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Abstract 

This paper describes the use of qualitative stability applied to nonlinear systems with 

reference to ecological models.  The principles of qualitative stability are outlined for 

linearised systems.  The requirements necessary for this special condition are given with 

an example. A modified Jacobian matrix is evaluated using a Hessian expansion for the 

nonlinear terms following the method of Saleh and Davidsen.  Some observations are 

made about the possibility of achieving Qualitative stability for the nonlinear case. 

A predator prey example is examined showing that although the linearised system is 

qualitatively stable the nonlinear case is not necessarily stable away from the equilibrium.  

The time varying eigenvalues show periods of both instability and stability which 

converge to stable behaviour as the initial conditions are made closer to the equilibrium 

values.  Analysis displayed here illustrates the possibility of finding a region of the 

nonlinear system that is qualitatively stable. 
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1  Introduction  

In engineering and science significant use is made of models to enable 

performance predictions of both human made and natural systems. Studies of 

physical and human systems are based both on experiments and analysis 

incorporating the decision processes used to control them. The behaviour of these 

systems depends on the initial conditions and system parameters. It is clear, from 

the study of chaos theory, that small variations in the initial conditions can make 

substantial differences to the overall behaviour of the systems. Thompson and 

Stewart [1] state that chaotic behaviour is unpredictable over long time scales 

because any two trajectories starting close to a chaotic attractor will separate as 

they progress in time. This separation rate depends on the largest Lyapunov 

exponent (Kapitaniak [2]) related to the system eigenvalues. If the system 

parameters change or are not those of the nominal value then we cannot guarantee 

how close the system will come to a chaotic state. Traditionally, due to lack of 

analytical and computer tools, linear systems were the only systems whose 

response could be computed.  Stability of such linear systems was treated as a 

convenient way of assessing the behaviour of a given system due to the amount of 

effort required to obtain the system response. As outlined by Bennett [3], such 

stability criteria were developed by Routh [4], Hurwitz [5] and justified by 

Lyapunov’s [6] first theorem which stated that “in a small neighbourhood of the 

origin where the origin of a perturbed system is a point of equilibrium, then a 

nonlinear system can be approximated by its’ linearization about the origin”. This 

principle of assessing the stability of nonlinear systems around the locality of 

equilibrium point using the Jacobian (Siljak [7]), (Khalil [8]) is a technique that 
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has served analysis very well.  An important practical reason for stability 

analysis is the desire of engineers to design systems that can be both predicted and 

controlled. However in ecological and economic systems nonlinear sets of 

equations cannot be “designed out”. Methods were developed by May [9] and 

others to determine a set of criteria that could allow stability of equilibriums for a 

wide range of parameters. An important set of criteria have been developed for 

linear systems to facilitate estimations of system stability, an essential part of 

control.  

The purpose of this paper is to see what modification is possible to extend the 

principle of qualitative stability to nonlinear systems. A short review of the 

Qualitative stability follows with an extension to nonlinear systems via a higher 

order expansion to the Jacobian. An example of the wider sign stable region found 

for a predator prey problem is then described.  

 

 

2  Qualitative Stability 

The concept of qualitative stability and the problems of stability of large 

chains and networks of elements in systems has had many contributors since the 

1960’s including significantly Lancaster [10], Quirk & Ruppert [11], Levins [12], 

Maybee & Quirk [13], by the seminal paper of Gardner and Ashby [14], Quirk 

[15], May [16], [17] & [9] and Jeffries [18]. The work of Gardner and Ashby 

showed that there was a limit to the number of interactions that could be allowed 

in any system whilst maintaining stability. It was not until the paper of May [16] 

that the significance of the application of these methods to ecological systems and 

similar became clear.  The conditions he described were necessary but not 

sufficient.  This was later remedied by Jeffries [18] by inventing the “colour” 

tests that provided the sufficient conditions for guaranteed sign stability. Jeffries 

showed that the five conditions M1-5 could not distinguish between neutral and 
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asymptotic stability. This was achieved with the colour test. 

