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Exponentially fitted collocation approximation
method for the numerical solutions of
Higher Order Linear Fredholm
Integro-Differential-Difference Equations

W.W. Memudu® and O.A. Taiwo,?

Abstract
This paper is concerned with the application of exponentially fitted collocation
approximation method for the numerical solutions of Higher Order Linear Fredholm
Integro-Differential-Difference Equations. Our approach entails substituting an
assumed approximate solutions (Chebyshev and Legendre Polynomials as bases
functions) into a slightly perturbed form of the given problem and then fitted the
given mixed conditions with an exponential, having one free-tau parameter. Thus,
the resulting equation is then collocated at equally spaced interior points of given
intervals. Thus, resulted into algebraic linear system of equations which are
combined with the exponentially fitted given mixed conditions. All together, these

equations and then sovled using modification of MAPLE 13. The method is applied
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to a wider class of problems. The numerical results obtained for selected problems
show that the approximate solution by Chebyshev Polynomials as basis function
performed better than that of Legendre Polynomials as basis function in terms

accurancy achieved, computational time and cost.

Keywords: Exponentially Fitted; Chebyshev and Legendre; bases function;

Perturbed; accuracy

1 Introduction

The problem stated in equation (1) together with the mixed conditions given in
equation (2) below have been recently considered by Abbas and Mehdi (2010) and
solved equations (1) and (2) by Taylor Series.

> ROV + Y P00y (=)= 100+ [K(ehyt-n)drir=0 ()
with the mixed conditions
nj[aik vy @+ B, v O +7 YO M= 1=01,..,5-1 (2)

In the method, Abbas and Mehdi, reported that the variable coefficients
problems proved difficult to solve by Taylor Series especially when the variables are
in the form of transcedentials or exponentials . Abbas and Mehdi (2010), used an
approximate solutions by Taylor Series and transform the equation and the given
mixed condition into matrix equation. By solving the system of algebraic equations,
the Taylor’s coefficients of the solution function are obtained. Also, Taylor’s method
has been extended to solve the Fredholm Integro-Differential-Difference Equation.
The drawback of the Taylor Series method reported in Abbas and Mehdi (2010) is
that the higher derivatives involved prove at times difficult to obtain. Our approach
assumed an approximate solution in terms of Chebyshev Polynomials and Legendre

Polynomials as the bases functions. The assumed approximate solution in terms of
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Chebyshev Polynomials is substituted into a slightly perturbed given problem and
exponential is fitted with one free tau-parameter to the mixed boundary conditions of
the given problem. Thus, after simplification, the residual problem and the mixed
boundary condition, lead to algebraic linear system of equations which are solved to
obtain the unknown free tau-parameters and the unknown constants that appeared in

the assumed solution.

2 Problem considered

In this work, the nth-order Linear Fredholm Integro-Differential-Difference

Equation with variable coefficients given as
ki R.(X)y“(x)+ i P (X)y"(x—7)= f(x)+ j:K(x,t)y(t —7)dr;z>20 (3)
=0 r=0
with the mixed conditions
Sla, v @A, ¥ 047,y (1= 100,51 @

where, P, (x), P (x),k(x,t) and f(x) are known smooth functions. Here, the real

coefficients ¢, , B, 7., a,b,n and x are given constants.

2.1 Chebyshev polynomials

The well known Chebyshev Polynomials T, (x) are defined in interval [-1,1] as
T (x) = Cos{nCos*x}; (5)
and determined with the aid of the following recurrence formula.
T..(X)=2xT, (X)-T,,(x);n=1,2,...
Few terms of Chebyshev polynomials valid in [-1,1] are listed
T,(x)=1
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T,(x)=x
T,(x)=2x* -1
T,(x) = 4x* - 3x

T,(x)=8x" -8x* +1

T, (x) =16x° — 20%> + 5x

T,(x) =32x° —48x* +18x° -1
...etc
The analytic form of the Chebyshev polynomials T, (x) of degree n is given by
3]

- Cwion2ia (N-i=1) oy
T (x)—n;;( i)' 2 (i)!(n—2i)!X

where [g] denotes the integer part of g

The orthogonality condition is

z for i=j=0;
1 Ti (X)Tj (X) T ..
———— "dx={— for i=j=#0;
J.—l [l_XZ 2 J
0 for i J.

