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Abstract 
 

Policyholder capability to easily and promptly change their insurance cover, in 

terms of contract conditions and provider, has substantially increased during last 

decades due to high market competency levels and favourable regulations. 

Consequently, policyholder behaviour modelling acquired increasing attention 

since being able to predict costumer reaction to future market’s fluctuations and 

company’s decision achieved a pivotal role within most mature insurance markets. 

Integrating existing modelling platform with policyholder behavioural predictions 

allows companies to create synthetic responding environments where several 

market projections and company’s strategies can be simulated and, through sets of 

defined objective functions, compared. In this way, companies are able to identify 

optimal strategies by means of a Multi-Objective optimization problem where the 

ultimate goal is to approximate the entire set of optimal solutions defining the so-

called Pareto Efficient Frontier. This paper aims to demonstrate how meta-heuristic 

search algorithms can be promptly implemented to tackle actuarial optimization 

problems such as the renewal of non-life policies. An evolutionary inspired search 

algorithm is proposed and compared to a Uniform Monte Carlo Search. Several 

numerical experiments show that the proposed evolutionary algorithm substantially 

and consistently outperforms the Monte Carlo Search providing faster convergence 

and higher frontier approximations. 
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1. Introduction  

During the last decades, policyholder behaviour modelling becomes one of the main 

areas of interest for both life and general insurance companies. Within a highly 

competitive market, a pricing model that do not consider the policyholder’s 

probability to accept a given quotation could be affected by a fundamental bias 

preventing the company to elaborate accurate portfolio projections and profitability 

analysis. Web platforms that allow potential customers to easily compare different 

quotations as well as the introduction of Solvency II framework2, raised the pivotal 

role of policyholder behaviour modelling inducing an increase of attention within 

the actuarial field.  

Fuel by an increasing interest of actuarial practitioners in machine learning, 

researchers [1], [2] have mainly focused on modelling policyholder behaviour as a 

supervised binary classification problem in which prediction accuracy represents 

the ultimate objective. 

Being able to predict with great accuracy policyholder behaviour is critical for an 

insurance company but from a practical point of view, it is also crucial to know how 

to optimally use these models to reach strategy goals. Solvency regulation, high 

market competition and shareholder requirements define an environment in which 

each strategy needs to balance a complex set of different objectives.  

Combining several models (e.g. pricing and policyholder behaviour) in a single 

platform enables companies to create a synthetic responding environment allowing 

to simulate the effects of different strategies. This modelling platform can be 

represented in a three pillars architecture defined by a Company Actions Modelling 

which specifies what the insurer can do, an Environment Reaction Modelling that 

represents how the environment could react to the insurer’s actions and finally, a 

set of Objective Functions which measure company induced changes in the 

environment. 

Through this structure, companies can simulate different strategies and compare 

their results based on the selected objective functions creating a preference structure 

between strategies. Given two different strategies, typically one dominates the other 

if it is at least better in one objective function and equal in all the other. Strategies 

that are not dominated by any other are called efficient and define the so-called 

Pareto Efficient Frontier. When comparing different strategies, companies need to 

consider only those belonging to the Pareto Frontier. Evaluate all possible strategies 

is usually computational infeasible, therefore search algorithms can be deployed to 

approximate the Pareto Set. Several optimization techniques are available in the 

literature, however classical mathematical approaches may prove to be inadequate 

whereas the specific model complexity is high. In this paper, we will show how 

numerical optimization techniques can be effortlessly deployed to tackle an 

actuarial optimization problem without being affected by the underlying model 

complexity. 

 
2 Within Solvency II Framework, Lapse Risk often represents the greatest non-market risk for a life 

insurance company ([3]). 
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Specifically, the aim of this paper is to apply an evolutionary inspired multi-

objective optimization algorithm to the general insurance portfolio renewal problem. 

Given a set of insurance contracts the insurer will need to choose to which 

policyholder offer an insurance cover as well as the associated renewal price. 

Therefore, a combined pricing and policyholder behaviour model will be used as a 

synthetic environment in which each policyholder decides to accept or not the 

proposed quotation. Finally, the objective functions will be defined as the total 

portfolio premium; total portfolio Tail Value at Risk and total portfolio retention. 

Therefore, the optimization search will need to approximate a three-dimensional 

Pareto Frontier in which each point represents a portfolio selection and a renewal 

price strategy. Algorithm’s performance will be measured by the quality of the 

approximated Pareto Frontier and will be compared with a uniform Monte Carlo 

search for different portfolios and market competition levels. 

To the author’s knowledge, an application of Evolutionary Multi-Objective 

Optimization algorithm to the non-life renewal pricing problem, specifically on 

three-dimensional objectives functions, is still lacking in the literature and hence 

will be presented here. 