These authors were concerned with both ecological and economic systems 

where precise observations were lacking or almost impossible to obtain.  The 

suggestion presented here is that for ecosystems the population of species i is 

affected, increased, unaffected or decreased by species j.  In this case the 

conventional approach of examining the system matrix eigenvalues becomes 

impracticable. May [16] and Jeffries [18], developed with others the concept of 

qualitative stability.  In this approach the stability of the system matrix is 

determined from the sign characteristics of the elements.  The first order set of 

differential equations is represented by equation 1. 

x(t)(t)x A=                 (1) 

Matrix A is said to be Qualitatively Stable if a matrix B of the same sign pattern as 

A 

(sgn (bij) = sgn (aij)  i, j) is Hurwitz stable for any magnitude of bi,j. 

Thus the concept of “qualitative” or “sign Stability” implies stability as 

obtained from Routh-Hurwitz conditions (D’Azzo  & Houpis [19], Ogata [20]) 

with negative real parts to the eigenvalues. 

Examples of a system where these factors can be represented qualitatively 

are: 
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Elements of the matrices are represented by positive, negative signs or zeros.  

These conditions were couched in terms appropriate for ecological systems and it 

wasn’t until Yedavalli [21] put these conditions into a form that scientists and 

engineers could readily use. 

The following restated from Deverakonda [22], constitute the requirements 

for qualitative or “sign” stability for a system of state equations: 
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𝑀1. 𝑎𝑖𝑖 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

𝑀2. 𝑎𝑖𝑖 < 0 for at least one i 

𝑀3. 𝑎𝑖𝑗𝑎𝑗𝑖 ≤ 0 𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖 ≠ 𝑗 

𝑀4. 𝑎𝑖𝑗𝑎𝑗𝑘 … 𝑎𝑞𝑟𝑎𝑟𝑖

= 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖, 𝑗,𝑘, … 𝑞, 𝑟 

𝑀5. 𝑑𝑒𝑡(𝐴) ≠ 0 

𝑀6.𝑇ℎ𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑠𝑡 𝑭𝒂𝒊𝒍 𝑡ℎ𝑒 𝑐𝑜𝑙𝑜𝑢𝑟 𝑡𝑒𝑠𝑡  

The colour test is described by Yedavalli [21] as: 

“ct1.  Each (i,i) element that is negative is a black node denoted abi,bi. 

ct2. Each (i,i) element that is zero is a white node and denoted awi,wi . To pass this 

condition there must be at least one white node.  No zero diagonal elements means 

the colour test is failed. 

ct3. Form all the products awi,wj awj,wi . Passing this condition implies that there is at 

least one of these products that is negative.  If there is only one white node in which 

case there is no indicated possible product implies that this condition is failed. 

ct4. Form all the products abj,wi awi,bj . passing this condition implies that if, for each 

fixed bj black node, the product abj,wi awi,bj is negative, then another product abj,wk 

awk,bj is also negative for some wk ≠ wi.  If there is only one product possible, then 

passing this condition implies that this product is negative. If the products formed 

under this condition are all zero or all negative, it implies passing this condition.” 

In the case of the two systems above, matrix 1 is qualitatively stable and matrix 2 

is not.  Yedavalli [21] has applied these concepts to the design of robust 

spacecraft control systems.  

Ecological and linear control systems are often interpreted in terms of signed 

digraphs as in Figure 1.  This system can be shown to be qualitatively stable.  

To illustrate the methodology conditions M1-6 will be applied to system 1 in 

Figure 1. 
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Figure 1: Digraph of System 1 

 

The sign matrix Q for this system is: 

𝐐 = 𝑠𝑖𝑔𝑛 𝐉 = �
0 + +
− 0 0
− 0 −

�               (2) 

For ecological systems: 

M1.  This corresponds to there being no positive loops on any state (species), i.e. 

no positive feedback. 

