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Estimation of Partially Linear Varying-Coefficient
EV Model Under Restricted condition
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Abstract

In this paper, we study a partially linear varying-coefficient errors-in-
variables (EV) model under additional restricted condition. Both of the
parametric and nonparametric components are measured with additive
errors. The restricted estimators of parametric and nonparametric com-
ponents are established based on modified profile least-squares method
and local correction method, and their asymptotic properties are also
studied under some regularity conditions.Some simulation studies are

conducted to illustrate our approaches.
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1 Introduction

The varying-coefficient partially linear model takes the following form:

Y=X"0+72"a(T) +¢, (1)
where () = (o (+), -+, 4(+))7 is a ¢g-dimensional vector of unknown coeffi-
cient functions, § = (61, -, 5,)7 is a p-dimensional vector of unknown regres-

sion coefficients and ¢ is an independent random error with E(c) = 0, Var(e) =
0% almost certain. Model(1.1) has been studied in a great deal of literature.
Examples can be found in the studies of Zhang et al.[9], Zhou and You[10],
Xia and Zhang[11], Fan and Huang[12], among others. However, the covariates
X,Z are often measured with errors in many practical applications. Some au-
thors consider the case where the covariate X is measured with additive errors,
and Z and T are errors free. For example, You and Chen[l] have proposed
a modified profile least squares approach to estimate the parametric compo-
nent. Hu et al.[2Jand Wang et al. [3] have obtained confidence region of the
parametric component by the empirical likelihood method. Some authors such
as Feng[4] consider the case where the covariate Z is measured with additive
errors, and X and T are errors free.

In this paper, we discuss the following model in which both of the para-

metric and nonparametric components are measured with additive errors.

Y = X8+ Z7o(T) +e,

V=X+n, @)
W =27+ u,
AB =b,

where n,u are the measurement errors, 7 is independent of (X7, Z7, T e, u),u is
independent of (X7, Z7,T,e,n). We also assume that Cov(n) = X, Cov(u) =
Yy, where X, 3, is known.If ¥, %, is unknown,we also can estimate them by
repeatedly measuring V,W. A is a k x p matrix of known constants and b is

a k-vector of known constants. We shall also assume that rank(A) = k.

2 Estimation

Suppose that {V;,W;,T;,Y;),i = 1,--- ;n} is an independent identically
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distributed(iid) random sample which comes from model (2). That is, they

satisfy
Yi = Xi"B+ Zi"a(T;) + i,
Vi=Xi+mn, (3)
Wi =Z; + u,
where the explanatory variable X; is measured with additive errors, V; =
(Vir,---,Vip)™ is the surrogate variable of X;, the explanatory variable Z; is
also measured with additive errors, W; = (W;,---,W,,)7 is the surrogate

variable of Z;, o(T;) = (a1 T(;),- -+ ,a4(T3))7, and {;}}; are independent and
identically distributed(iid) random errors with F(g;) = 0,Var(e;) = 02 < oo.
We first assume that 3 is known,then the first equation of model (2.1) can be
rewritten as

Y- XiB8=2Z"a(T;)+e;, i=1,--,n (4)
Clearly, model (4) can be treated as a varying coefficient model. Then, we
apply a local linear regression technique to estimate the varying coefficient
functions «(7T). For T; in a small neighborhood of T, one can approximate

a;(T;) locally by a linear function
a;(Ty) = oj(T) + G (T)T; = T) = a; + 0;(T; = T), j=1,--,q, ()

This leads to the following weighted local least-squares problem: find {(a;,b;),j =

1,---,q} to minimize

Z{ — X7B) =Y la; + (T — T))Z; Y Ki(T; — T), (6)

=1

where K is a kernel function, h is a bandwidth and Kj(-) = K(-/h)/h.
The solution to problem (6) is given by

