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Abstract 

In this study, the performances of GARCH models with different distribution assumptions 

in modeling Value-at-Risk are evaluated by the backtesting procedure for three equity 

indexes. Recent researches indicate that Extreme Value Theory (EVT) is good candidate to 

model rare extreme events and unpredictable losses. Due to return series have non-normal 

characteristics, standardized residuals of GARCH are modeled by EVT and leptokurtic 

distributions. Empirical findings show that EVT based GARCH model is outperformed 

according to the backtesting results modeling daily VaR for all equity indexes. 
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1  Introduction  

One of the most important challenges in modeling Value-At-Risk (VaR) is the distribution 

assumption made for financial return series. Most of the VaR models assume that financial 

return series are normally distributed. Recent researches indicate that normality assumption 

of return series is not valid in most cases when return series have heavy tails. Modeling 

VaR with normality assumption gives underestimate VaR forecasts. Therefore without 

considering extreme losses in financial return series is the main problem of the risk 

modeling. Therefore, EVT is good candidate modeling the tail of distribution that contains 

the extreme events. Many studies, especially McNeil and Frey (2000), Gencay et al. (2003), 

Gilli and Kellezi (2006), Onour (2010) and Singh et al. (2013, have evaluated the 

performance of EVT measuring the financial risk and also investigated tail behavior of 

financial returns series. When analyzed the recent studies, it is shown that EVT which is 

interested in extreme losses or extreme gains, outperforms with respect to other well-known 

                                                 

1Department of Statistics, Hacettepe University. 
2Department of Statistics, Hacettepe University. 

 

Article Info: Received : January 8, 2014. Revised : February 18, 2015. 

          Published online : June 1, 2015 



70                                           Emrah Altun and Hüseyin Tatlidil 

models. McNeil and Frey (2000) proposed a GARCH-EVT model which contains two-step 

estimation procedure. The main aim of proposed model is to forecast the daily-VaR 

considering the extreme events in the tail of the distribution. Soltane et al. (2012) compared 

the GARCH-EVT model with GARCH-normal and other well-known models. Chan and 

Gray (2006) evaluated the performance of EVT approach to forecast daily VaR in 

electricity market. Karmakar (2013) also estimated the tail-related risk measure using 

McNeil and Frey’s (2000) GARCH- EVT model in Indian stock market. 

Due to returns exhibit skewness and excess kurtosis, normality assumption made for return 

series causes the underestimation or overestimation of the true VaR.  Venkataraman 

(1997), Zangari (1996) used the mixture of normal distributions which is heavy-tailed and 

able to capture the extreme events. Lee et al. (2008) used the GARCH model under skewed 

generalized error distribution (GARCH-SGED) to forecast daily VaR and compared the 

forecast performance of GARCH-SGED with GARCH-normal. Skewed generalized error 

distribution is able to capture both skewness and kurtosis in financial returns series. 

Angelidis et al. (2004) used the GARCH model under student-t and generalized error 

distribution (GED) to forecast daily VaR considering the leptokurtic structure of the returns 

series. Ergen (2010) compared the forecast performance of GARC-EVT model with heavy-

tailed GARCH models. According to these studies, leptokurtic distributions are able to 

produce better daily VaR forecasts. 

In this paper, VaR forecast performance of GARCH-EVT model is compared with the 

GARCH-normal, GARCH-student-t, GARCH-GED and GARCH-SGED models for ISE-

100, Nikkei-225 and S&P-500 stock exchange indexes. This study has two major aims. 

First one is to show that how distribution assumption made for residuals in GARCH models 

affects the daily-VaR forecasts and secondly daily-VaR forecasts of ISE-100, Nikkei-225 

and S&P-500 stock exchange indexes are compared with various models by backtesting 

procedure.  

The rest of the paper organized as follows: Section II presents the VaR and EVT 

comprehensively. Section III presents backtesting and GARCH models based on different 

distribution assumptions. Section IV presents data, descriptive statistics, empirical evidence, 

and final section presents the conclusion of study.  

