibrium of the

system.
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1 Introduction

In this paper, the stability of the equilibrium of a chronic stage on the

disease transmission and behavior in an exponentially growing or decaying
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population is the focus of this paper. The framework is brought into the case

of hepatitis C, a disease typically characterized by a long chronic stage. As is

well known to us, Hepatitis C, formerly referred to as ’non-A, non-B’ hepatitis,

is an important infection of the liver which was first considered as a separate

disease in 1975. In practice, the vast majority of patients with acute hepatitis

C develop a chronic infection which is characterized by detection of HCV RNA

for a period of at least six months after a newly acquired infection. The most

common symptoms of acute hepatitis C are fatigue and jaundice. However,

the majority of cases, including those with chronic disease, are asymptomatic.

This makes the diagnosis of hepatitis C very difficult and can be explained

clearly why the HCV epidemic is often called ’the silent epidemic’ [1]. No

vaccine is available for hepatitis C. The high mutability of the hepatitis C

genome [2] composes its development. There is no evidence that the successful

treatment of HCV gives any kind of partial or temporary immunity. Hence

the models developed fall within the class of models that treated or recovered

individuals move back to the susceptible class.

In fact, the only two works known to the authors are [5]. A model struc-

tured by age-since-infection has also been considered in relation to HIV in [6].

Reade et al. discussed an ODE model for infections with acute and chronic

Stages with feline calicivirus [3, 4]. In this paper, We suppose that the disease

has an exposed period and then the patients enter into the acute and finally

they went through the chronic stage. The patients have no immunity after re-

covering and become susceptible again. We part the population in researched

area into four classes: S-susceptible; E-exposed; I-infected with acute hep-

atitis C; V -infected with chronic hepatitis C. The total number in t time

is

N(t) = S(t) + I(t) + V (t) + E(t).

2 Basic assumptions and the Mathematical model

The basic demographic assumption is:

(i) The birth rate of the population is b ( b > 0), and the death rate is d

( d > 0).

The epidemiological assumptions are:

(ii) The disease can not be transmitted during the exposure period.
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(iii) Only the acute and chronic stages are differentiated. Patients with either

acute or chronic infections are capable of transmitting the disease. Once a

person contacts with a susceptible individual he must be infected. β is a

coefficient. Total acutely infective rate in this model is

βI

1 + α1I
,

where βI measures the infection force of the disease and 1
1+α1I

measures

the inhibition effect from the behavioral change of the susceptible individuals.

Each chronically infective makes γ contacts per unit times, and then the

numbers of contacting susceptible individuals per unit times are respectively
βI

1+α1I
S
N

and rSV
N
. Hence, the incidences of the total acutely infective and the

total chronically infective are respectively

βI

1 + α1I

S

N
and γ

SV

N
.

(iv) ε ( ε > 0 ) and k (k > 0) are respectively the rate of progression to acute

stage from the exposed and the rate of progression to chronic stage. α (α > 0 )

is the recovery rate for the chronic state.

(v) The acute stage of infection is short and often asymptomatic and there is

no possibility for treatment during this state.

(vi) Since the disease-induced death rate is relatively low, it is ignored.

Under the assumptions (i)-(vi), we construct the following model:
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















Ṡ(t) = bN − βI

1 + α1I

S

N
− γV S − dS + αV,

Ė(t) =
βI

1 + α1I

S

N
+ γV

S

N
− dE − εE,

İ(t) = εE − (d+ k)I,

V̇ (t) = kI − (d+ α)V,

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0

(2.1)

By adding the equations of system (2.1) we obtain

Ṅ(t) = (b− d)N
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We set r = b − d, then Ṅ(t) = rN, hence N = N0e
rt, terefore r gives

the growth rate of the population, if r > 0, that is b > d, the population

exponentially grows, if r < 0, that is b < d, the population exponentially

decreases. The case r = 0 or b = d implies that the population is stationary.

Setting N = 1, then the system (2.1) becomes the following equivalent system:































Ṡ(t) = b(1− S)− βIS

1+α1I
− γV S + αV,

Ė(t) = βIS

1+α1I
+ γV S − (b+ ε)E,

İ(t) = εE − (b+ k)I,

V̇ (t) = kI − (b+ α)V,

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0

(2.2)

Letting E = 1 − S − I − V substitute E in the third equation of (2.2) and

removing the second equation, we obtain



















Ṡ(t) = b(1− S)− βIS

1+α1I
− γV S + αV,

İ(t) = ε(1− S − I − V )− (b+ k)I,

V̇ (t) = kI − (b+ α)V,

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0

(2.3)

Setting Γ = {(S, I, V ) ∈ R3 | S > 0, I > 0, V > 0, S + I + V ≤ 1},
obviously Γ is a invariable set of (2.3).