(&17"' 7&117"' 7hl;17"' 7hl;q) = {( ) UJTD } (D%)TWT(Y_Xﬁ% (7)

where

AR A Z7o(Ty)
Di=1| : : . M= : o Z=(Z1, Ty )T
zy By Z7a(T,)

n

Y = (3/173/27 to 7Yn)T;X = (X17X27 o 7Xn)T;WT = dzag(Kh(Tl_T)a o aKh(Tn_

T)). If one ignores the measurement error and replaces Z; by W; in (7), one can
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show that the resulting estimator is inconsistent. To eliminate the estimation
error caused by the measurement error, Using the method in literature [5], we

modify (7) by local correction as follow:
(dlv e lgy e 7hl;17 e 7h8q) = {(DCIW)TWTDIW_Q}_l(DYV“V)TWT(Y_XQL (8)

then we obtain the following corrected local linear estimator for {a(:),j =

1’---’q}aS

G(T) = (@(T), -+ 6g(T))" = (1, 0) (DY Y DY~} (DI Yo (Y — X5,
(9)
= 1 (T, = T)/h
R = e ( (T~ T)/h (T~ 1)/ ) o=
For the sake of descriptive convenience, we denote R; = {(D} ) wr,D}Y —
Q}il(DCIV},L-/)TwTw Si = (VVZT OZI-)R’H Qz = (]q Oq)Ri7 S = (SL 7577;)7-7% =
Y, = SY,V; =V, — V75T, then, minimize

n

D= VIS = WIa(Ti)Y = 3 4T (T)Zud(T) = 3 A8, (10)

=1

we obtain the modified profile least squares estimator of 3
A — 7T AT -1 aty AT
B={) (V7 =V7QIE.QV = %)} { D (VWY - V'Qis.QY)}, (1)
i=1 =1

Moreover, the estimator of «(+) is obtained as

AT) = (@(T), -+, a&g(T))" = (I, 0){(DF ) wr D =} (DY ) wr (Y =V ).
(12)

As for the estimator B is consistent and asymptotically normal. However,
restriction conditions A3 = b were not satisfied. In order to solve this problem,
we will construct a restricted estimator, which is not only consistent but also
satisfies the linear restrictions. To apply the Lagrange multiplier technique,
we define the following Lagrange function corresponding to the restrictions

AB =0 as

n

F(B,0) =Y {Vi=Vi8=W[a(Ti)}*=>  a"(T)Lua(T,) =) | 575,0+2X (AB-b),
=1 =1 =1
(13)
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where A is a k x 1 vector that contains the Lagrange multipliers. By differen-

tiating F'(, \) with respect to § and A, we obtain the following equations:

OF(3,\)
ap N
= [D Y= VTQIT.QY) — AN = 3 (VT - VIQIS.QV — 3,)8
i=1 i=1
=0, (14)
OF(B,\) B
o = 248-b)=0, (15)

Solving the equation. (14) with respect to 3, we get
A -l T AT -1 47
B=B8—{D (V7 - V'QIL.QiV - %,)} A\
i=1
We substitute /3 into the equation(13) and we have

b=AB— A{D (ViV7 —V'QIS,Q:iV — %,)} AT

i=1

As the inverse matrix of A{ Z(f/zf/f —V'QIE,.Q;V — Zn)}_lAT exists, then
i=1
we can write the estimator of \ as

n

A= {A VT -V QIR.QY -5, AT} (A8 ). (16)

i=1

Then, the restricted estimator of 3 is obtained as

B = B—{ D (V7 —VQE.QV -5}
i=1

AT{AY (VT = VISV — 5,)] AT} (A5 - b),

=1

Moreover, the restricted estimator of «(+) is obtained as

& (T) = (I, 0,{(DY ywr DY — QDY ywr(Y = V5,).  (17)
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3 Asymptotic normality

The following assumption will be used.
Al. The random variable T has a bounded support &. Its density function
f(+) is Lipschitz continuous and f(-) > 0.
A2. There is an s > 2, such that E|g]|** < oo, Eljui]|*® < oo, E|jm||* <
o0, B[] X1]|** < oo, E||Z1]|** < oo, and for some § < 2 — s~ !, there is n?~1h —
00 as nm — oQ.
A3. {o;(-),j =1,---, ¢} have continuous second derivatives in 7" € 3.
A4. The function K (-) is a symmetric density function with compact support.
and the bandwidth h satisfies nh?/(logn)? — oco,nh® — oo as n — oo.
A5. The matrix I'(T') = E(Z,Z]|T) is nonsingular, E(X; X]|T) and ®(T') =
E(Z,XT|T) are all Lipschitz continuous.