 

 

2  Financial Risk Measurement Based On EVT 

VaR can be simply defined as follows:  

 
1(1 )VaR F    

where F  is the distribution function of financial losses, 
1F 
 denotes the inverse of F  

and   is the quantile at which VaR is calculated. EVT is strong method to capture 

extreme tails of distribution and also tail behavior of loss distribution. Modeling the extreme 

events, peaks over threshold methodology is used in recent applications. Peaks over 

Threshold (POT) method focuses on the distribution of exceedances over a threshold. uF  

which is the conditional excess distribution can be defined as follows: 

( ) ( / ),    0u FF y P x u y x u y x u                                      (1) 

where X is a random variable, denotes the financial losses, u  is a threshold, y x u 
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are the excesses, called as extreme losses, Fx    is the right endpoint of F which is 

the distribution function of X . POT deal with the estimation of distribution function uF  

which can be written in terms of F, 

Pr{ , } ( ) ( )
( ) = 

Pr( ) 1 ( )

( ) ( )
           =

1 ( )

u

x u y x u F y u F u
F y

x u F u
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F u

    


 
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

                            (2) 

A theorem by Balkema and de Haan (1974) and Pickands (1975) indicates that, for 

sufficiently high threshold, the excess distribution function uF , can be approximated by 

Generalized Pareto Distribution (GPD): 
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 is shape parameter,   is the location parameter and   is the scale parameter for 

GPD. When 0  , it takes the form of the ordinary Pareto distribution which is the most 

suitable for financial return series. When 0  , the GPD takes the shape of exponential 

distribution and it is known as a Pareto II type distribution for 0   (Gencay and Selcuk, 

2004).  

( ) ( ) ( ) ( )
( )

1 ( ) 1 ( )
u

F y u F u F x F u
F y

F u F u

  
 

 
                                  (4) 

( )F x  can be isolated from (4), 

( ) (1 ( )) ( ) ( )uF x F u F y F u                                              (5) 

( )uF y  and ( )F u  are replaced respectively by GPD and ( )un N n , n  is the total 

number of observations and uN  is the number of observations above the threshold. 

 F̂ x can be obtained as follows: 
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                                (6) 

We can obtain the pVaR inverting (6) for a given probability, 

ˆˆ
[( ) 1]
ˆp

u

n
VaR u p

N





                                                (7) 

Determination of threshold is critical importance for the GPD modeling. The most used 

method is Mean Excess (ME) Plot for determination of threshold. ME Plot can be defined 

as follows:  
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1( , ( )),   x xn n

n nu e u u                                                    (8) 

where, ( )ne u  is the sample mean excess function, 
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and 1n k   is the number of observations exceeding the threshold u  (Gilli and 

Kellezi, 2006).  

 

 
 

Figure 1: Mean Excess Plot 

 

Figure 1: shows linearity in a region where above the threshold u , the data can be 

modeling with GPD. Sing et al. (2013) interpreted the linearity as follows: 

 Upward linear trend indicates a positive shape parameter ( )  for the GPD  

 Horizontal linear trend indicates a GPD with 0   

 Linear downward trend can be interpreted as GPD with negative   

 

 

3  Garch Models In VaR Estimation  

Garch-normal model 

Let  1ln 100t t tR S S    denotes the daily returns of the assets on time t  and tS

represents the closed prices of the assets. Engle (1982) introduced the ARCH(q) model and 

expressed the conditional variance as a linear function of the past q  squared residuals. 