2.2 Legendre polynomials
Legendre polynomials denoted by P, (x) in the domain [-1,1] is defined by
P () = ——{(20+1)xP, (x) 1P, , ()}
n+1

and

1 d"
2"n! dx"

P.(x) = (x*-1)": n=0,1,2,......
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The first few terms of the Legendre polynomials are given below for —1<x<1
P, (x) =1.

R(X) =x

P, (x) =%(3x2 -1).

P,(x) —1(5x3 —3x)

W75 ‘
P,(X) =%(35x4 —30x*+3)

P, (x) = %(63x5 — 70x* +15x).

...etc

3 Literature review

The theory of integro-differential-difference equtaions, the method used, and its
wide applications have advanced beyond the adolescent stage to occupy a central
position in applicable analysis. In fact, in the last 12 years, the proliferation of the
subject has been witnessed by hundreds of research articles, several monographs,
many works have been done by several autrhors in the theory of
integro-differential-difference equations. Stefanini and Bede (2008) solved the
above mentioned approach under strongly generalized differentiability of
integro-differential-difference equations.In his case, the derivative exists and the
solution of integro-differential-difference equations may have decreasing length of
the support, but the uniqueness is lost. Chebyshev finite difference method [Dehghan
and Saadatmandi (2008)], Legendre Tau method [Dehghan and Saadatmandi of
equation (2010)] and Variational Iteration Method (VIM) [Biazar and Gholami
Porshokouhi (2010), Bessel matrix method [Yuzbas et al (2011). Among them are
Taiwo and Adebisi (2012), Taiwo and Alimi (2014) and Taiwo and Raji (2014). The
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authors reported above have used collocation approximation method by power series
method and canonical polynomials approximate solutions. Homotopy Analysis
Method (HAM) was also introduced by Liao (2014) to obtain series solutions of
various linear and nonlinear problems of this type.

4 Description of exponentially fitted Tau-method

In this section, we discuss the exponentially fitted collocation tau-method for
the solutions of Linear Fredholm Integro-Differential-Difference Equations. In this

method, we assumed an approximate solution of the form
N
yN (X):zarLr(X); aSXSb (6)
r=0

where a, (r>0) are unknown constants to be determined and L, (x) are the

Legendre polynomials defined above. Thus, equation (3) is substituted into slightly

perturbed equation (1) to obtain,

t

iZS:Pk (x)a, L% (x) + iZPﬁ(x)ar L (x-7)

r=0k=0 r=1i=0 ) (7)
= f(x)+I:K(x,t){ZarLr(t—r)}dt +H (), 720

where H y (x) is the perturbation term given as
H y (x)= rZTN (x) +T3TN71(X) +T4TN*2(X) +...

and Ty T T, T T8 n—1 free tau parameters to be determined along with

a (n>0).
We then fitted an exponential with one free tau-parameter into equation (2) to obtain
N k-1
zzaikar Ll: (a) + ﬂikar Lt (b) + Vik \ar Lt ('7) + Tne(a'b’n) = Hi (8)
r=0k=0

i=0,1,..,n-1; a<x<b
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Equation (4) is further simplified to obtain
P, 0OLO 00+ B 0OLO (x-7) - K (DL, t - r)dt
FROLE (04 L OOL (=)~ [K (X DL, (- el
; {Pz(x) LD (x) + P, ()LD (x - 7) - I:K(x,t) L, (t —r)dt}az T
+ROOLY 00+ P OO (=)~ [ KX DLy (- )ity = F0+H () (9)

According to Ortiz (1969), the numbers of 7, (i>1) introdurced are equivalent to

the degrees or orders of the problems considered. In order to satisfy Ortiz (1969), the
remaining r -free parameter is then fixed to the mixed boandary conditions as
shown in equation (5).

Hence, equation (6) is thus collocated at point x = X, to obtain

RO+ B (L, =)= [TK(x, DL (=), +
HROOL X))+ R xOL =)= [0, DL (-, +
+{P2(xk)L(22)(xk )+P (LY (x —7)- j:K(xk DL (t —r)dt} a,++ (10)
+{pn(xk IO (x )+ RO OLY(x ~7) - [K(x DL, (t—r)dt}aN -
—'?Zl‘jriTN_i(xl) = f(x)
where for some obvious practical reason, we have chosen the collocation points to be
(b-a)k,

X, =a+ ; k=1,2,.,N+1
N+1

Thus, we have (N +1) collocation equations in (N +n+1) unknowns
(a5, 8, aN_l) contants to be determined along with n—1 free-tau parameters. n
extra equations are obtained by equation (5). Altogether, we have a total of
(N +n+1) algebraic linear system of equations in (N +n+1) unknown constants.

