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The Three Level Two Point Scheme for

the Vibrating Membrane Problem
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Abstract

Partial differential equations P.D.Es govern mechanical systems which
contain multiple parameters. Linear and certain non-linear P.D.Es can
be solved using such analytic methods as separation of variables. How-
ever, certain P.D.Es exist, which cannot be solved analytically. This
calls for an alternative method of solution. Finite difference Methods
(F.D.Ms) provide a realistic physical approach towards the modeling of
these problems. The wave equation can be solved using the explicit and
therefore conditionally stable Forward in Time and Centered in Space
F.T.C.S F.D.M. It is shown here that the Local Truncation Error (LTE)
in the result is relatively negligible. An implicit scheme, which is uncon-
ditionally stable, is developed and the conclusion made that the scheme
can be used to solve other non-linear P.D.Es with a higher degree of
stability.
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1 Introduction

The finite difference method was developed by Thom and Apelt [6] in the

1920s, and was used to solve non-linear hydrodynamic equations. Much of

the work on finite difference schemes is presented in Jain [1], Rahman [4] and

Morton et al [3]. In Vrushali et al [7], the numerical solution to a P.D.E is

an approximation to the exact solution, and the LTE is that difference which

results when the exact solution is substituted into the finite difference formula.

1.1 The model: 2-Dimensional wave equation

The solution Z(x, y, t) of the wave equation

∂2z

∂t2
= a2

[
∂2z

∂x2
+

∂2z

∂y2

]
, 0 < x ≤ L, 0 < y ≤ H, t > 0 (1)

represents the approximate displacement of a point (x,y) on the membrane at

time t from rest.

1.2 Methodology

This model first considers the analytic solution of the wave equation. The

FTCS, which is explicit, is considered in Ronoh et al [5]. Here, an implicit

Scheme is developed and the LTE associated with it compared with that of

the FTCS.
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1.3 The Analytic Solution

It can be shown that the solution z(x, y, t) of the wave equation is given by

z(x, y, t) =

[
A1 cos(a

√
n2

L2
+

m2

H2
)πt + A2 sin(a

√
n2

L2
+

m2

H2
)πt

] [
(sin

nπx

L
)(sin

mπy

H
)
]

(2)

Here, L and H are the respective spatial dimensions in the x− and y−
directions.

2 The Numerical Solution

It is supposed that the weight of the membrane, after it is stretched, is a

known function w(L,H) (density ρ for this case), and (L × H) is a property

which is proportional to the area of the membrane. The change in mass,∆M ,

is given by

∆M =
w(L,H)∆x∆y

g
(3)

The acceleration produced in ∆M by these forces and by the portion of

the distributed load is approximately

∂2z

∂t2
=

Tg

w(L,H)

[
∂

∂x

∂z

∂x
+

∂

∂y

∂z

∂y

]
(4)

Therefore
∂2z

∂t2
=

Tg

w(L,H)

[
∂2z

∂x2
+

∂2z

∂y2

]
(5)

which gives an expression that determines a in equation (1). Much of this is

explained in Ronoh et al [5].

2.1 The Forward in Time Centered in Space Scheme

The F.T.C.S is obtained by expressing equation 1 as

∂

∂t

(
∂z

∂t

)
= a

∂

∂x

(
a
∂z

∂x

)
+ a

∂z

∂y

(
a
∂z

∂y

)
(6)

Further simplification with S = ∂z
∂t

, R = a ∂z
∂x

and Q = a∂z
∂y

leads to
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∂S

∂t
= a

∂R

∂x
+ a

∂Q

∂y
(7)

The scheme is then derived as

1

k
∆t(S

n
m,l) =

a

h1

µδx(R
n
m,l) +

a

h2

µδy(Q
n
m,l) (8)

where k is the time step, and h1 and h2 are the spatial dimensions in the

x− and y− directions respectively. µδx and µδy are the respective averaging

operators. To evaluate (See Ronoh et al), and for the special case where the

spatial dimensions are equal, one sets ζ = a2k2

h2 . The FTCS is thus obtained as

Zn+2
m,l = 2Zn+1

m,l − (1 + ζ)Zn
m,l +

ζ

4

(
Zn

m+2,l + zn
m−2,l + zn

m,l+2 + Zn
m,l−2

)
(9)

Equation (9) approximates the displacement of a single point Zn+2
m,l from the

origin given the six points Zn+1
m,l , Zn

m,l, Z
n
m+2,l, Z

n
m−2,l, Z

n
m,l+2 and Zn

m,l−2. Being

explicit, the scheme is known to be conditionally stable, hence the call for a

similar scheme, but which is implicit in nature.