The following notations will be used.

Let ¢, = {(nh)"Ylogn}?, X; = X;— X"S7 ity = mi—n"S7 & = €;—€7 ST, e =

K3 (2

[T K () dt, v = [T PR (Hdt, k= 0,1,2, 3.

Theorem 3.1. Assume that the conditions A1-A5 hold, Then the estimator

B, of B is asymptotically normal, namely,

~

V(B — 8) =1 N(0,%),

where —, denotes the convergence in distribution, and

DIEED YAET OINED YLD I ALY D IR Sy DINED D IRENE YAnD 309 VARSI D INED M Sl

S = B(X:X]) — E(e7(T)I'H(T1)2(T1)),

Yy = AT(AX[TAT) LA,

A = E(ei—ufa(Th) =] B)*Zi+E(e1—ni 3)? E{" (1) /(T E, T H(T1) (Th) }
+E{O7(T)I'(T1) (wyu] — X)) a(T1)}*2 + E(er — ufa(Th))?%,
+E{(mn7 — X)B67(mni — )},

A®? means AA™.

Theorem 3.2. Assume that the conditions A1-A5 hold. Then

1 o3 — ppis
vah(a(T) - oT) = 5h WQII(T)) —1 N(0,4),
2 = M
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2 2
_ H3V0—2p1 p2vi+piv2 —1yk .
where A = TPEE f(T) =3,

5% = TUT) [ B(ey—1 BT (T)+ By~ 8Lt B{&aa(T)a (T)EFH TH(T);
&1 = 2y —wu] — Z1uf.

4 Simulation

We illustrate the proposed method through a simulated example. The data

are generated from the following model
Y = Sin(32t)X1+221+3ZQ+€, ‘/1 = X1—|—7’]1, W1 = Zl—l—ul, W2 = ZQ+U2, (18)

where X; ~ N(5,1),Z; ~ N(1,1),Zy ~ N(1,1), m ~ N(0,0.16),u; ~
N(0,0.25),us ~ N(0,0.25). To gain an idea of the effect of the distribu-
tion of the error on our results, we take the following two different types of
the error distribution,(1)e ~ N(0,0.16),(2)e ~ U(—1,1). The kernel function
K(z) = 3(1 — 2*)I <1 and bandwidth h = 5 are used in our simulation
studies, respectively.

For model (19) with restriction condition 3 + 3 = 5, We compare the per-
formance of the unrestricted estimator with that of the restricted estimator
in terms of sample mean (Mean), sample standard deviation (SD) and sample
mean squared error (MSE). Simulations with sample size n = 100,200. The
simulation results are presented in Table 1. We can find that all the estimators
of parameters are close to the true value. As the sample size increases, the
biases, standard deviation and sample mean squared error of all the estima-
tors decrease. It is noted that in all the scenarios we studied, the restricted
corrected profile least-squares estimator of the parametric component outper-
forms the corresponding unrestricted estimator. The results are robust to the
choice of error distributions. In addition, when the sample size is 200, we plot
the estimated curve of the nonparametric component in Figure 1,2. % indicate
estimated value, and use solid-line curve indicate actual value. then, we found
estimated results is fine.
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Table 1: Finite sample performance of the restricted and unrestricted estima-

