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Abstract 

We present a type of message called an “analytic message” that has entangled 

symbols (i.e. symbols that are to some extent predictable from one another). We 

prove a theorem that derives the velocity of an analytic message as superluminal. 

We show that analytic messages can carry information and thus provide a method 

of superluminal communication. 

 

Mathematics Subject Classification: 94A16; 94A24 

Keywords: code theory; codeword; message; quantum entanglement; 

superluminal 

 

 

1  Introduction  

Superluminal communication is the hypothetical process by which one might 
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send information at faster-than-light (FTL) speeds. The current scientific 

consensus is that faster-than-light communication is not possible and to date 

superluminal communication has not been achieved in any experiment [1]. 

Some theories and experiments include: 

*Group velocity >c experiments 

*Evanescent wave coupling 

*Tachyons 

*Quantum non-locality 

According to currently accepted theory, three of those four phenomena do not 

produce superluminal communication, even though they may give that appearance 

under some conditions. The third, tachyons, arguably do not exist as their 

existence is hypothetical; even if their existence were to be proven, attempts to 

quantize them appear to indicate that they may not be used for superluminal 

communication, because experiments to produce or absorb tachyons cannot be 

fully controlled [2]. 

If wormholes are possible, then ordinary subluminal methods of 

communication could be sent through them to achieve superluminal transmission 

speeds. Considering the immense energy that current theories suggest would be 

required to open a wormhole large enough to pass spacecraft through it may be 

that only atomic-scale wormholes would be practical to build, limiting their use 

solely to information transmission. Some theories of wormhole formation would 

prevent them from ever becoming “timeholes”, allowing superluminal 

communication without the additional complication of allowing communication 

with the past [3]. 

The microscopic causality postulate of axiomatic quantum field theory 

implies the impossibility of superluminal communication using phenomena whose 

behavior can be described by orthodox quantum field theory [4]. A special case of 

this is the no-communication theorem, which prevents communication using the 

quantum entanglement of a composite system shared between two 
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spacelike-separated observers. Some authors argue that using the 

no-communication theorem to deduce the impossibility of superluminal 

communication is circular, since the no communication theorem assumes that the 

system is composite [5]. 

However, some argue that superluminal communication could be achieved via 

quantum entanglement that don’t rely on cloning a quantum system. One 

suggested method would use an ensemble of entangled particles to transmit 

information [6], similar to a type of quantum eraser experiments where the 

observation of an interference pattern on half of an ensemble of entangled pairs is 

determined by the type of measurement performed on the other half [7],[8],[9]. In 

these cases, though, the interference pattern only emerges with coincident 

measurements which requires a classical, subluminal communication channel 

between the two detectors. Physicist John G. Cramer at the University of 

Washington is attempting to perform one type of these experiments and 

demonstrate whether or not it can perform superluminal communication 

[10],[11],[12]. 

In this paper we present a type of message called an “analytic message” that 

has predictable, entangled symbols (i.e. symbols that are to some extent 

predictable from one another). We prove a theorem that derives the velocity of an 

analytic message as superluminal. 

 

 

2  Analytic Messages 

In coding theory, the length of a message is k and the length of a codeword is 

n . A codeword is a function of a message. The codeword normally contains 

redundancy in order to allow for recovery of the message when there are errors 

[13]. An analytic message is a message with a non-zero level of predictability. 

That is, to a given extent, the symbols can be predicted from one another. The 
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traditional message in coding theory is random with a zero level of predictability. 

In traditional coding theory, k < n , but in the case of analytic messages, k ≤ n , 

which allows for some portion of message recovery even when there is no 

redundancy in the codeword. 

A code C  is defined as the mapping: 

: , , ,k nC k n k n +→ ≤ ∈∑ ∑  .                  (1) 

∑  is the alphabet. We define β  as the rule for predicting symbols in the 

message. For a completely random message, β = ∅ .  The code rate [14], that 

exactly captures the amount of information contained per bit of a codeword, is 

R =
k
n

.                          (2) 

The number of  symbols in a message predictable from k α−  symbols is α . 

The fractional error tolerance limit for completely random messages ( 0α = ) is 

[15] 

ρ = 1− R .                         (3) 

The fractional error tolerance limit for analytic messages is 

ρ = 1− R +
α
n

.                            (4) 

Clearly, there is greater message recovery for analytic messages. 

Theorem 1.  If the speed of a completely random message is c and the speed of a 

completely analytic message is infinite, because the completely analytic message 

is completely predictable and therefore simultaneously present at the point of 

transmission and the point of reception, then the function that interpolates the two 

speeds is 

v = k
k −α







c . 

Proof.  For a completely random message, α = 0 . Thus, v = c . For a 
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completely analytic message, α = k . Thus, v = k
0







c  and is undefined at 

infinity.                                                          □                                                      

 

Corollary 2. If α ∈(0,k] , then v > c . Analytic messages are superluminal. 

 

Define the information [16] of a message as 

I = (k −α )log2 ∑ + sgn(k −α )sgn(α )log2

∑ ∑ −1( )k−α −1

k(k −α )!
.         (5)

                

We see that a completely analytic message has zero information, while the 

information of a random message is I = k log2 ∑ . If information is 

proportional to the momentum of a message, then the energy of a message is 

E Iv .                             (6) 

Therefore, the messages with less information or more analytic messages have 

higher velocities and the kinetic energy is the following function: 

( ) 1

2 2

1sgn( )sgn( )log log
( )!

k

kc kE kc
k k k

α

α α
α α

− −
−−

+
− −

∑ ∑∑ .            (7) 

It follows that information can be transmitted by an analytic message if α ∈(0, k)  

and k < ∑ . 

Example 3. Consider the case for which α = k −1 and β = ” the symbols are 

sequential”. Then the speed of transmission is  

v = k
k − (k −1)







c = kc . 

If k = 4 , then when the first symbol of the message is received, the other three 

are completely predicted. Since the first symbol traveled at speed c , then the total 

message must have traveled at speed 4c . 
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3  Conclusion 

We presented an “analytic message” that has to a given extent, predictable 

symbols and the symbols are, to a given extent, entangled. We proved that analytic 

messages are superluminal and allow for superluminal communication. 
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