2.2 The Implicit Three Level Two Point Scheme

This scheme, based on the Crank Nicolson, is obtained for equation (1) by

approximating zn
.,. with 1

2
(Zn

.,. +Zn+1
.,. ), and the derivative terms Rn

.,. and Qn
.,. in

equation (7) with the averages 1
2
(Rn

.,. + Rn+1
.,. ) and 1

2
(Qn

.,. + Qn+1
.,. ) respectively.

We have the following result;

Sn+1
m,l = Sn

m,l +
ak

4h1

(
(Rn+1

m+1,l + Rn
m+1,l)− (Rn+1

m−1,l + Rn
m−1,l)

)

+
ak

4h2

(
(Qn+1

m,l+1 + Qn
m,l+1)− (Qn+1

m,l−1 + Qn
m,l−1)

)
(10)

Now

Rn
m,l =

a

2h1

µδx

(
Zn

m,l + Zn+1
m,l

)
(11)

and

Qn
m,l =

a

2h2

µδy

(
Zn

m,l + Zn+1
m,l

)
(12)

from which we obtain

Rn
m,l =

a

2h1

(
(Zn

m+1,l + Zn
m−1,l) + (Zn+1

m+1,l + Zn+1
m−1,l)

)
(13)
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and

Qn
m,l =

a

2h2

(
(Zn

m+1,l + Zn
m−1,l) + (Zn+1

m+1,l + Zn+1
m−1,l)

)
(14)

respectively. We then compute Rn
m+1,l, R

n
m−1,l, Q

n
m,l−1 and Qn

m,l−1 for the nth

time level, and Rn+1
m+1,l, R

n+1
m−1,l, Q

n+1
m,l−1 and Qn+1

m,l−1 for the succeeding time level

n + 1. On substitution, and for the special case where h1 = h2 = h, we obtain

Zn+2
m,l −

ξ2

4

(
Zn+2

m+2,l + Zn+2
m−2,l + Zn+2

m,l+2 + zn+2
m,l−2

)

= 2(1− ξ2)Zn+1
m,l + ξ2

(
Zn+1

m+2,l + Zn+1
m−2,l + zn+1

m,l+2 + zn+1
m,l−2

)

− (1 + ξ2)Zn
m,l +

ξ2

4

(
Zn

m+2,l + zn
m−2,l + Zn

m,l+2 + Zn
m,l−2

)
(15)

where ξ = ak
2h

. Implicit schemes, which include the Crank Nicolson’s, are known

to be unconditionally stable. The Scheme in equation (15) is implicit in that

the five points Zn+2
.,. at the time level t+2 are determined simultaneously given

approximate values of Zn+1
.,. and Zn

.,., at the time levels t+1 and t respectively.

The scheme (15) is therefore characteristically stable as desired.

3 Case Study - Flow in a river

The case of a river with the average velocity of water as 6m/s is considered.

The dimensions of the rectangular membrane (Table 1) are set to (60×80)mm2

and with n ≥ 1, h = 5mm, the behavior of the schemes (9) and (15) is examined

relative to equation (2) .

3.1 Notes

1. For this study, a is set such that a2 = 6m/s and h = 0.005m, which

yields k = 0.000833333s.

2. Outside the medium it is assumed that the displacement relative to the

vibrating membrane is zero, so that for n = −1, equations (9) and (15)

yield

Z1
m,l = 2Z0

m,l (16)
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3. For the initial condition n = 0, we take k = 0, which leads to

Z2
m,l = 2Z1

m,l − Z0
m,l (17)

4. The two preceding equations (above) lead to

Z2
m,l = 3Z0

m,l (18)

In Table 1, there are 12 5mm steps x0, x1, ..., x12 on the x − axis and 18

5mm steps y0, y1, ..., y15 on the y − axis. Thus, m=2,...,10 and l=2,...,14.

3.2 Discretization using the FTCS

From the notes, equation (9) leads to

Zn+2
m,l = 2Zn+1

m,l − pZn
m,l + q

(
Zn

m+2,l + zn
m−2,l + zn

m,l+2 + Zn
m,l−2

)
(19)

where p = 1.1666666666667 and q = 0.0416666666667.