M2. At least one negative loop for some state (species) in the graph. 

M3. No pair of like arrows connecting a pair of states (species) 

M4. No cycles connecting three or more states. 

M5. No node devoid of inputs. 

This matrix example satisfies all these 5 conditions. 

The matrix, in equ. 2, fails ct4 and therefore the system it represents is 

qualitatively stable. 

Recent developments by Allesina and Pascual [23] and Pawar [24] building 

on the work of Fox [25] have examined the nearness to sign stability in concepts 

labelled quasi sign stability by determining the sign of the dominant eigenvalues 

and the interaction strengths. 
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2.1. Nonlinear Eigenvalue analysis 
Saleh and Davidsen [26] have extended the use of eigenvalue analysis to 

nonlinear models. They used a higher order Taylor expansion to allow a better 

approximation to be achieved as follows: 

𝒙(𝑟)̇ = 𝒙𝟎(𝑟)̇ + 𝑔𝑟𝑎𝑑𝑟𝑇(𝒙 − 𝒙𝟎) + 0.5(𝒙 − 𝒙𝟎)𝑇𝐇𝒓(𝒙 − 𝒙𝟎)        (3) 

Where r is the state or active node, r=1 to n. 

Hence 

𝒚(𝑟)̇ = 𝑔𝑟𝑎𝑑𝑟𝑇𝒚 + 0.5𝒚𝑻𝐇𝒓𝒚               (4) 

�̇� = 𝐉∗𝒚                   (5) 

𝑱∗(𝑟, : ) = 𝒈𝒓𝒂𝒅𝒓𝑻 + 𝒚𝑻𝐇𝒓               (6) 

𝒚 =  (∑ 𝒗𝑟𝑒𝜆𝑖𝒘𝑟
𝑇𝑛

1 𝒙(0))                     (7) 

Hr is a Hessian Matrix.   

A Hessian Matrix is given by: 

𝐇𝑟 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕2𝑓𝑟
𝜕𝑥12

𝜕2𝑓𝑟
𝜕𝑥1𝜕𝑥2

⋯ 𝜕2𝑓𝑟
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓𝑟
𝜕𝑥2𝜕𝑥1

𝜕2𝑓𝑟
𝜕𝑥22

⋯ 𝜕2𝑓𝑟
𝜕𝑥2𝜕𝑥𝑛

⋮
𝜕2𝑓𝑟

𝜕𝑥𝑛𝜕𝑥1

⋮
𝜕2𝑓𝑟

𝜕𝑥𝑛𝜕𝑥2

⋱
⋯

⋮
𝜕2𝑓𝑟
𝜕𝑥𝑛2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

             (8) 

The eigenvalues λ of the nonlinear system are solutions of: 

|𝐉∗ − 𝝀𝐈| = 0                  (9) 

 

 

2.1.1 Application to Qualitative Stability 

We can now create the total modified Jacobian J*in order to examine what 

changes are made to the stability criteria for sign stability. 

𝐉∗ =

⎣
⎢
⎢
⎡𝐉𝐞(1, : ) + 0.5𝒚𝑻𝐇𝟏
𝐉𝐞(2, : ) + 0.5𝒚𝑻𝐇𝟐

⋮
𝐉𝐞(𝑛, : ) + 0.5𝒚𝑻𝐇𝒏⎦

⎥
⎥
⎤
              (10) 

𝒚𝑻 = [𝑦1, ⋯ , 𝑦𝑟 , ⋯ , 𝑦𝑛]             (11) 
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𝐉∗ = �
𝒂𝟏𝟏 + ∑ 𝒚𝒌𝒉𝟏(𝑘, 1)𝒏