3 The stability of disease free equilibrium

Let the right hand side of equations (2.3) be zero, one can verify that model

(2.3) has one disease free equilibrium at P0 = (1, 0, 0), The basic reproduction

number of system (2.3) R0 is defined as

R0 = ε
β(b+ α) + kγ

(b+ α)(ε+ b)(k + b)
=

βε

(k + b)(ε+ b)
+

kεγ

(b+ α)(ε+ b)(k + b)
.

The first term
βε

(k + b)(ε+ b)
can be interpreted as the contribution to the

reproduction number due to secondary infections generated by an infective

with acute hepatitis C. Naturally , it increases of effective contact rate of
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chronic individual, γ. The reproduction number R0 has a more complicated

response to variations of the rate of progression to chronic stage, k. Because

dR0

dk
= ε

b(γ − β)− βα

(b+ α)(ε+ b)(k + b)2
,

it increases, when b(γ − β) − βα > 0, and decreases when the opposite in-

equality is valid. In particular, when b(γ − β)− βα = 0, R0 can not change

as k varies. However, the probability of transmitting the disease from an indi-

vidual with acute infection is larger than that from an individual with chronic

infection, that is, β > γ. Therefore, we expect that for realistic values of the

parameters R0 will decrease as the rate progression to chronic stage increases.

Theorem 3.1. When R0 < 1, the disease free equilibrium P0 is locally stable.

Proof. The matrix of system (2.3) at P0 is






−b −β −γ + α

−ε −ε− k − b −ε

0 k −α− b






.

Therefore its characteristic equation at P0 is

λ3 + Aλ2 +Bλ+ C = 0, (3.1)

where A = α + ε + 3b + k, B = (b + α)(ε + k + 2b) + (k + b)(ε + b) − βε,

C = (b + α)(k + b)(ε + b) − ε[β(α + b) + kγ]. When R0 < 1, A > 0, C > 0,

it follows that form C > 0 and (α+ b)(k + b)(ε+ b)− βε(α+ b) > 0. That is

(k + b)(ε+ b)− βε > 0, therefore B > 0.

In the following, we will calculate AB − C.AB − C = (α + ε + 2b)[(α +

b)(ε+k+2b)+(k+b)(ε+b)−βε]+(k+b)[(α+b)(k+b)+(k+b)(ε+b)−βε]+

ε[β(α+ b)+kγ] > 0. The last inequality is due to R0 < 1. By Routh-Hurwitz

theorem, the roots of the equation (3.1) all have negative real parts. Therefore

when R0 < 1, the disease free equilibrium P0 is locally stable.

Lemma 3.2. Assuming f : [0,∞) → R is bounded, k ∈ L1(0,∞), then

lim
t→∞

sup|
∫ t

0

k(θ)f(t− θ)dθ| ≤ |f |∞ ‖k‖L1(0,∞),

where |f |∞ = lim
t→∞

sup|f(t)|.
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Theorem 3.3. When R0 < 1, the disease free equilibrium P0(1, 0, 0) is glob-

ally stable.

Proof. By Theorem 3.1, it can prove that P0 is attractive globally for

R0 < 1. We note that the global attractive of P0 is equivalent to that of the

disease free equilibrium (1, 0, 0, 0). The second equation of (2.2) yields

Ė(t) ≤ (βI + γV )− (ε+ b)E.

Firstly, we solve the comparative equation ẋ(t) = (βI+γV )− (ε+ b)x, which

yields

E(t) = E0e
−(ε+b)t +

∫ t

0

(
βI

1 + α1I
+ γV )Se−(ε+b)(t−S)dS.

By the comparative principle, we have :

lim
t→∞

supE(t) ≤ lim
t→∞

sup

∫ t

0

[
βI

1 + α1I
(t− S) + γV (t− S)]e−(ε+b)(t−S)dS

From the Lemma 3.2, we have

lim
t→∞

supE(t) ≤ [β lim
t→∞

supI(t) + γ lim
t→∞

supV (t)]

∫

∞

0

e−(ε+b)SdS

=
β

ε+ b
lim
t→∞

supI(t) +
γ

ε+ b
lim
t→∞

supV (t) (3.2)

By the last equation of (2.3), we have

V (t) = e−(b+α)tV0 + k

∫ t

0

e−(b+α)SI(t− S)dS.