3.3 Discretization using the Three Level two point scheme

From the notes, equation (15) leads to

rZn+2
m,l − s

(
Zn+2

m+2,l + Zn+2
m−2,l + Zn+2

m,l+2 + zn+2
m,l−2

)

= uZn+1
m,l + v

(
Zn+1

m+2,l + Zn+1
m−2,l + zn+1

m,l+2 + zn+1
m,l−2

)

− rZn
m,l + s

(
Zn

m+2,l + zn
m−2,l + Zn

m,l+2 + Zn
m,l−2

)
(20)

where r = 1.0416666666634, s = 0.0104166666658, u = 1.9166666666733 and

v = 0.0416666666633

3.4 The Local Truncation Error (LTE)

The LTE, T n
m,l will be obtained as

T n
m,l =

∣∣zn
m,l − Zn

m,l

∣∣ (21)

where zn
m,l is the analytic solution. Table 1 and Table 2 give the LTEs as

obtained for the FTCS and the Three Level Two Point schemes respectively.
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Table 1: The LTE for the FTCS

T n
3,l n = 1 n = 2 n = 3 n = 4

T n
3,0 0 0 0 0

T n
3,1 0.0000000006243 0.0000000031211 0.112088373261 0.3923093182738

T n
3,2 0.0000000011536 0.000000005767 0.5606601558525 1.9623105673987

T n
3,3 0.0000000015072 0.000000007535 0.7325367949023 2.5638788107913

T n
3,4 0.0000000016314 0.0000000081558 0.792893196164 2.7751262175664

T n
3,5 0.0000000015072 0.000000007535 0.7325367949023 2.5638788107913

T n
3,6 0.0000000011536 0.000000005767 0.5606601558525 1.9623105673987

T n
3,7 0.0000000006243 0.0000000031211 0.112088373261 0.3923093182738

T n
3,8 0 0 0 0

T n
3,9 0.0000000006243 0.0000000031211 0.112088373261 0.3923093182738

T n
3,10 0.0000000011536 0.000000005767 0.5606601558525 1.9623105673987

T n
3,11 0.0000000015072 0.000000007535 0.7325367949023 2.5638788107913

T n
3,12 0.0000000016314 0.0000000081558 0.792893196164 2.7751262175664

T n
3,13 0.0000000015072 0.000000007535 0.7325367949023 2.5638788107913

T n
3,14 0.0000000011536 0.000000005767 0.5606601558525 1.9623105673987

T n
3,15 0.0000000006243 0.0000000031211 0.112088373261 0.3923093182738

T n
3,16 0 0 0 0

4 Conclusion and Recommendation

The analysis of the local truncation error (LTE) shows that the implicit

Three Level Two Point Scheme is more stable than the explicit forward time

centred space (FTCS). The Three Level Two Point Scheme was obtained by

approximating zn+2
m,l with the average 1

2
(Zn

m,l + Zn+1
m,l ). Studies can be made on

the accuracy and stability of a scheme that uses the average 1
3
(Zn−1

m,l + Zn
m,l +

Zn+1
m,l ) in the approximation of zn+2

m,l . Generalization can be made on the use

of a finite average in the approximation of zn+2
m,l , and further on the use and

application of infinite averages with compact support.
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Table 2: The LTE for the Three Level Two point Scheme

T n
3,l n = 1 n = 2 n = 3 n = 4

T n
3,0 0 0 0.16863329379364 1.31996125103379

T n
3,1 0.0000000006243 0.0000000031211 0.3121403719816 0.9346904347001

T n
3,2 0.0000000011536 0.000000005767 0.1919367550859 0.715426716632

T n
3,3 0.0000000015072 0.000000007535 0.2487875463199 0.9273286457012

T n
3,4 0.0000000016314 0.0000000081558 0.2739144560973 1.0450498566985

T n
3,5 0.0000000015072 0.000000007535 0.2529574895238 0.9273286457012

T n
3,6 0.0000000011536 0.000000005767 0.1978415571988 0.7632235406071

T n
3,7 0.0000000006243 0.0000000031211 0.1048022435579 0.3997790489252

T n
3,8 0 0 0.00000000000094 0.00000000032239

T n
3,9 0.0000000006243 0.0000000031211 0.104802243483 0.3997790138485

T n
3,10 0.0000000011536 0.000000005767 0.1978415571145 0.7632235587443

T n
3,11 0.0000000015072 0.000000007535 0.2529574831738 0.9644889923732

T n
3,12 0.0000000016314 0.0000000081558 0.2739144486397 1.0450506374673

T n
3,13 0.0000000015072 0.000000007535 0.248787015191 0.9269768779044

T n
3,14 0.0000000011536 0.000000005767 0.1919361032533 0.71543940953927

T n
3,15 0.0000000006243 0.0000000031211 0.3121832606954 0.9349673065078

T n
3,16 0 0 0.16868936322900 1.32144063522519
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