The (N -+n+1) linear algebraic system of equations are then solved by Gaussian
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elimination method to obtain the unknown constants a,(i >0) which are then

substituted back into the approximate solution in equation (3). Thus, equations (6)
and (7) are then put in Matrix form of the form

AX =B (11)
where,

A, A, A5 &, o Ay

Ay 8y Ay Ay o Ay

A= A Ap Ay Ay o Ay

ml m2 m3 m4 mN

X=(a,88 8.8 7 ... Ty rN)T

B=(100) F06) FO6) o FOG) oo F(Xyis0))
ay; =Py () L (%) + Py (%) LY (x,—7) - jb (x,t) L, (t—7)dt
2, =R 06) L0 (%) + B () L9 (4 —0) - [ (6,0 L (7)ot

a;; = P, (%) LY (%) + P (%) LY (%, —7) - jb (x,t) L, (t—7)dt

= Py (%) LY (%) +P7 (1) LY (%, —7) = [ KOt Ly (t—o)
2, = Ry () LY () + B 00) LY (6, ~7)~ [} (.0 L (t-r) dt
B, =P, () LY (%) + P () L (%, —2) = [ (%) L (t=)el

- ©) * ©) b
a5 = P (X)L (%) + Py (x=2)L5;° (X, —r)—_[a(xz,t)Lz (t—7)dt

2y =P, () L () + BT 06) LY 0 -1 = [ (e ) Ly (-2t (12)
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The matrix equation (11) is then solved by Gaussian Elimination Method to obtain
the unknown constants, which are then substituted into the approximate solution

given in equation (6).

5 Hlustrative examples

Exponentially Fitted Collocation Tau-Method By Chebyshev

Polynomials Function

In this section, several numerical examples are given to illustrate the accuracy
and effectiveness properties of the method and MAPLE 13 package is used to
carry-out the calculation. The absolute errors used is defined as

ly(x)-yy(X)[|; a<x<b

Numerical Example 1
Consider the first-order linear Fredholm integro-differential-difference equation
[Abbas and Mehdi (2010)]

Y'(X)=y(x)+xy'(x=1)+ y(x—-1) = x— 2fl(x +1t)y(t-1)dt, (13)
with the mixed condition
y(-1)-2y(0)+y(1)=0. (14)

The exact solution of the problemis y(x) =3x+4.

Numerical Example 2

Consider the second order linear Fredholm integro-differential-difference equation
(X+4)°y"(X) - (x+8)Yy' (X)+y(x-1)-y'(x-1) =
1 1 (15)
=In(x+3)-——+3In(3)-5In(5) + | y(t)dt
X+3 -1

with conditions

y(0) = In(4), y'(0) = % (16)
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and the exact solution of this problem is y(x) =In(x+4).
Numerical Example 3
In  this example, we consider a third-order linear  Fredholm
integro-differential-difference equation with variable coefficients given as
y () =xy' () +y"(x-1) = xy(x-1) =

. 1 (17)
= —(x+1)(sin(x —1) + cos(x)) — OS2 + Ly(t—l)dt

with conditions
y(0)=0, y'(0)=1, y"(0)=0, (18)

and the exact solution is y(x) =sin(x).

6 Table of results

In this section, we tabulated the results obtained for various values of N and the

exact solution when evaluated at equally spaced interior intervals of consideration.
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Table 1: Absolute Error for Example 1 (Case N=6)

141

Tavl Abbas and Mehdi| Exponentially | Exponentially
aylor
. y (2010) Fitted Fitted