The rest of this paper is organized as follow: Section 2 provides a literature review 

on policyholder behaviour modelling and portfolio renewal optimization. 

Methodological approach, such as problem formalization and search algorithms will 

be presented in Section 3. Following section reports results of extensive simulation 

experiments designed to fairly asses performances of the proposed algorithms 

whose parameterization details are showed in the appendix. Finally, Section 5 

concludes the paper. 

 

2. Related Literature 

In the last decades, actuarial literature has been featured by an ever increasing 

interest on policyholder behavioural modelling by both academic and practitioner 

actuaries [1],[2],[3],[4],[5],[6]. Highly competitive markets and favourable 

regulation [7],[8] substantially increased policyholder capability to easily and 

promptly change their insurance cover both in terms of contract conditions and 

provider. 

From its introduction in 2016, Solvency II framework highlighted how policyholder 

massive surrender activities has become the greatest non-financial risk to which life 

insurance companies are exposed [9]. From general insurance’s perspective, the 

Casualty Actuarial Society defines pricing optimization as the “supplementation of 

traditional supply-side actuarial models with quantitative customer demand models. 

This supplementation takes place through a mathematical process used to determine 

the prices that best balance supply and demand in order to achieve user-defined 

business goals while simultaneously imposing business or regulatory limitations on 

how those goals are achieved. The end result is a set of proposed adjustments to the 

cost models by customer segment for actuarial risk classes” [10]. 

Therefore, to predict how customers would react to both external market 
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fluctuations and internal company decision is a significant component of modern 

actuarial modelling. By this end, researchers [1],[2] studied how modern machine 

learning techniques are particularly suitable for these tasks when compared to more 

classical binomial GLM. 

Although high predictive accuracy is critical, very few studies on how companies 

should operate on the basis of these modelling insight have been carried out. Indeed, 

even for a company capable to perfectly predict policyholder’s reaction to any 

situation, further quantitative tools would be necessary to realize which set of 

decisions would optimally drive the insurer towards its strategy target.  

Therefore, on top of prediction modelling, optimization problems that focus on 

defining which actions an insurer should execute to reach its strategy goal can be 

formalized. Several studies on the renewal optimization problem can be found in 

actuarial literature [11], [12], among those, [6] proposed an optimization framework, 

built upon a pricing and policyholder behavioural model, whose ultimate goal is to 

discover the optimal renewal strategies under a total retention constraint. 

Rather than finding an optimal solution conditioned to some constraint, an 

alternative optimization approach based on multi-objective search techniques would 

strive to approximate the entire Efficient Frontier. Because of its built-in capability 

to simultaneously deal with multiple candidate solutions, which is particular 

suitable on a multi-objective optimization problem where there is not a unique 

solution, evolutionary computation [13] represents a promising toolbox to deal with 

these type of problems. Although rarely addressed, some application of 

Evolutionary Computation can be found in actuarial literature [14],[15],[16],[17], 

[18]. A recent survey presented by the Society of Actuaries [14] on emerging data 

analytics techniques explicitly references to possible applications of Genetic 

Algorithm [19] in actuarial science demonstrating an increasing interest on 

Evolutionary Computation applications to both insurance and finance sectors. 

 

3. Methodological Approach 

3.1 Problem Formalization 

Consider an insurance company that holds a portfolio of 𝑚 contracts at a given 

valuation date. Each contract is assumed to be statistically independent from the 

others and its own risk is fully described by frequency and severity distributions. 

 

At the evaluation date, the company needs to select: 

1. which contracts retain for the following covering period; 

2. which renewal price offers to those contracts that it wants to retain. 

We consider an insurance market with different competitors, therefore a 

policyholder could decide to change insurer by not accepting the quotation offered 

by the company. Furthermore, if the insurer has internally modelled the 

policyholder behaviour, for a specific policyholder’s risk profile and the proposed 

quotation, there exists an expected acceptance probability available to the company.  

Intuitively, increasing the renewal price will lead to a greater revenue for the insurer, 
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however this could also result in a loss of costumers that decide to terminate their 

contracts. At the same time, under Solvency II framework insurer needs to consider 

the capital requirement associated to a given portfolio, then it is critical to analyze 

the risk profile of each potential customer as well as the diversification achievable 

for a given portfolio. 