tors

I} Error n Unrestricted Restricted
Mean SD MSE Mean SD MSE
by =2 N(0,0.4%) 100 2.0441 0.0805 0.9984 2.0284 0.0547 0.0725
200 1.9666 0.0637 0.0307 2.0095 0.0376 0.0246
U(-1,1) 100 2.0514 0.0742 0.0528 2.0468 0.0541 0.0237
200 1.9876 0.0652 0.0161 2.0109 0.0388 0.0129
By =3 N(0,0.4%) 100 2.9262 0.0793 0.0865 2.9716 0.0547 0.0725
200 2.9459 0.0669 0.0377 2.9905 0.0376 0.0246
U(-1,1) 100 2.9497 0.0824 0.0318 2.9532 0.0541 0.0237
200 2.9626 0.0679 0.0211 2.9891 0.0388 0.0129

5 Proof of Main Results

Lemma 5.1. Suppose that the conditions (A1)-(A5) hold, as n — oo, then

h

TeS

h

h

TeS

1 — T.—T T,—T
sup ;ﬁ;j{jff( ) ) Zijei
=1

h

h

TeX

1 — T.—T T,—T
sup |- 3 K (=)
=1

h

where j?jlaj? = 17 7(],]{7 = 07172a3'

) Zijui

=0(cy,) a.s. ,

= 0(cy,) a.s.

The proof of Lemma 5.1 can be found in Xia [6].

Lemma 5.2. Suppose that the conditions (A1)-(A5) hold, then

(DY wp DY — Q = nf(T)I(T) ® < !
H1 M2

(Dr )wrV = nf(T)2(T) @ (1, 112) {1+ Op(ca)},
(D )wrW = nf(T)I(T) @ (1, 1) {1 + Op(cn) }-

1

) {1 + Op(cn)}a

l <~ T,—T T,—T
i E Z K( )( )kZiﬁZUEY - f(T)Fjljz (T),uk = O(hQ + Cn) a.s. ,
=1
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Figure 1: sin(32t)(e ~ N(0,0.4%) Figure 2: sin(32t)(e ~ U(—1,1))

The proof of Lemma 5.2 is similar to that of Lemma A.2 in Wang [3]. We
here omit the detail.

Lemma 5.3. Let Gy,--- ,G, be independent and identically distributed ran-
dom variables. If E|G;|° is bounded for s > 1, then max 1G4 = o(n**) a.s

The proof of Lemma 5.3 can be found in Shi [13]. We here omit the detail.
Lemma 5.4. Suppose that the conditions (A1)-(A5) hold, then

% Y {ViVT-VTQIS.Q\V —%,} — E(X1X])— E(@(T)IH(T1)2(T)) a.s
i=1

The proof of Lemma 5.4 is similar to that of Lemma 7.2 in Fan [12]. We
here omit the detail.

Lemma 5.5. Assume that the conditions A1-A5 hold, Then the est@'matorB

of B is asymptotically normal, namely,
V(3 =) = N(O,ZTASY).
where X1 and A are defined in Theorem 3.1.
Proof By (11), we have

VAB=p) = VRS - VQIEQY 2}

{Z ViV — V7B3) = VTQIS.Qi(Y — V) + 5,8},
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By Lemma 5.1 , Lemma 5.2 and Lemma 5.3 we have
f{ Z —V7B) = V' QIT.Qi(Y — V) + ,0]}

- %{ ;[Xi — ()0 H(T3) Zi][e: — ufa(Ty) — 17 )

— (T (T us(ei — 0] B) + @7 (T)0 (T (wiu] — S)o(T)
+mi(ei — uja(Ti)) — (min] — )+ 0p(1)

1 n
== Z Jin + Op(l)
Vi 5
then

Cov(Jin) = E{les —uio(T;) —nj B)[X; — @™ (T)IH(T3) Z]}** + E{®"(T)IH(T})ws
(e = m7 )} + E{®™(T)T (L) (wiu] — Xu)a(T3)}*
+E{ni(ei — ufo(T}))}** + E{ (] — %) B8}

lim % >_Coullin) = Bler—uja(Th) —niB)°Si + E(er — 07 8)° E{@"(T)T (T)

