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A note on the distribution of residual
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Abstract

This paper generalizes the distribution of residual autocovariance
matrices in VARMA(p,q) models obtained previously in Hosking (1980).
A new simplified version of the multivariate relation between sample
correlation matrix of the errors and its residuals is also established.
The modifications are effective tools for identifying and dealing with
the curse of dimensionality in multivariate time series.
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1 Introduction

Consider a causal and invertible m−variate autoregressive moving average
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VARMA(p,q) process

Φ(B)(Xt − µ) = Θ(B)εt , (1)

where B is backward shift operator BXt = Xt−1. µ is the m× 1 mean vector

and {εt : t ∈ Z} is a zero mean white noise sequence WN(0,Σ), where Σ is a

m ×m positive definite matrix. Additionally, Φ(z) = Im −Φ1z − · · · −Φpz
p

and Θ(z) = Im + Θ1z + · · · + Θqz
q are matrix polynomials, where Im is the

m ×m identity matrix, and Φ1, . . . ,Φp,Θ1, . . . ,Θq are m ×m real matrices

such that the roots of the determinantal equations |Φ(z)| = 0 and |Θ(z)| = 0

all lie outside the unit circle. We also assume that both Φp and Θq are non-null

matrices, and that the identifiability condition of [1], r(Φp,Θq) = m, holds.

Let P = max(p, q) and define the m ×mp matrix Φ = (Φ1, . . . ,Φp), the

m×mq matrix Θ = (Θ1, . . . ,Θq), and the m2(p+ q)× 1 vector of parameters

Λ = vec(Φ,Θ). The residual vectors ε̂t, t = 1, . . . , n, are defined recursively,

in the form

ε̂t = (Xt −Xn)−
p∑

i=1

Φ̂i(Xt−i −Xn)−
q∑

j=1

Θ̂j ε̂t−j , t = 1, . . . , n , (2)

with the usual conditions Xt − Xn ≡ 0 ≡ ε̂t, for t ≤ 0. In practice, only

residual vectors for t > P = max(p, q) are considered. Define m ×m sample

error covariance matrix at lag k with the notation Ck = (1/n)
∑n−k

t=1 εtε
′
t+k,

0 ≤ k ≤ n− 1. Similarly, the m×m kth residual covariance matrix is given by

Ĉk = (1/n)
∑n−k

t>P ε̂tε̂
′
t+k , 0 ≤ k ≤ n− (P + 1). Following [2], let Rk = C′

kC
−1
0

be the kth sample correlation matrix of the errors εt. Its residual analogue is

given by R̂k = Ĉ′
kĈ

−1
0 .

Properties of the residual covariance matrices and correlation matrices and

their practical use in multivariate Portmanteau statistic have been considerd

by many authors, see, for example, [2], [3], [4], [5]. The linear relation between

the residual and error covariance matrices in [3] is highly dimensional. For

convenience in applications, a new representation is suggested in section 2. To

this end, this paper uses the family of statistics proposed in [6]. The orthogonal

projection matrix in [3] is also generalized. The advantage of the new tool lies

in standard properties of the trace operator. The associated correlation matrix

of the residuals is useful in identification and diagnostic checking. Section 3

examines the large sample distribution of the transformed multivariate residual

autocorrelations. Section 4 concludes.
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2 Distribution of residual autocovariace

This section examines the asymptotic properties of residual autocovari-

ace. We start by considering the m ×m coefficients of the series expansions

Φ−1(z)Θ(z)

=
∑∞

j=0 Ωjz
j and Θ−1(z) =

∑∞
j=0 Ljz

j where Ω0 = L0 = Im. Define also

the collection of matrices Gk =
∑k

j=0(ΣΩ′
j ⊗ Lk−j) and Fk = Σ⊗ Lk, k ≥ 0.

By convention, Gk = Fk = 0 for k < 0, it follows that

Ĉ′
k = C′

k−
p∑

i=1

k−i∑
r=0

Lk−i−r(Φ̂i−Φi)ΩrΣ−
q∑

j=1

Lk−j(Θ̂j−Θj)Σ+OP (
1

n
) . (3)

This construction is due to [3, p.603].

Set the sequence of m2M ×m2(p + q) matrices ZM = (XM ,YM), M ≥ 1,

where

XM =




G0 0 0 · · · 0

G1 G0 0 · · · 0

G2 G1 G0 · · · 0
...

...
...

. . .
...

GM−1 GM−2 GM−3 · · · GM−p




,

and

YM =




F0 0 0 · · · 0

F1 F0 0 · · · 0

F2 F1 F0 · · · 0
...

...
...

. . .
...

FM−1 FM−2 FM−3 · · · FM−q




.