Bollerslev (1986) proposed a generalization of the ARCH model, GARCH(1,1) model with 

normal error distribution can be written as follows: 

𝑅𝑡 = 𝜇 + 𝑒𝑡 
𝑒𝑡 = 𝜀𝑡𝜎𝑡, et i.i.d.N(0,1)                                                  (10) 

𝜎𝑡
2 = 𝜔 + 𝛼𝑒𝑡−1

2 + 𝛽𝜎𝑡−1
2  

where respectively,    and 
2

t  are the conditional mean and variance. To ensure the 

stationarity condition and positive variance below equations must be hold. 
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1, 0, 0 and >0         

Log-likelihood function of GARCH-normal model under normality assumption can be 

written as: 

2 2

1 1

( ) 0.5 ln 2 ln
T T

t t

t t

L T   
 

 
    

 
                                    (11) 

where ( , , , )      is the parameter vector. According to GARCH-N model, one-

day-ahead VaR forecast can be calculated as: 

1
ˆ( ).t t tVaR F                                                       (12) 

where ( )tF  is the left quantile of standard normal distribution at  level. Generally, 

  is equal to 0 for daily returns of assets.  

 

Garch-student-t model 

Engle (1982) assumed the distribution of t as normal. Bollerslev (1986, 1987) proposed 

the standardized student-t distribution with 2   degree of freedom. Student’s-t is 

symmetric distribution and for 4  , conditional kurtosis greater than 3, which exceeds 

the normal value. Under this specification, log-likelihood function, for a sample of T 

observations, can be written as follows: 
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                         (13) 

where ( )  is the gamma function and   is the thickness parameter of the distribution 

tails. The one-day-ahead VaR forecast based on SGED distribution can be calculated as 

follows: 

1
ˆ( ).t t tVaR F      

where ( )tF  is the left quantile of the student-t distribution at   level. 

 

Garch-GED model 

In order to model the excess kurtosis observed asset prices, assumption on t can be 

relaxed. Nelson (1991) proposed the generalized error distribution GED instead of 

assuming t is normally distributed. Under this specification, log-likelihood function for 

GED distributed t : 

 1 2

1

1 1 1
( ) ln (1 ) ln(2) ln ln

2 2 2 2

T
t

t

t
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

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     
             (14) 

where   is the tail-thickness parameter and  
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where (.)  is the gamma function. The Gaussian distribution is a special case of GED 

distribution when 2  . If 2  , GED has fatter tails than Gaussian distribution. 

According to Nelson (1991) specification, log-likelihood function can be written as follows: 
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According to GARCH(1,1) model,  
2 2 2

1 1t t te        in the above equation. 

Parameters of the GARCH(1,1) model can be obtained by the numerical maximization 

procedure. The one-day-ahead VaR forecast based on SGED distribution can be calculated 

as follows: 

1
ˆ( , ).t t tVaR F       

Where ( , )tF    is the left quantile of GED distribution at  level. 

 

Garch-SGED model 

Lee et al. (2008) used the SGED distribution which provides a flexible distribution for 

modeling the empirical distribution of financial data. Probability density function of 

standardized SGED distribution can be written as follows: 
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where  is the shape parameter with constraint 0  ,   is skewness parameter with 

1 1   . SGED distribution turns out to be the standart normal distribution when 

2   and 0  . Log-likelihood function of GARCH-SGED model can be written as 

follows: 
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where is the parameter vector. The one-day-ahead VaR forecast based on SGED 

distribution can be calculated as follows: 

1
ˆ( , , ).t t tVaR F        

where ( , , )tF     is the left quantile of SGED distribution at   level. 

 

Garch-EVT model 

EVT relies on an assumption of independent and identically distributed (i.i.d.) observations. 

Generally, it is not true and unrealistic assumption for the financial return series. To 

overcome this problem, McNeil and Frey (2000) proposed a two-stage approach.  

 

Proposed model can be summarized as follow:  

1. First step, GARCH (1,1) model is fitted to the return series by pseudo maximum 

likelihood estimation (PML) and gives the residuals for step-2 and also 1 day ahead 

predictions of 1 1 and t t   . 

2. Second step, EVT-POT method is applied to the residuals of GARCH model. The most 

important point of this method is selection of threshold u . Using the parameter 

estimation of EVT-POT method and also predictions of 1 1 and t t   , 1tVaR  can be 

calculated easily. 