 

To formalize this problem, we follow a classic approach in general insurance and 

we assume that each contract 𝑖 = 1, … , 𝑚 is defined by the following distributional 

structure3: 

• �̃�𝑖~𝑃𝑜𝑖(𝜆𝑖) describe the claim frequency4, where 𝜆𝑖 > 0 represents the 
distribution mean and variance; 

• �̃�𝑗,𝑖~Λ(𝜇𝑖, 𝜎𝑖)  describe the claim severity, with 𝜇𝑖 ≥ 0  and 𝜎𝑖 > 0 

representing respectively the distribution position and diffusion 
parameters; 

• The random variables (r.v.s) 𝑍1,𝑖, … , �̃�𝑁�̃�,𝑖  are statistically independent 

and identical distributed; 

• The r.v.s. �̃�𝑖 and �̃�𝑗,𝑖 are statistically independent; 

• �̃�𝑖 = ∑ �̃�𝑗,𝑖
�̃�𝑖
𝑗=1  describe the aggregate loss. 

 
Furthermore, we assume that the fair quotation for a single contract is simply 

defined by the product between expected claim frequency and expected claim 

severity. 

𝑃𝑖 = 𝐸(�̃�𝑖)𝐸(�̃�𝑗,𝑖) 

 

The renewal price offered by the company can be represented as: 

 

𝑃𝑖
∗ = 𝑃𝑖𝛼𝑖 

 

where 𝛼𝑖  represents a renewal multiplication factor, if 𝛼𝑖 > 1 it means that the 

company is requiring a greater premium. 

Intuitively, a customer will be less prone to accept the insurance cover if 𝛼𝑖 > 1, 

even with 𝛼𝑖 = 1  the policyholder could decide to change insurer in a highly 

competitive market.  

Let’s assume that the company has modelled5 the probability of a customer to 

 
3 Throughout this paper, we use a ~ (tilde) hat to identify random variables. 
4 As widely addressed by actuarial literature, classical Poisson distribution could provide unreliable 

claim frequency modelling especially on portfolios featured by empirical over-dispersion, therefore 

over-dispersed Poisson assumption is usually preferred. Since both optimization algorithms’ 

dynamics are not affected by the underlying pricing model’s structure, we choose the classical 

Poisson assumption to ease some computational burden in the simulation experiments. 
5  The proposed policyholder behaviour modelling is clearly extendable both in term of input 

variables, such as individual client information and market competency level, and functional form. 
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accept a given quotation as: 

�̂�𝑖 = 1 − 
eθi

1 + eθi
 

θi = β0 + β1𝑃𝑖 + β2𝛼𝑖 

 

A given parameter calibration will model the sensitivity of a specific customer to 

the renewal price offered by the company which ultimately reflects the level of 

competition in the insurance market. 

Considering the entire portfolio of 𝑚 contracts, a selection/renewal strategy could 

be compactly represented by a 𝑚 × 2 matrix6 𝑿 in which each row is defined by 

a binary selector ℎ𝑖, that represents if the company wants to retain the contract for 

the following period, and the eventual renewal multiplication factor 𝛼𝑖. Hence, a 

selection/renewal strategy is define as 𝑿 = (𝐻, 𝐴)  with 𝐻 = [ℎ1, … , ℎ𝑚]  and 

𝐴 = [𝛼1, … , 𝛼𝑚]. It is worth pointing out that the renewal factor is automatically 

set to zero for those contracts that the insurer does not want to retain. 

Considering the probability structure defined so far, for each realization of 𝑿 it is 

then possible to generate 𝑆  stochastically independent simulations for each 

contract to evaluate: 

 

1. Aggregate claims cost �̃�𝑖 =  ∑ �̃�𝑗,𝑖
�̃�𝑖
𝑗=1  

2. Policyholder behaviour �̃�𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(�̂�𝑖) 

 

These simulations can be compactly stored in a 𝑚 × 𝑆 × 2 tensor 𝑻|𝑿 = (𝑳, 𝑩|𝑿) 

where 𝑳 represents a 𝑚 × 𝑆 matrix containing the realizations of the aggregate 

cost �̃� for each contract and simulation, while 𝑩|𝑿 is a 𝑚 × 𝑆 binary matrix that 

represents for each policyholder and simulation if the proposed quotation has been 

accepted. Notice that the aggregate loss for each contract is not affected by the 

renewal strategy therefore is independent by 𝑿 and can be simulated only once at 

the beginning of the optimization process. 

Assuming that each contract is statistically independent from the other, it is possible 

to exploit simulations to evaluate the distribution of the aggregated loss at portfolio 

level conditioned to 𝑿 as: 

𝐿|𝑿 = (𝑳 ⊙ 𝑩|𝑿)𝑇 𝐻 

 

where ⊙  represents the Hadamard product between two matrices and 𝐻 =
[ℎ𝑖]𝑖=1,…,𝑚  represents the first column of 𝑿 (the binary selector), then 𝐿|𝑿 is a 

𝑆 × 1 vector containing the simulated portfolio aggregated loss that can be used to 

 
Likewise the pricing model, policyholder behaviour model’s underlying structure does not affect the 

optimization algorithms’ dynamics. Therefore, a simple GLM modelling has been choose to ease 

some computational burden in the simulation experiments. 
6 Throughout this paper, matrix are denoted in bold. 
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estimate the following risk metric7: 

 

𝑓1(𝑿) =  −𝑇𝑉𝑎𝑅𝜔(𝐿|𝑿) = −( 𝑝𝜔(𝐿|𝑿) − 𝐸(𝐿|𝑿)) 

where 𝑝𝜔(𝐿|𝑿) represents the  𝜔-quantile of 𝐿|𝑿. 