eries

(0] Shifted Legendre | by Chebyshev | by Legendre

X
Tau Method Polynomial Polynomial

-1.0 1.14x 107 6.15x10° 1.281x 107 1.532x 107
-0.9 7.40x10° 1.72x10° 1.420x 107 1.700x 107
-0.8 450%x10° 8.99x10° 1.540x 107 1.840x 107
0.7 2.40x10° 2.00x10° 1.640x 107 1.980x 107
-0.6 1.00x10° 2.05x10° 1.760x 107 2.120x 10”7
0.5 2.00x10* 1.56x 107 1.840x 107 2.240x 107
0.4 1.00x 10" 9.46x10° 1.930x 10~ 2.370x 107
0.3 1.00x 10 4.64x10° 2.030x 107 2.530x 107
0.2 2.00x10% 1.91x10° 2.150x 107 2.690x 107
0.1 1.00x10% 5.87x107 2.290%x 10" 5.530x 10"
0.0 - - 1.000x 10°® 9.000x 10°
0.1 - - 2.590%x 10" 3.320x 107
0.2 - - 2.770x 10" 3.580x 10"
0.3 - - 2.950%x 10" 3.840x 10"
0.4 - - 3.140x 10" 4.130x 10"
0.5 - - 3.310x 10" 4.400x 10”7
0.6 - - 3.420x 107 4.630x107
0.7 - - 3.500x 10" 4.830x107
0.8 - - 3.450x 107 4.920x107
0.9 - - 3.280x 10" 4.900x 10
1.0 - - 2.910x 107 4.690x 10
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Table 2: Absolute Error for Example 1 (Case N=7)

Abbas and Mehdi| Exponentially | Exponentially
Taylor ) ]
Seri (2010) Fitted Fitted
eries

] Shifted Legendre| by Chebyshev | by Legendre
X Tau Method Polynomial Polynomial
-1.0 7.80x10° 2.81x10° 1.570x 10° 1.571x10°
-0.9 5.10x10° 251x10° 1.545x 10° 1.546x 10°
-0.8 3.10x10° 2.01x10° 1.502x 10° 1.503x10°
0.7 1.60x10° 1.46x 107 1.441x10° 1.442x10°
-0.6 8.00x10* 9.74x10° 1.359x 10° 1.360x 10°
05 1.00x10* 5.89x10° 1.269x10° 1.269x 10°
0.4 0 3.23x10° 1.164x10° 1.164x10°
0.3 1.00x10% 1.57x10° 1.053x10° 1.053x10°
0.2 1.00x10% 6.15x107 5.380x 107 5.390x 107
0.1 0 1.33x 10" 1.310x 107 1.320x 10"

0.0 0 0 0 0
0.1 - - 6.590x 107" 6.590 x107
0.2 - - 6.090x 107 6.090x 107’
0.3 - - 5.970x 107 5.970x 10"
0.4 - - 6.300x107 | 6.300 x10~
0.5 - - 7.170x 107 7.170x 107
0.6 - - 8.670x 10" 8.660x 10"
0.7 - - 1.085x 10° 1.084x 10"
0.8 - - 1.378x10° 1.377x10°
0.9 - - 1.747x10° 1.746x 10°
1.0 - - 2.192x10° 2.191x10°
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Table 3: Example 2: Exponentially Fitted Collocation Tau Method for Case N=6