Therefore,

lim
t→∞

supV (t) ≤ k lim
t→∞

supI(t)

∫

∞

0

e−(b+α)SdS

=
k

b+ α
lim
t→∞

supI(t). (3.3)

Substituting lim
t→∞

supE(t) of inequality (3.2) for the right side of the inequality

(3.3) yields

lim
t→∞

supE(t) ≤ β

ε+ b
lim
t→∞

supI(t) +
γk

(b+ ε)(b+ α)
lim
t→∞

supI(t). (3.4)
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By the second equation of (2.2), we obtain

I(t) = I0e
−(k+b)S + ε

∫ t

0

E(S)e−(k+b)(t−S)dS.

Therefore

lim
t→∞

supI(t) ≤ ε

k + b
lim
t→∞

supE(t), (3.5)

Noting the inequality (3.4), we have

lim
t→∞

supE(t) ≤ [
βε

(ε+ b)(k + b)
+

εγk

(ε+ b)(k + b)(b+ α)
] lim
t→∞

supE(t)

= R0 lim
t→∞

supE(t) (3.6)

By R0 < 1 and (3.6), we have lim
t→∞

supE(t) = 0, and lim
t→∞

supE(t) = 0.

By the inequality (3.5) and (3.3), we have lim
t→∞

supI(t) = 0, lim
t→∞

supV (t) = 0.

From S(t)+E(t)+V (t)+I(t) = 1, it follows that lim
t→∞

supS(t) = 1. Therefore,

when R0 < 1, the disease free equilibrium P0(1, 0, 0) is globally stable.

Theorem 3.3 indicates that the epidemic can not be prevalent only if R0

is smaller than 1. From the above analysis, we know that R0 will decrease

when β and γ decrease or k increases. Numerical simulations confirm that

the disease free equilibrium P0 is asymptotically stable as proved in Theorem

3.3.

4 Existence of the endemic equilibrium

Denote

A1 =
〈b[(k + b)(ε+ b+ α) + εα] + αεk〉(b+ α)α1 + g1g2

γkεα1

,

R̂0 =
4γkα1εg1g2(b+ α)

〈g1[(b+ α)(bα1 + β) + γk] + (b+ α)α1εk(α− γ)〉2 + 4γkα1g1g2(b+ α)
,

where g1 = (k + b)(ε + b + α) + εα, g2 = β(b + α) + γk. From the analysis,

we can get the result regarding the number of endemic equilibrium.

Theorem 4.1. For the model (2.3), with A1 and R̂0 defined as above, we

have
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1. When R0 > 1, there is a unique endemic equilibrium E∗.

2. When R0 = 1 and b + α > A1, there is a unique endemic equilibrium

E∗.

3. When R0 ≤ 1 and b+ α ≤ A1, there is no endemic equilibria.

4. When 1 > R0 > R̂0 and b + α > A1, there are two endemic equilibria

E∗ and E∗.

5. When R0 = R̂0 and b + α > A1, E∗ and E∗ coalesce at a unique

endemic equilibrium of multiplicity 2.

6. When R0 < R̂0 and b+ α > A1, there is no endemic equilibria.

Where, when exist, E∗(S∗, I∗, V ∗) and E∗(S∗, I∗, V∗) are the corresponding

equilibrium, and I∗ =
−b1 +

√
4

2b0
, I∗ =

−b1 −
√
4

2b0
.

Theorem 4.2. For the model (2.3), with A1, β∗

1 , β∗

2 defined as above, we

have

1. When β > β∗

1 , there is a unique endemic equilibrium E∗.

2. When β = β∗

1 and b + α > A1, there is a unique endemic equilibrium

E∗.

3. When β ≤ β∗

1 and b+ α ≤ A1, there is no endemic equilibria.

4. When β∗

2 < β < β∗

1 and b + α > A1, there are two endemic E∗ and

E∗.

5. When β = β∗

2 and b+α > A1, E∗ and E∗ coalesce at a unique endemic

equilibrium of multiplicity 2.

6. When β < β∗

2 and b+ α > A1, there is no endemic equilibria.
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