𝒌=𝟏 ⋯ 𝒂𝟏𝒓 + ∑ 𝒚𝒌𝒉𝟏(𝑘, 𝑟)𝒏
𝒌=𝟏 ⋯ 𝒂𝟏𝒏 + ∑ 𝒚𝒌𝒉𝟏(𝑘,𝑛)𝒏

𝒌=𝟏
⋮ ⋱ 𝒂𝒌𝒓 +∑ 𝒚𝒌𝒉𝒓(𝑘, 𝑟)𝒏

𝒌=𝟏 ⋱ ⋮
𝒂𝒏𝟏 + ∑ 𝒚𝒌𝒉𝒏(𝑘, 1)𝒏

𝒌=𝟏 ⋯ 𝒂𝒏𝒓 +∑ 𝒚𝒌𝒉𝒏(𝑘, 𝑟)𝒏
𝒌=𝟏 ⋯ 𝒂𝒏𝒏 + ∑ 𝒚𝒌𝒉𝒏(𝑘,𝑛)𝒏

𝒌=𝟏

�   (12) 

For qualitative stability to be maintained then J*must continue to satisfy 

conditions M1 to M6.  The terms 𝑎𝑘𝑟  in M1 to M6 are replaced by 𝑎𝑘𝑟∗ .  since 

the elements 𝑎𝑘𝑟∗  now contain terms in yr it is more difficult to guarantee 

compliance.  However if hr(k,r)=0 ∀r then the original conformation to the 

conditions M1 to M6 would be preserved. 

In general, terms such as sin x, x3, x1x2
3 can yield zero Hessian components if 

the equilibrium point is the origin.  However terms such as cos x will not give this 

result.  Even if sign stability is not achievable, it is still possible that the 

eigenvalues of J* satisfy the Hurwitz conditions for stability numerically. 

A further possibility is to use the terms in equation 12 to give a range for which 

the qualitative stability criterion applies in the nonlinear case, as shown in the 

following example.  In this case we can consider the condition where the addition 

of the nonlinear terms does not change the sign condition of each element of the 

modified Jacobian 

It may be possible in some systems to use the robust controller techniques 

proposed by Yedavalli [21] to create a feedback controller (biological or otherwise) 

to feedback nonlinear terms to cancel the Hessian components. 

 

 

3  Case study  

A predator-prey example is taken from Edelstein-Keshet [27], where the 

predator is 𝑥1 and 𝑥2,  𝑥3 are the prey.  In this example the predator dies out in 

absence of prey and the first prey x2 grows at an exponential rate in the absence of 

a predator. The second prey x3 grows logistically in the absence of its predator. 

This problem has a set of nonlinear equations given by: 
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�̇� = �
𝑎𝑥1𝑥3 + 𝑏𝑥1𝑥2 − 𝑐𝑥1

𝑑𝑥2 − 𝑒𝑥1𝑥2
𝑓𝑥3(ℎ − 𝑥3) − 𝑔𝑥1𝑥3

�              (13) 

A non-zero equilibrium condition exists where: 

�̅�1 = 𝑑
𝑒

, �̅�2 = 𝑐 − 𝑎�̅�3, �̅�3 = ℎ − 𝑔
𝑓
�̅�1            (14) 

This leads to the Jacobian at the equilibrium point: 

𝐉 = �
0 𝑏�̅�1 𝑎�̅�1

−𝑒�̅�2 0 0
−𝑔�̅�3 0 −𝑓�̅�3

�              (15) 

If the sign matrix is written it can be seen to be the same as equation 2. Hence the 

system is qualitatively stable around the equilibrium position. 

The nonlinear Jacobian can also be obtained: 

𝐉∗ =

⎣
⎢
⎢
⎢
⎡
𝑏
2

(𝑥2 − �̅�2) + 𝑎
2

(𝑥1 − �̅�1) 𝑏
2

(�̅�1 + 𝑥1) 𝑎
2

(�̅�1 + 𝑥1)

− 𝑒
2

(�̅�2 + 𝑥2) 𝑒
2

(�̅�1 − 𝑥1) 0

−𝑔
2

(�̅�3 + 𝑥3) 0 −𝑓𝑥3 −
𝑔
2

(𝑥1 − �̅�1)⎦
⎥
⎥
⎥
⎤
      (16) 

It can be seen that this reduces back to equation 15 at the equilibrium point. 

