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Abstract 

In this study, n-dimensional Seasonal autoregressive integrated moving average 

vector (SARIMAV) models of additive form are compared with univariate 

models. Ordinary least squares method is adopted to estimate parameters of the 

models. The bivariate models obtained are reliable as much as univariate seasonal 

models. It is established that seasonal time series model is not only applicable in 

univariate case. Hence, seasonal autoregressive integrated moving average vector 

models are established, verified valid and useful in modeling multiple seasonal 

series.  
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1 Introduction 

Multivariate time series analysis is an analysis of multi-variables, with a 

response vector as a dependent and predictor vectors as independent variables Wei 

(1990). In multivariate time series analysis, both the response and predictor 

vectors are modeled with corresponding lagged parameters of the response and 

predictor vectors. What distinguish multivariate time series from multivariate 

regression is that, only the response variable is modeled in regression, while all 

the vectors are modeled in multivariate time series. Dufour (2006) defined an m-

dimensional vector process ( tX : t∈ ) as an Autoregressive ( p ) model or 

Vector Autoregressive (VAR) of order ‘ p ’ if it satisfies an equation of the form 

t k t k tX X aµ −= + Φ +∑ , for very t  , where 1 2, ,..., pΦ Φ Φ  are m m×  fixed 

matrices and ( ta : t∈ ) is a white noise process. Harrison et al (2003) defined 

multivariate autoregressive analysis as an analysis of multiple time series whose 

vector of current values of all variables is modeled as a linear sum of pervious 

activities. Sims (1996) carried out multivariate time series analysis of 

consumption and gross national products of United State of America. He 

considered both maximum likelihood and ordinary least squares approaches in 

modeling the joint behavior of consumption and gross national products. The 

models had two lags of each variable and a constant. For the ordinary least 

squares, the estimated models were, 
2 2

2 2

 (0.9542 0.0456 ) (0.1427 – 0.1432 )  + 0.1258
 (0.2991 0.2300 ) (1.2139 – 0.2908 ) 0.9799.

C L L C L L Y
Y L L C L L Y

= + +

= − + +
                                         

For the maximum likelihood method, the estimated models were 
2 2

2 2

 (0.9443  0.0364 ) (0.1571 – 0.1409 ) 0.1385
 (0.2877 0.2228 ) (1.2045 – 0.2773 ) 0.9635

C L L C L L Y
Y L L C L L Y

= + + +

= − + +
  

The coefficients of maximum likelihood method were closed to that of the 

ordinary least squares method. Usoro and Omekara (2007) carried out multivariate 

time series analysis, using three vectors; a response vector and two predictor 
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vectors. Their analysis involved revenue series from a Local Government Council. 

In the analysis, every vector whether response or predictor was modeled. Good 

estimates were obtained from the models. The multivariate models were extended 

to bilinear time series (Usoro and Omekara, 2008). 

In this paper, multivariate seasonal models are applied to quarterly rainfall 

data, with parameter estimation of bivariate models. In this study, major interest is 

focused “Seasonal autoregressive integrated moving average vector (SARIMAV) 

models”. The models are applied to quarterly series.  

 

 

2  Method of analysis 

2.1 Data Collection and Variables Description  

The data for the analysis are quarterly rainfall data from CBN statistical 

bulletin (2010). The data are quarterly data collected for the period 1981-2010.  

 

 

2.2 Univariate seasonal models 

Many time series display seasonality. By seasonality, we mean periodic 

fluctuations. This can be defined as a pattern of a time series, which repeats at 

regular intervals every year Oguz and Beyza (2002). Some time series of retail 

sales will typically show increasing sales periodically every calendar year. Apart 

from the sharp escalation in most retail series which occurs around December in 

response to the Christmas period, there is seasonality effect in the water 

consumption, prices of agricultural products and their supplies, rainfall and many 

others. A univariate seasonal model for both autoregressive and moving average 

process is given by ( ) ( )(1 ) (1 ) ( ) ( ) ,s d D s
t tB B B B X B B EΦ Φ − − = Θ Θ  Box and 

Jenkins(1976). A pure seasonal model is given by ( )( ( .1 ) )s s D s
t tB B X B EΦ − = Θ  
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2.3 Matrix Presentation of Vector Models 

The general non-multiplicative SARIMAV models are presented as:  

1 4.11 4.12 4.13 4.1 1 4

2 4.21 4.22 4.23 4.2 2 4

3 4.31 4.32 4.33 4.3 3 4

4. 1 4. 2 4. 3 4. 4

8.11 8.12 8.13 8.1

8.21 8

t c t

t c t

t c t

nt r r r rc nt

c

X X
X X
X X

X X

−

−

−

−

Φ Φ Φ Φ    
    Φ Φ Φ Φ    
    = Φ Φ Φ Φ
    
    
    Φ Φ Φ Φ    

Φ Φ Φ Φ
Φ Φ

+







     