Put the Mm2 × Mm2 block diagonal matrix W = diag(C0 ⊗ C0,
(M)· · · ,C0 ⊗

C0) = IM ⊗ C0 ⊗ C0. The residual counterpart is Ŵ = IM ⊗ Σ̂ ⊗ Σ̂. For

convenience, consider Mm2×1 random vectors ĤM = [vec(Ĉ′
1), . . . , vec(Ĉ′

M)]′

and HM = [vec(C′
1), . . . , vec(C′

M)]′ and W = IM ⊗Σ ⊗Σ. After taking vecs

in both sides of (3), hence, for each M ≥ 1,

ĤM = HM − ZMvec[(Φ̂, Θ̂)− (Φ,Θ)] + OP (
1

n
) . (4)

According to [3], the below orthogonality condition holds.

Z′MW−1ĤM = OP (1/n) . (5)
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Combining (4) with (5), Hosking [3] concluded that

Ŵ−1/2ĤM = (IMm2 −PH)W−1/2HM + OP (
1

n
) , (6)

where PH = W−1/2ZM(Z′MW−1ZM)−1Z′MW−1/2 is the Mm2×Mm2 orthogo-

nal projection matrix onto the subspace spanned by the columns of W−1/2ZM .

In practice, the relation (6) is difficult to deal with as m ≥ 5 because of

the curse of dimensionaltity. As a solution, we define a Mm2 ×Mm2 matrix

QM = (IM ⊗ a)(IM ⊗ a′), where a = vec(Im)/
√

m. Put also Mm2 × Mm2

matrix PM = (IM⊗a′)W−1/2Z
M

(Z′MW−1/2QMW−1/2Z
M

)−1Z′MW−1/2(IM⊗a).

Note that PM is the orthogonal projection matrix onto the subspace spanned

by the columns of (IM ⊗ a′)W−1/2ZM .

Remark 2.1. The matrices PH and PM are idempotent.

Lemma 2.2 refers to the multivariate linear relation between the residual

and error covariance matrices

Lemma 2.2. Suppose that the error vectors {εt} are i.i.d. with E[εt] = 0;

Var[εt] = Σ > 0; and finite fourth order moments E[‖εt‖4] < +∞. Then, as

n −→∞,

QMŴ−1/2ĤM = (IMm2 −PM)W−1/2HM + OP (
1

n
) . (7)

Proof. We begin by recalling the result in [6] that

√
nHM

D−→W1/2[V1, . . . ,VM ]′ , k ≥ 1 , (8)

where Vj, j = 1, . . . , k are i.i.d. Nm2(0, Im2). See more details in [6, Lemma

3.1].

From (8), under the assumptions of Lemma 2.2, we obtain

√
nQMHM

D−→ QMW1/2[V1, . . . ,VM ]′ , k ≥ 1 . (9)

Notice first that

QMŴ−1/2ĤM = QMW−1/2ĤM + QM(Ŵ−1/2 −W−1/2)ĤM . (10)

As a consequence of (3), (4) and (9), the second summand of (10) is OP (1/n).

We can rewrite (5) as

QMZ′MW−1ĤM = OP (
1

n
) . (11)
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Taking into account that Ĉ′
0 is consistent for the matrix Σ, hence W−1/2 −

W−1/2 = OP (1/
√

n). Those results combined with (4) and (9) lead to (7) and

Lemma 2.2 follows.

Next section refers to a simplified multivariate linear relation between the

residual autocorrelation matrices and the error ones.

3 Distribution of residual autocorrelation

Define M × 1 random vectors

T̂M = [tr(R̂1), . . . , tr(R̂M)]′ (12)

and

TM = [tr(R1), . . . , tr(RM)]′ . (13)

Theorem 3.1 provides a solution to the highly dimensional relation (7).

Theorem 3.1. Under the assumptions of Lemma 2.2, as n −→∞,

1√
m

T̂M = (IM −PM)
1√
m

TM + OP (
1

n
) . (14)

Proof. We introduce the notion of a linear relationship for dimension-

reduction purpose, following [6],

1√
m

TM = (IM ⊗ a′)W−1/2HM , M ≥ 1 . (15)

Its residual version is given by

1√
m

T̂M = (IM ⊗ a′)Ŵ−1/2ĤM , M ≥ 1 . (16)

Combining (7), (15) and (16) finishes the proof of (14).

The objective now is to establish the large sample distribution of the ran-

dom vector ĤM .

Theorem 3.2. Under the assumptions of Lemma 2.2, as n −→∞,

√
nQMŴ−1/2ĤM

D∼= (IMm2 −PM)NMm2(0, IMm2) . (17)
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Proof. The proof is completed by using (7) and (9).

Let us mention an important consequence of the Theorem 3.2. It is a

practical tool to construct a goodness of fit process for selecting a proper time

series model.

4 Conclusions

The main results of this paper were announced in Lemma 2.2, Theorems

3.1 and 3.2. Goodness of fit methods make those properties more attractive in

practice especially for large time series datasets.
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