 

The one-day-ahead VaR forecast based on GARCH-EVT model can be calculated as 

follows: 

1
ˆ( ; , ).t t tVaR F        

where ( ; , )tF     is obtained by the POT estimation procedure. To compare the 

forecasting ability of these models in terms of VaR forecasts, backtesting methodology is 

used. Kupiec (1995) proposed a LR test for evaluating the model accuracy. The LR test 

statistic can be written as follows: 

 

01

01

2

1

(1 )
2ln

ˆ (1 )

nn

nn

p p
LR 

 

 
   
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2                                             (20) 

where 1 0 1
ˆ ( )n n n    is the maximum likelihood estimation of p , 1n  represents the 

total violations and 0n represents the total non-violations forecasts. Under the null 

hypothesis 0
ˆ( : )H p  , LR statistics follows a chi-square distribution with one degree of 

freedom. 

 

 

4  Empirical Results 

The return series contain different sample sizes, 1256 observations for ISE-100 and S&P-

500, 1211 observations for Nikkei-225 indexes. Table 1 gives the descriptive statistics of 

daily log returns for ISE-100, S&P-500 and Nikkei-225 indexes.  According to Table 1, 

for all equity indexes mean returns is closed to 0. Skewness and kurtosis are significantly 

different from the 0 and 3 for normal distribution and also JB test statistics are far greater 
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than the critical value at %5 level and p-value is 0. Therefore, log returns of three indexes 

have the non-normal characteristics, excess kurtosis and fat tails.  

 

Table 1: Descriptive statistics of the daily log returns 

  ISE-100 S&P-500 Nikkei-225 

Number of observations 1256 1256 1211 

Minimum -0.09013 -0.09469 -0.12111 

Maximum 0.12127 0.10957 0.13234 

Mean 0.00031 0.00002 -0.00020 

Median 0.00085 0.00072  0.00037 

Std. Deviation 0.01838 0.01661 0.01813 

Skewness -0.11998 -0.24613 -0.50283 

Kurtosis 3.85865 6.94596 7.99124 

Jarque-Bera 786.645 2549.15 3409.73 

Probability 0 0 0 

 

Table 2. represents the parameter estimates of GARCH(1,1) model. Normal, Students’t, 

GED, SGED and GPD are assumed for standardized residuals. To implement GARCH—

EVT model, threshold value of GPD is determined with respect to 90th quantile of the 

standardized residuals. According to Table 2., conditional variance parameters are highly 

significant and 0, , 0 and 1          conditions are hold for the positive 

variance and stationarity condition. All parameters satisfy the assumption of GARCH(1,1) 

model. To evaluate the out of sample performance of these models, rolling window 

estimation procedure is used. Firstly, to implement the rolling window estimation, window 

length must be determined. Because of the returns series contains different sample size, 

window length is differently determined for all equity indexes to evaluate out of sample 

performance of models with equal forecast period. Window length of equity indexes are 

respectively 1256 for ISE-100 and S&P-500 and 1211 for Nikkei-225 indexes.  

 

Table 2: Parameter estimates of GARCH(1,1) model for three indexes, assuming four 

different distributions for the standardized residuals 
Parameter ISE-100 S&P-500 Nikkei-225 

 Normal Distribution 

 

 
 

0.000006    (0.000003) 
0.000003     

(0.000001) 
0.000008    (0.000003) 

 

 
 

0.112678    (0.020851) 
0.111790     

(0.015839) 
0.135926    (0.022036) 

 

 
 

0.871191    (0.023936) 
0.878648     

(0.014850) 
0.834648    (0.025347) 

LL 3397.101 3708.001 3511.063 

 
 

Student's t Distribution 

 

 
 

0.000005    (0.000002) 
0.000002     

(0.000001) 
0.000007    (0.000003) 

 

 
 

0.090481    (0.022490) 
0.107612    

 (0.019033) 
0.115638    (0.022811) 
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0.896608    (0.025681) 
0.888907    

 (0.016700) 
0.856217    (0.026635) 