 1 8

.22 8.23 8.2 2 8

8.31 8.32 8.33 8.3 3 8

8. 1 8. 2 8. 3 8. 8

12.11 12.12 12.13 12.1

12.21 12.22 12.23 12.2

12.31 12.32 12.33 12.3

12. 1

t

c t

c t

r r r rc nt

c

c

c

r

X
X
X

X

−

−

−

−

  
  Φ Φ  
  Φ Φ Φ Φ
  
  
  Φ Φ Φ Φ  
Φ Φ Φ Φ
Φ Φ Φ Φ

+ Φ Φ Φ Φ

Φ Φ


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.11 .12 .13 .1 1
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.31 .32 .33 .3 3

. 1 . 2 . 3 .

t

t

t

r r rc nt

p p p p c t p

p p p p c t p

p p p p c t p
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X
X
X

X

X
X
X

X
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−

−

−

−

−

−

  
  
  
   +
  
  
  Φ Φ  
Φ Φ Φ Φ 
 Φ Φ Φ Φ 
 Φ Φ Φ Φ+
 
 
 Φ Φ Φ Φ 








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 t p−
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A.E. Usoro                                                                                                                  51 

1 4.11 4.12 4.13 4.1 1 4

2 4.21 4.22 4.23 4.2 2 4

3 4.31 4.32 4.33 4.3 3 4

4. 1 4. 2 4. 3 4. 4

8.11 8.12 8.13 8.1

8.21 8

t d t
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 

 

The above SARIMAV models are reduced to the form; 

. .
4 1 1 1 4 1 1 1

p qn r c m s d

it a k f it a jt b u v jt b
a i k f b j u v

X X E E− −
= = = = = = = =

= Φ + + Θ∑∑∑∑ ∑∑∑∑  

 where .a k fΦ  and .b u vΘ  are matrices of the coefficients of seasonal vector 

autoregressive and moving average models respectively.   

            
 

3  Estimation of parameters and analysis 

In this section, estimates of the parameters of both the univariate and 

multivariate are considered. The rainfall data used included quarterly data for 
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Akwa Ibom State and Borno State; represented by 1tX  and 2tX , respectively. In 

addition to estimation of the parameters of the univariate seasonal and SARIMAV 

models, the choice of the rainfall data for the two extreme states (north and south) 

was motivated by the need to compare the seasonal patterns and the effects of the 

quarterly rainfall data in the two zones. It also includes performance of the 

univariate and multivariate models. 

 

 

3.1 Estimatton of the parameters of univaraiate seasonal models 

a. Model for 1tX : The distribution of autocorrelation and partial autocorrelation 

functions of 1tX  seasonally differenced series suggested pure SARIMA (3,1,1). 
Therefore, the model with estimated parameters is obtained as: 

1 1 4 1 8 1 12 1 4 0.3842 –  0.3674 0.2007 0.3158 .t t t t tX X X X E− − − −= − − −   

Figure 1 is the autocorrelation function of the residual values of 1tX . 

 

Figure 1 
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b. Model for 2tX : The distribution of autocorrelation and partial autocorrelation 

functions of 2tX  seasonally differenced series suggested pure SARIMA (5,1,1). 

Therefore, the model with estimated parameters is obtained as: 

2 2 4 2 8 2 12 2 16

2 20 2 4

0.843 – 0.695 0.500 – 0.147
– 0.325 0.107 .

t t t t t

t t

X X X X X
X E

− − − −

− −

= − −
−

 

Figure 2 is the autocorrelation function of the residual values of 2tX . 

 

Figure 2 

 

 

3.3 Estimatiom of the parameters of multivariate seasonal models 

The use of the two vectors 1tX  and 2tX  introduced us to bivariate, as a 

special case of the SARIMAV models. In univariate time series, a process say, tX   

is modeled as a function of its past values. Given two vectors 1tX  and 2tX  in 

bivariate time series, each vector is modeled as function of the distributed lags of  
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the two vectors. This expresses linear relationship of each vector with the past 

values of the two vectors in the bivariate models. Least squares estimates of the 

coefficients are provided in the following matrices: 

1 1 4 1 8

2 2 4 2 8

1 12 1 16

2 12 2 16

0.095 0.124 0.097 0.379
0.112 0.838 0.0303 0.641

0.027 0.513 0 0.255
0.0118 0.450 0 0.166

0 0.0

t t t

t t t

t t

t t

X X X
X X X

X X
X X

− −

− −

− −

− −

− − − −        
= +        − − −        

− −       
+ +      − − −      

−
+ 1 20 1 4

2 20 2 4

89 0.518 0.237
0 0.383 0.122 0.117

t t

t t

X E
X E

− −

− −

−      
+      − −      

 

Expansion of the above matrices provides bivariate seasonal autoregressive 
moving average models for the two vector series 1tX  and 2tX . Figures 3 and 4 are 

the ACF of 1tX  and 2tX  residual series. 

 

 

Figure 3 
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Figure 4 

 

4  Conclusion 

Most of the rainfall models are univariate in terms of location, because 

correlation of other locations is not considered. This is due to model complexity as 

a result of the distribution pattern of seasonal series. What distinguishes ARIMAV 

models from SARIMAV models is the seasonal component in the later models. 

The generalized models presented in matrix form take care of the multivariate 

seasonal series, irrespective of the number of vectors. Reliability of the 

SARIMAV models is established in time series analysis. 
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