If we apply conditions M1-M6, to the matrix in equ. 16, then we can see that 𝑎11 

fails to satisfy M1 as 𝑥1& 𝑥2 would both have to be less than the equilibrium values, 

which cannot be true for all the range of values.  The system, for states not close to 

the equilibrium, is not qualitatively stable. 

An example of data relevant to this case was found in the paper by Fay and 

Greeff [28] relating to the population of Lions, Wildebeest and Zebra in the Kruger 

National park.  Although they did not use the precisely same model, this model has 

similar features. 

The data for the model is: 

a=0.125, b=0.125, c=1.5, d=0.4005, e=0.81, f=0.0283, g=0.02, h=12, per thousand 

animals. The equilibrium conditions are: �̅�1 = 0.5, �̅�2 = 0.0441, �̅�3 = 11.65 

A simulation using MATLAB is shown here for initial conditions ic#1 and ic#2.  

For ic#1 the initial conditions were far from the equilibrium values whereas for 

ic#2 they were much closer. 
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The computed results for ic#1= (0.5, 10.6, 10.6) are shown in Figures 2 & 3. The 

number of lions rises to a peak and then stabilises. One species of prey falls steadily 

while the other recovers.  Figure 3 illustrates that the real part of the nonlinear 

eigenvalue does not stay stable although they are stable for a region close to the 

equilibrium values. In Figures 2 & 3 at the equilibrium sig1 has a value of +0.02 

indicating a slight divergence. The other two eigenvalues indicate subsidence 

responses. The eigenvalue behaviour in nonlinear systems varies with time and the 

modes change drastically over time, some merging and then diverging again. 

These results indicate that this system, which is qualitatively stable 

analytically at the equilibrium point, does not have stable eigenvalues outside the 

equilibrium unless the initial condition is close to that equilibrium.  .  

 

 
Figure 2: Plot of real components of eigenvalues for ic#1 

 

Figure 4 evaluated for ic#2= (0.3, 1, 11.6) shows that for a large proportion 

of the time one of the roots is real, especially close to the equilibrium. The 
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imaginary components of roots 1 & 3 are initially complex conjugates about this 

pattern changes at around 20 years and roots 2 & 3 then become the complex 

conjugates. The system is also unstable close to the initial conditions and later 

before 50 years have elapsed.  However in Figures 4 & 5 the oscillations die 

down and the behaviour is stable after 50 years.  The nearer we start the 

computation to the equilibrium values the more linear the behaviour looks and the 

better approximation the qualitative stability analysis is to the whole system.  But 

when the system starts far from the equilibrium values then the eigenvalues 

diverge from our linearised system at any time in the period chosen. 

We can use the expression for the nonlinear Jacobian to examine what 

happens if we try to keep the sign conditions of the linear Jacobian the same in the 

nonlinear case.   

Figure 3:  Plot of imaginary components of eigenvalues 

 

Can we find a region where the system is still qualitatively stable? 

Examining the Jacobian term by term we obtain: 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time

X

 

 

0 5 10 15 20 25 30
-0.3

-0.2

-0.1

0

0.1

Time

om
eg

a1

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

Time/years

om
eg

a2

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2

0.4

Time/years

om
eg

a3

x1
x2
x3



64                  Limits on the use of Qualitative stability for Non-Linear Systems
  

𝑎11∗ = 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝑏𝑥2 + 𝑎𝑥1 = 𝑏�̅�2 + 𝑎�̅�1                 (17) 

𝑎12∗ > 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� (�̅�1 + 𝑥1) > 0                      (18) 

𝑎13∗ > 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� �̅�1 + 𝑥1 > 0                   (19) 

𝑎21∗ < 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� �̅�2 + 𝑥2 > 0                   (20) 

𝑎22∗ = 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� �̅�1 = 𝑥1                    (21) 

𝑎31∗ < 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� �̅�3 + 𝑥3 > 0                   (22) 

𝑎33∗ < 0
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝑓𝑥3 + 𝑔

2
(𝑥1 − �̅�1) > 0                 (23) 

From equation (21) we obtain 𝑥1 = �̅�1 

This leads to 𝑥2 = �̅�2 from equation (17) and from equation (23) we have:𝑥3 > 0. 