Yalcinbas Yalcinbas
Exact CM
solution & EFCP EFLP [14] & EFCP EFLP
X Akkaya Akkaya
y(x)= N=6
X X E(x E(x E(x E(x
nGca) |y y(x) y() () () () ()
0.1 1.410986974 * 1.41098648 1.410986609 * * 4.9400x 107 | 3.6500% 10~
0.2 1.435084525 * 1.43508436 1.43508311 * * 1.6400%x 107 | 1.4150x10°®
0.3 1.458615023 * 1.45861431 1.458613935 * * 7.1300x 107 | 1.0880x10°®
0.4 1.481604541 * 1.481602451 | 1.481596943 * * 2.0900x 10 | 7.5980x 10°®
0.5 1.504077397 * 1.504076239 | 1.504076972 * * 1.1580%x 10° | 4.2500x 10’
0.6 1.526056303 * 1.526052969 | 1.526054699 * * 3.3300x10° | 1.6040% 10°
0.7 1.547562509 * 1.547560885 | 1.547559869 * * 1.6240%x10° | 2.0400x 10°®
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-0.8 1568615918 * 1.568610399 | 1.568608969 * * 5.5190x 10 | 6.9500% 10°®
0.9 1589235205 * 1.589201616 | 1.589226901 * * 3.3589% 10™ | 8.3040%x10°
1.0 1.608432622 * 1.609432622 | 1.609436856 * * 5.2900x 10 | 1.0560% 10°®
0 1.386294361 | 1.386294 1.386294361 | 1.386294361 | 1.0000x 10 0 0 0
-0.1 1.360976553 | 1.360976 1.36097699 1.386294361 | 1.0000x10° | 6.9300x 107 | 4.3300x107 | 3.7000x 10”7
-0.2 1.335001067 | 1.334999 1.33500037 1.386294361 0 2.0000x10° | 7.0100x 107 | 2.5180x 10°®
-0.3 1.30833282 1.308329 1.308331912 | 1.386294361 | 2.0000x10° | 3.9700x10° | 9.0800x 107 | 6.5670%10°
0.4 1.280933845 | 1.280928 1.280932325 | 1.386294361 | 1.0000x10° | 5.8400x10° | 1.5200x10° | 3.4534x10®
-0.5 1.252762968 | 1.252755 1.252759895 | 1.386294361 | 2.0000x10° | 7.7400x10° | 2.4730x10° | 2.0850% 10°
-0.6 1.223775432 | 1.223766 1.223766428 | 1.386294361 | 1.0000x10° | 9.6500x10° | 9.0040x 10 | 4.9270x 10
-0.7 1.193922468 | 1.193911 1.193899045 | 1.386294361 | 1.0000x10° | 1.1500x10° | 2.3423x10° | 1.0740%x10°
-0.8 1.16315081 1.163138 1163147113 | 1.386294361 | 1.0000x10° | 1.3200x10° | 3.6970x10° | 2.9396x 10
-0.9 1.131402111 | 1.131387 1.131399901 | 1.386294361 | 1.0000x10° | 1.5000 x10° | 2.2100x10° | 2.8480x 10
-1.0 1.098612289 | 1.098596 1.098608995 | 1.386294361 | 2.0000x10° | 1.6600x10° | 2.3440x10° | 1.2824x10°
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Table 4: Example 2: Exponentially Fitted Collocation Tau Method for Case N=7

Yalcinbas
Exact & CM Yalcinbas
X solution Akkaya EFCP EFLP [14] & Akkaya EFCP EFLP
y(x)= N=7
In(x+4) y(X) y(X) y(X) E() E() E() E(x)

0.1 | 1.410986974 * 1.41098697 | 1.410986972 * * 1.0000x10° | 2.0000x10°
0.2 | 1.435084525 * 1.43508452 | 1.435084524 * * 2.0000x10° | 1.0000x10°
0.3 | 1.458615023 * 1.4586192 1.45861489 * * 1.0300% 107 | 1.3300x10
0.4 | 1.481604541 * 1.481604397 | 1.481603922 * * 1.4400% 107 | 6.1900x 107
0.5 | 1.504077397 * 1504075945 | 1.504076981 * * 1.4520%10° | 4.1600x107
0.6 | 1.526056303 * 1.526056101 | 1.52605499 * * 2.0200x107 | 1.3130x10°
0.7 1.547562509 * 1.54755972 1.547560783 * * 2.7890x10°% | 1.7260x% 10'6
0.8 1.568615918 * 1.568612829 | 1.568614313 * * 3.0890x10° | 1.6050x10°
0.9 | 1.589235205 * 1.589229761 | 1.589224853 * * 5.4440x10° | 1.0352x10°

1 1.608432622 * 1.609429833 | 1.609429842 * * 8.0790x10° | 8.0700x10°

0 1.386294361 | 1.386294 | 1.386294361 | 1.38629436 | 1.0000x10° 0 0 1.0000x 10°°
-0.1 | 1.360976553 | 1.360976 | 1.360976553 | 1.360976552 | 1.0000x10° 0 0 1.0000x 107
-0.2 | 1.335001067 | 1.334999 | 1.335001067 | 1.335001066 | 1,0000x10° 0 0 1.0000x 10°°
-0.3 | 1.30833282 | 1.308329 | 1.3083327 | 1.308332713 | 1.0000x10° | 3.0000x10° | 1.2000x107 | 1.0700x 107
-0.4 | 1.280933845 | 1.280928 | 1.280933037 | 1.280936527 | 1.0000x10° | 5.0000x10° | 8.0800x10" | 2.6770x10°
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-0.5 | 1.252762968 | 1.252755 | 1.252759948 | 1.252761645 | 2.0000x10° | 8.0000x10° | 3.0200x10° | 1.3230x10°
-0.6 | 1.223775432 | 1.223766 | 1.223775057 | 1.223788012 | 2.0000x10° | 1.2000x 10> | 3.7500x107 | 1.2580x10"
0.7 | 1.193922468 | 1.193911 | 1.19393162 | 1.193933531 | 1.0000x10° | 1.5000x10° | 9.1520x10° | 1.1063x10°
-0.8 | 1.16315081 | 1.163138 | 1.163146256 | 1.163139978 | 3.0000x10° | 2.2000x10° | 4.5540x10° | 1.0832x10°
0.9 | 1.131402111 | 1.131387 | 1.13141777 | 1.13138965 | 7.0000x10° | 2.9000x10° | 1.5659x10° | 1.2461x10°
-1 | 1.098612289 | 1.098596 | 1.09860086 | 1.098596812 | 1.4000x10° | 4.5000x10° | 1.1429x10° | 1.5477x10"