 7.923236   (1.678036) 
6.024970    

 (1.171811) 
18.019092    (7.823826) 

LL 3413.187 3726.328 3514.426 

 Generalized Error Distribution 

 

 
 

0.000005    (0.000003) 
0.000002   

  (0.000001) 
0.000008    (0.000003) 

 

 
 

0.103268    (0.023584) 
0.109035   

  (0.019221) 
0.126417    (0.023145) 

 

 
 

0.881287    (0.027161) 
0.884197   

  (0.017566) 
0.844314    (0.027000) 

 1.489908    (0.081856) 
1.274209     

(0.074468) 
1.700551    (0.104832) 

LL 3411.697 3726.328 3514.517 

 Skewed Generalized Error Distribution 

 

 
 

0.000005    (0.000003) 
0.000002    

 (0.000001) 
0.000008    (0.000003) 

 

 
 

0.098602    (0.022346) 
0.106762     

(0.018478) 
0.124616    (0.022399) 

 

 
 

0.885828    (0.025862) 
0.884948   

  (0.017236) 
0.842935    (0.026793) 

 0.944994    (0.034729) 
0.918362    

 (0.030316) 
0.893770    (0.036767) 

 

 
 

1.487202    (0.081611) 
1.304730     

(0.076731) 
1.769865    (0.114814) 

LL 3412.857 3739.734 3518.577 

 Generalized Pareto Distribution 

 

 
 

0.000006 

(0.000004) 

0.000003 

(0.0000008) 

0.000008 

(0.0003662) 

 

 
 

0.1129 

(0.03440) 

0.1108 

(0.01856) 

0.1361 

(0.03175) 

 

 
 

0.8709 

(0.03901) 

0.8796 

(0.01552) 

0.83845 

(0.03296) 

  0.04940891 0.1910409 0.06468743 

  0.5191189 0.7606422 0.55519733 

LL 3397.104 3708.001 3511.063 

Observations 1256 1256 1256 

Standard errors are presented in parentheses. 

 

Out-of-Sample Performance of VaR Models and Backtesting Results 
As mentioned above, rolling estimation procedure is used to obtain VaR forecasts at %95 

and %99 confidence level for all equity indexes using standart normal distribution, 

student’s t distribution, GED, SGED and generalized parato distribution. According to 

Table 3., forecast period is the same for all indexes. To evaluate the performance of the 

models violation based backtesting method is used. According to backstesting results 

obtained for ISE-100 index, GARCH-EVT model is outperformed with respect to the other 

model for  %95 confidence level. GARCH-EVT and GARCH-SGED model have the 

same violations (5) for  %99 confidence level. LR-uc is used to test equality of expected 

violation and observed violation. 
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Table 3: Out of sample performance of models according to bactesting results for ISE-100 

index 

%95 confidence level 

ISE-100 
Number of 

Forecasts 

Expected 

Violation 

Observed 

Violation 
LR-uc 

GARCH-normal 439 22 27 
1.143 

(0.285) 

GARCH-student's 

t 
439 22 30 

2.802 

(0.094) 

GARCH-GED 439 22 27 
1.143 

(0.285) 

GARCH-SGED 439 22 22 
0 

 (0.991) 

GARCH-EVT 439 22 18 
0.79506 

(0.3726) 

%99 confidence level 

ISE-100 
Number of 

Forecasts 

Expected 

Violation 

Observed 

Violation 
LR-uc 

GARCH-normal 439 4 11 
7.089 

(0.008) 

GARCH-student's 

t 
439 4 6 

3.841 

(0.464) 

GARCH-GED 439 4 6 
3.841 

(0.464) 

GARCH-SGED 439 4 5 
0.082 

(0.775) 

GARCH-EVT 439 4 5 
0.082 

(0.775) 

 

 
Figure 2: Daily VaR forecasts for ISE-100 index at %95 confidence level 
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Figure 3: Daily VaR forecasts for ISE-100 index at %99 confidence level 

 

According to backstesting results obtained for S&P-500 index, GARCH-EVT model is 

outperformed with respect to the other model for  %95 confidence level. GARCH-EVT 

and GARCH-SGED model have the same violations (3) for  %99 confidence level. 