 

 
Figure 4: Real values of eigenvalues for ic#2 

0 50 100 150 200
0

2

4

6

8

10

12

Time

X

0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

Time

S
ig

1

0 50 100 150 200
-0.4

-0.3

-0.2

-0.1

0

0.1

Time/years

S
ig

2

0 50 100 150 200
-0.1

-0.05

0

0.05

0.1

Time/years

S
ig

3



A.S. White 65  

Figure 5: Imaginary values of eigenvalues for ic#2 
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Table 1: Eigenvalues vs State and Parameter values 

      X3                 
 

Parameters 

50 

λ 

2*Nominal 

λ 

Nominal 

λ 

0.5*Nominal 

λ 

2*Nominal -0.0567±0.0781i 

-2.7167 

-1.174 

-0.0742±0.0675i 

-0.0699 

-0.3463 

-0.2432 

-0.0342 

-0.1478±0.2537i 

Nominal -0.0283±0.039i 

-1.3583 

-0.0371±0.0338i 

-0.5852 

-0.035 

-0.1731 

-0.1216 

-0.0171 

-0.739±0.1269i 

0.5*Nominal -0.0142±0.0195i 

-0.6792 

-0.0185±0.0169i 

-0.2926 

-0.0175 

-0.0866 

-0.0608 

-0.0085 

-0.0369±0.0634i 

 

4  Conclusion 

This paper outlines the arguments for qualitative stability, listing the 

conditions to be satisfied. An analysis using nonlinear time varying eigenvalues 

has been made to determine the possibility of retaining qualitative stability for 

nonlinear equations sets. The results presented here indicate that it is possible to 

have qualitative stability over a larger range of state values than just close to the 

equilibrium but it is only likely to apply globally to some nonlinear systems, in 

particular: 

a) Those with equilibrium at the origin of the coordinate system and/or   

b) Where the Hessian Matrix elements have zero values. 

A third possibility is that: 

c) It is possible to determine a region where sign stability is preserved in the 

nonlinear system 

A case study of a nonlinear predator+2 prey set of equations shows that although 

the system is sign stable at the equilibrium point the nonlinear equation, for the 

initial conditions chosen, has an unstable eigenvalue outside that point but has a 
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significant region where it is sign stable for a range of values of the second prey 

numbers illustrating point c above. This would have significance for the design of 

robust control systems. 

 

 

5  Symbols 

A  state matrix 

a  Constant 

𝑎𝑘𝑟∗   Elements of nonlinear Jacobian 

𝑎𝑘𝑟  Element of linear jacobian 

B  sample matrix 

b  Constant 

c  Constant 

d  Constant 

e  Constant 

f  Constant 

g  Constant 

h  Constant 

Hi  Hessian matrix for state i 

hr(k,r)  Hessian elements 

i  Suffix, square root of -1 

j  Suffix 

J  Jacobian 

J*  Nonlinear Jacobian 

n  Constant 

Omega k Imaginary component of eigenvalue k 

Q  Sign Matrix 

r   is the state or active node, r=1 to n. 
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Sigk  Real part of eigenvalue k 

x  System states 

𝑥1  Predator numbers 

𝑥2  Prey 1 numbers, 

𝑥3  Prey 2 numbers,  

𝑥0  Equilibrium values 

y  State Vector 

v  Right eigenvector 

w  Left eigenvector 

λ  eigenvalue 
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