Note: (i) Exponentially Fitted by Chebyshev Polynomial (EFCP)

(i) Exponentially Fitted by Ledendre Polynomial (EFLP)
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Table 5: Absolute Error for Example 3 (Case N=6)
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Abbas and Mehdi| Exponentially Exponentially
Taylor (2010) Fitted Fitted
Series Shifted Legendre| by Chebyshev by Legendre
X [9] Tau Method Polynomial Polynomial

-1.0 8.58x107? 3.84x10? 3.5265431x10° | 3.6030331x1072
-0.8 3.93x107? 1.82x107? 9.7375499x10° | 1.6853572x107?
-0.6 1.50x 107 7.00x10° 2.3146560x 10° | 7.2657253x10°
-0.4 4.12x10° 1.86x10° 2.5336547x10° | 1.5524880x10*
-0.2 4.85x10™ 2.04x10* [3.3284120 x10™| 1.3904090x10™
0.0 0 0 0 0
0.2 459%10™* 1.48x10* 3.3094820x10* | 2.3330743x10°
0.4 3.69x10° 9.67x10* 5.8281370x10“ | 5.8196320x10™
0.6 1.28x10° 2.55x10° 5.4082206x10° | 3.6824940x10*
0.8 3.17x10? 4.44%10° 4.6462731x10° | 3.2965807x 10
1.0 5.57x10? 5.76x10° 8.5542322x10° | 6.5802160x 10™
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Table 6: Absolute Error for Example 3 (Case N=7)

Tavl Abbas and Mehdi|  Exponentially Exponentially
aylor
. y_ (2010) Fitted Fitted
eries
X ] Shifted Legendre| by Chebyshev by Legendre
Tau Method Polynomial Polynomial
-1.0 6.03x 1072 5.05x10° 2.0457968x 107 3.6488756x 10
0.8 2.28x107? 2.38x10° 4.0804920x 10™ 1.6961653x 107
0.6 6.63x107? 9.14x10™ 1.0899390x 10™ 6.9223360x 10
0.4 1.20x10° 2.42x10* 2.3088280x 10 2.7500900% 10
0.2 6.90x10° 2.65x10° 2.3803000x 107 3.1655200x 10
0.0 0 0 0 0
0.2 5.30x10° 1.19x10° 1.5948700x 10° 3.0681600x 10°
0.4 8.09x10* 1.25x10* 4.9193000x 10°® 1.1229900x 10°
0.6 3.82x10° 3.30x10* 6.9982600x 10° 1.7484580x 10™
0.8 1.14x107? 5.78x10™ 4.3726770x 10™ 3.6931340x10*
1.0 2.73x107? 7.53x10* 4.8805230x 10™ 6.1479170x 10*

7 Conclusion and discussion of results

Order Fredholm

Integro-Differential-Difference Equations by exponentially fitted using two bases

In this work, we solved Higher Linear
functions namely, Chebyshev and Legendre Polynomials. The results obtained by
the proposed method for the solution of Higher Order Linear Fredholm
Integro-Differential-Difference Equations are compared with other existing works
in literature such as Taylor Series Approach and Shifted Legendre Tau Methods
reported by Abbas and Mehdi (2010).

We observed from the tables of results presented that using Chebyshev
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Polynomial as the basis function gave better results when compared with that of

Legendre Polynomial. We also observed that where the solutions were known in
Abbas and Mehdi (2010), the results of the proposed method are in good

agreements. The proposed method does not require rigorous calculation and

computation cost in terms of execution of results when compared with the work of
Yalcinbas and Akkaya (2012).
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