 

Table 4: Out of sample performance of models according to bactesting results for S&P-

500 index 

%95 confidence level 

S&P-500 
Number of 

Forecasts 

Expected 

Violation 

Observed 

Violation 
LR-uc 

GARCH-normal 439 22 22 0 (0.991) 

GARCH-student's 

t 
439 22 23 

0.052 

(0.819) 

GARCH-GED 439 22 23 
0.052 

(0.819) 

GARCH-SGED 439 22 21 
0.084 

(0.834) 

GARCH-EVT 439 22 15 
2.5936 

(0.1073) 

%99 confidence level 

S&P-500 
Number of 

Forecasts 

Expected 

Violation 

Observed 

Violation 
LR-uc 

GARCH-normal 439 4 9 
3,751 

(0.053) 

GARCH-student's 

t 
439 4 5 

0.082 

(0.775) 

GARCH-GED 439 4 5 
0.082 

(0.775) 

GARCH-SGED 439 4 3 
0.5  

(0.479) 

GARCH-EVT 439 4 3 
0.5  

(0.479) 
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Figure 4: Daily VaR forecasts for S&P-500 index at %95 confidence level 

 

 
Figure 5: Daily VaR forecasts for S&P-500 index at %99 confidence level 

 

According to backstesting results obtained for Nikkei-225 index, GARCH-EVT model is 

outperformed with respect to the other model for  %95 and %99 confidence level. 

GARCH-EVT and GARCH-SGED models are outperformed because of the non-normal 

characteristics (leptokurtic) of the standardized residuals.  
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Table 4: Out of sample performance of models according to bactesting results for Nikkei-

225 index 

%95 confidence level 

Nikkei-225 
Number of 

Forecasts 

Expected 

Violation 

Observed 

Violation 
LR-uc 

GARCH-normal 439 22 23 
0.052 

(0.819) 

GARCH-student's 

t 
439 22 23 

0.052 

(0.819) 

GARCH-GED 439 22 23 
0.052 

(0.819) 

GARCH-SGED 439 22 22 
0  

(0.991) 

GARCH-EVT 439 22 20 
0.1877 

(0.6648) 

%99 confidence level 

Nikkei-225 
Number of 

Forecasts 

Expected 

Violation 

Observed 

Violation 
LR-uc 

GARCH-normal 439 4 9 
3.751 

(0.053) 

GARCH-student's 

t 
439 4 6 

0.535 

(0.464) 

GARCH-GED 439 4 5 
0.082 

(0.775) 

GARCH-SGED 439 4 4 
0.036 

(0.849) 

GARCH-EVT 439 4 3 
0.5  

(0.479) 

 

 

Figure 6: Daily VaR forecasts for Nikkei-225 index at %95 confidence level 
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Figure 7: Daily VaR forecasts for Nikkei-225 index at %99 confidence level 

 

 

5  Conclusion 

ISE-100 index is badly affected by the reason of the recent political issues. When analyzed 

the returns series of ISE-100 index, downside price movements are draw attention. 

Therefore, financial risk management is become so important for the market regulators and 

investors.   

By the reason of the financial instability, big and unpredictable losses, EVT might be good 

candidate to model tail behavior of return series measuring the VaR. For this purpose, 

GARCH-normal, GARCH-student’s t, GARCH-GED, GARCH-SGED and GARCH-EVT 

models are compared by the backtesting results for three equity indexes. This study shows 

that GARCH-SGED and especially GARCH-EVT model are outperformed when the 

returns series have non-normal characteristics, excess kurtosis and skewness. GARCH-

EVT model take into account the leptokurtosis of the standardized residuals. Other models 

are insufficient to measure true VaR and cannot respond quickly to changing volatility.   
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