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Abstract

In this study, n-dimensional Seasonal autoregressive integrated moving average
vector (SARIMAYV) models of additive form are compared with univariate
models. Ordinary least squares method is adopted to estimate parameters of the
models. The bivariate models obtained are reliable as much as univariate seasonal
models. It is established that seasonal time series model is not only applicable in
univariate case. Hence, seasonal autoregressive integrated moving average vector
models are established, verified valid and useful in modeling multiple seasonal

series.
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1 Introduction

Multivariate time series analysis is an analysis of multi-variables, with a
response vector as a dependent and predictor vectors as independent variables Wei
(1990). In multivariate time series analysis, both the response and predictor
vectors are modeled with corresponding lagged parameters of the response and
predictor vectors. What distinguish multivariate time series from multivariate
regression is that, only the response variable is modeled in regression, while all
the vectors are modeled in multivariate time series. Dufour (2006) defined an m-

dimensional vector process (X,: teZ) as an Autoregressive (p) model or
Vector Autoregressive (VAR) of order “ p * if it satisfies an equation of the form

X,=p+Y ® X, +a, for very t , where @, ®,,..,d, are mxm fixed

matrices and (a,: teZ) is a white noise process. Harrison et al (2003) defined

multivariate autoregressive analysis as an analysis of multiple time series whose
vector of current values of all variables is modeled as a linear sum of pervious
activities. Sims (1996) carried out multivariate time series analysis of
consumption and gross national products of United State of America. He
considered both maximum likelihood and ordinary least squares approaches in
modeling the joint behavior of consumption and gross national products. The
models had two lags of each variable and a constant. For the ordinary least
squares, the estimated models were,

C =(0.9542L +0.0456L°)C +(0.1427L —0.1432L%)Y + 0.1258
Y =(0.2991L —0.2300L%)C + (1.2139L — 0.2908L2)Y +0.9799.

For the maximum likelihood method, the estimated models were
C =(0.9443L +0.0364L*)C +(0.1571L —0.1409L%)Y +0.1385
Y =(0.2877L—-0.2228L%)C + (1.2045L —0.2773L%)Y +0.9635

The coefficients of maximum likelihood method were closed to that of the
ordinary least squares method. Usoro and Omekara (2007) carried out multivariate

time series analysis, using three vectors; a response vector and two predictor
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vectors. Their analysis involved revenue series from a Local Government Council.
In the analysis, every vector whether response or predictor was modeled. Good
estimates were obtained from the models. The multivariate models were extended
to bilinear time series (Usoro and Omekara, 2008).

In this paper, multivariate seasonal models are applied to quarterly rainfall
data, with parameter estimation of bivariate models. In this study, major interest is
focused “Seasonal autoregressive integrated moving average vector (SARIMAYV)
models”. The models are applied to quarterly series.

2 Method of analysis

2.1 Data Collection and Variables Description

The data for the analysis are quarterly rainfall data from CBN statistical
bulletin (2010). The data are quarterly data collected for the period 1981-2010.

2.2 Univariate seasonal models

Many time series display seasonality. By seasonality, we mean periodic
fluctuations. This can be defined as a pattern of a time series, which repeats at
regular intervals every year Oguz and Beyza (2002). Some time series of retail
sales will typically show increasing sales periodically every calendar year. Apart
from the sharp escalation in most retail series which occurs around December in
response to the Christmas period, there is seasonality effect in the water
consumption, prices of agricultural products and their supplies, rainfall and many

others. A univariate seasonal model for both autoregressive and moving average
process is given by ®(B)d®(B®)(1-B)"(1l-B)" X, =0O(B)®(B*)E,, Box and

Jenkins(1976). A pure seasonal model is given by ®(B*)(1-B*)° X, = ©(B°)E,.
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2.3 Matrix Presentation of VVector Models

The general non-multiplicative SARIMAYV models are presented as:

Xlt (D4.ll (D4.12 (I)4.13 e @ X

4.1c 1t-4
X2t CD4.21 (D4.22 (I)4.23 te CI)4.2(: X2t—4
XS’[ = (D4.31 (D4.32 CI)4.33 T CD4.3(: XS’[—4
Xnt CD4.r1 q)4.r2 cD4.r3 (D4.rc Xnt—4
(DB.ll CD8.12 (D8.13 te CDS.lc Xlt—B
(D8.21 CI)8.22 (D8.23 t (DS.ZC x 2t-8
+ (DB.Sl CD8.32 (D8.33 te (DB.SC XS’[—S
CD&rl (D8.r2 cI)8.r3 tee q)s.rc X nt-8
CI)12.11 (D12.12 C1)12.13 te (Dlz.lc xlt—lZ
CD12.21 (D12.22 CDlZ.ZS te (D12.20 X 2t-12
+ CD12.31 (D12.32 CD12.33 e q)12.3c X3t—12 oo
chZ.rl chZ.rZ chZ.r3 : chZ.rc X nt-12
(Dp.ll (Dp 12 (Dp.l3 (Dp.lc Xlt—p
(Dp.Zl (Dp.22 (Dp.23 (Dp.Zc XZt—p
Py Pz Py D, 5 XSt—p
CDp‘rl ch.rZ ch.r3 CI)p.rc Xnt—p
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Elt ®4.11 ®4.12 ®4.13 ®4.1d Elt—4
E2t ®4.21 ®4.22 ®4.23 ®4.2d E2t—4
E3t = ®4.31 ®4.32 ®4.33 ®4.3d E3t—4
Emt ®4.sl ®4.52 ®4.53 ®4.sd Em'[—4
®8.1l ®8.12 ®8.13 ®8.1d Elt—8
®8.21 ®8.22 ®8.23 ®8.2d E2t—8
+ ®8.31 ®8.32 ®8.33 ®8.3d E3t—8
®8.sl ®8.32 ®8.53 ®8.sd Emt—B
®12.11 ®12.12 ®12.13 ®12.1d Elt—12
®12.21 ®8.22 ®12.23 ®12.2d E2t—12
+ ®12.31 ®12.32 ®12.33 ®12.3d E3t—12
®12.sl ®12.32 ®12 s3 ®lZ.sd Emt—lZ
®q.ll ®q.12 ®q.13 ®q.1d Elt—q
®q.21 ®q.22 ®q.23 ®q.2d E2t—q
+ ®q.31 ®q.32 ®q.33 ®q.3d E3t—q
®q.sl ®q.52 ®q.53 ®q.sd Emt—q
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The above SARIMAYV models are reduced to the form;

p n r ¢ g m s d
i zzzzzq)a.kfxit—a+Ejt+bzzzz®bUVElt b

i=1 k=1 f=1 =4 j=1

where @®_, . and ©,, are matrices of the coefficients of seasonal vector

autoregressive and moving average models respectively.

3 Estimation of parameters and analysis

In this section, estimates of the parameters of both the univariate and

multivariate are considered. The rainfall data used included quarterly data for
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Akwa Ibom State and Borno State; represented by X, and X,,, respectively. In

addition to estimation of the parameters of the univariate seasonal and SARIMAV
models, the choice of the rainfall data for the two extreme states (north and south)
was motivated by the need to compare the seasonal patterns and the effects of the
quarterly rainfall data in the two zones. It also includes performance of the

univariate and multivariate models.

3.1 Estimatton of the parameters of univaraiate seasonal models

a. Model for X, : The distribution of autocorrelation and partial autocorrelation

functions of X,, seasonally differenced series suggested pure SARIMA (3,1,1).
Therefore, the model with estimated parameters is obtained as:

X, = —0.3842X, , — 0.3674X,, ,—0.2007X,, ,, —0.3158E, ,.

Figure 1 is the autocorrelation function of the residual values of X,,.
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b. Model for X, : The distribution of autocorrelation and partial autocorrelation
functions of X,, seasonally differenced series suggested pure SARIMA (5,1,1).

Therefore, the model with estimated parameters is obtained as:

X, =-0.843X,, , —0.695X,, , —0.500X,, ,, —0.147X,, .
~0.325X,, ,, —0.107E,, ,.

Figure 2 is the autocorrelation function of the residual values of X,, .
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3.3 Estimatiom of the parameters of multivariate seasonal models

The use of the two vectors X, and X, introduced us to bivariate, as a
special case of the SARIMAYV models. In univariate time series, a process say, X,
is modeled as a function of its past values. Given two vectors X, and X, in

bivariate time series, each vector is modeled as function of the distributed lags of
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the two vectors. This expresses linear relationship of each vector with the past

values of the two vectors in the bivariate models. Least squares estimates of the

coefficients are provided in the following matrices:

X

1t

2t

|

~ [—0.095 —0.124j ( XMJ{ -0.097 —0.379]
0.112 -0.838)\ X,,,) (-0.0303 -0.641
+[—0.027 —0.513J(xn_12j+[0 0.255 j(x
-0.0118 -0.450 ){ X, ,,) |0 -0.166 ) X

(O
+
0

—-0.089
—0.383

X2t—20

-0.518 0.237
-0.122 0.117

J ( S
S

( Xlt78
x 2t-8

1t-16

2t-16

|

|

Expansion of the above matrices provides bivariate seasonal autoregressive
moving average models for the two vector series X,, and X,, . Figures 3 and 4 are

the ACF of X, and X,, residual series.
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GRAPHA: ACFPLOT OF X2t BIVARIATE RESIDUAL
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4 Conclusion

Most of the rainfall models are univariate in terms of location, because
correlation of other locations is not considered. This is due to model complexity as
a result of the distribution pattern of seasonal series. What distinguishes ARIMAV
models from SARIMAV models is the seasonal component in the later models.
The generalized models presented in matrix form take care of the multivariate
seasonal series, irrespective of the number of vectors. Reliability of the

SARIMAYV models is established in time series analysis.
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