S LTHT)®(T)} + E{RT(T)D (T (wu] — Su)a(Th)}*?
+ E(er —ula(T1))*S, + E{(mn] — S,)B6" (mn] — L)}

Therefore, by Lemma 5.4, and central limit theorem, Slutsky theorem, we have

A

V(3 = B) —r N0, X AR,

Proof of Theorem 3.1. We first denote that

Jo = I={Y (V7 -VTQI.QV —%,)} A"
=1
{A[Z (ViV7 —VTQI,QV —%,)] A7} 1A
= 1-{ Z —VTQIT,QV — %)) AT

Z (V7 —V'QIZ.Q.V —%,)] AT} 74,
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By Lemma 5.4, we obtain
Jo B T — STTATIAS AT A =

By (18), we have

3,—8 = &A{Ejﬁ@ﬂ_WQﬁh@V—Z“rby
i=1

{A[iazw SVIQIEQV - )] ATy AL - )
E ﬂﬁ—;l@h—ﬂ@—ﬂh
Note that Jo — J = 0,(1) and § — 3 = O(n~1/2). Tt is easy to check that
(Jo = J)(B = B) = 0p(n~"1?).

Invoking the Slutsky theorem and Lemma 5.5, we obtain the desired result. [

Proof of Theorem 3.2. For 7; in a small neighborhood of 7', and let
|T; — T'| < h, we can approximate «(7;) by the following Taylor expansion

o(T;) = a(T) + o/ (T)(Ti = T) + 5o(T; ~ T)* + 0,1,

Then, we have

a(T)
ho!(T)

M = : = D7

. )

Zia(T) ( ) L 270/ (T4) (T} - T)?

77" (T )(T, — T)?

By the expression of M, it is easy to see that

W (W z a(T) h_2 WA, o o (h2
@ﬂwﬂﬁ4%)w%<hwﬂ>+2@ﬂcﬂﬂ (1) + 0y(12),

where W = diag{((Ty\ — T)/h)?,--- , (T, — T)/h)?}.

WT z a(T) _ WHT W a(T)
(Dr ) wrDr ( ho! (T) ) = ADr)wrDr — 0y ( ho! (T) )

+ = (DY) wr D" + Q) ( h‘;((TT)) ) .
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{(DY)wr DY — QY Y DY wr¥rZa"(T)

o1 (3 — paps)e’(T) (1)) s
= T uf ( (1 — pupz)a (T) > {I1+0(1)} a.s.,

Recall the definition of &,(T") in (18), we have

a(T) = (
= ([

q

I, 0){(Dy ) wr DY = QN (DY) wr (Y = V5,)
0,){(D7 )"wrDy —Q}H(Dy ) wrM

(g 0){(DF ) wr DY — QDY ) wrV (5 = 5,)
+(Iy 0,){(Dy ) wr Dy — QDY) wr(e —nf)
= L+ 1+ s

As mentioned above

1 o5 — pps
I = oT)+ ~p2t2=1E8 iy
' 27 o — 413

+ (I (DY wrDJf =} {~(DJf wr Dj + 9} ( hZ§<TT)> )

+0,(h%),
By Lemma 5.1 and Lemma 5.2, we can obtain
(I, 04 (DY )" wr DY — Qy (D Y eor (DY Y wrV = T HT)O(T){1 + Oylea)},
Invoking Theorem 3.1, we yield that
Vil = VRPN (D)@ (T) {1 + 0,(e,) }O(n ™) = 0,(1),
Similar to that of A4 ~ A6 in [5], we have
Vah{(D} ) wr Dy — Q)

a(T
{0 yure —nd) + 0¥ yerpp+ay [ 1)) 2, vo3)
ho! (T)
where, ¥* is defined in Theorem 3.2, and
1 [V — 21 pigty + iV (1] + p2)vr — papialo — pavs
(b2=p (13 + p2) v — ppiabo — pave vy — (201 + patp)

E= (1)
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As mentioned above

it L ois — thfis
27 M
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