 

The retention metric will be evaluated as: 

𝑓2(𝑿) =
1

∑ ℎ𝑖
𝑚
𝑖=1

∑ �̂�𝑖

𝑚

𝑖=1

 

 

Intuitively 𝑓2(𝑿) ∈ [0,1] defines an aggregate retention score of a given renewal 

policy 𝑿, if the acceptance probabilities are high then the sum of those probabilities 

will be close to the total number of contracts that the company decides to retain 

under 𝑿. 

Finally, portfolio revenue8 will be measured as: 

 

𝑓3(𝑿) =  ∑ 𝑃𝑖𝛼𝑖�̂�𝑖

𝑚

𝑖=1

 

 

where 𝛼𝑖 and �̂�𝑖are automatically set to zero for all non selected contracts. 

These three metrics will be adopted to evaluate each selection/renewal strategy 𝑿 

allowing to compare different strategies with the following preference structure: 

 

𝑿𝐴 ≻ 𝑿𝐵  𝑖𝑓 𝑓1(𝑿𝐴) > 𝑓1(𝑿𝐵) ∧ 𝑓2(𝑿𝐴) ≥ 𝑓2(𝑿𝐵) ∧ 𝑓3(𝑿𝐴) ≥ 𝑓3(𝑿𝐵) 𝑜𝑟 

 𝑖𝑓 𝑓1(𝑿𝑨) ≥ 𝑓1(𝑿𝐵) ∧ 𝑓2(𝑿𝐴) > 𝑓2(𝑋𝐵) ∧ 𝑓3(𝑿𝐴) ≥ 𝑓3(𝑿𝐵) 𝑜𝑟 

𝑓1(𝑿𝐴) ≥ 𝑓1(𝑿𝐵) ∧ 𝑓2(𝑿𝐴) ≥ 𝑓2(𝑿𝐵) ∧ 𝑓3(𝑿𝐴) > 𝑓3(𝑿𝐵) 

 

Strategy 𝑿𝐴 dominates 𝑿𝐵 if it is at least better in one objective function and equal 

in all the others, strategies that are not dominated by any other are called efficient 

and define the so-called Pareto Frontier. 

Finally, the multi-objective optimization problem can be formalized as follow: 

 

max
𝐻,𝐴

𝑓𝑗(𝐻, 𝐴)  𝑓𝑜𝑟 𝑗 = 1, … ,3 

𝑠𝑢𝑏 

𝛼 ∈ [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] 
𝐻 = [ℎ1, … , ℎ𝑚]  and 𝐴 = [𝛼1, … , 𝛼𝑚]  represent respectively the selection and 

renewal vectors in 𝑿 . Renewal boundaries are represented by 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥  and 

define the maximum price increase/discount allowed within a renewal strategy.  

 
7  Considering the negative of the Tail Value at Risk allows to formalize the multi-objective 

optimization problem as a max-search for all the objective functions. 
8 Safety loading on fair premium could be considered , nonetheless both optimization algorithms’ 

underlying structures would not be affected by this modelling choice. 
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3.2 Search Algorithm 

To tackle the optimization problem formulated in the previous section, two search 

algorithms have been applied: Uniform Monte Carlo Search (UMCS) ([20]) and 

Differential Evolution for Multi-Objective Optimization (DEMO) ([21]). 

The UMCS approach initially generates a population of 𝑃  candidate solutions 

𝑿1, … , 𝑿𝑃 where each 𝑿𝑗 is generated as follow: 

 

1. Sample 𝑢𝑗~𝑈(0,1) 

2. 𝐻𝑗 = [ℎ1
𝑗
, … , ℎ𝑚

𝑗
] where ℎ𝑖

𝑗
~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑢𝑗) for 𝑖 = 1, … , 𝑚 

3. Α𝑗 = [𝛼1
𝑗
, … , 𝛼𝑚

𝑗
] where 𝛼𝑖

𝑗
~𝑈(𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥) for 𝑖 = 1, … , 𝑚 

4. If ℎ𝑖
𝑗

= 0 then 𝛼𝑖
𝑗

= 0 else do nothing 

 

The first sampling of 𝑢𝑗  allows to generate portfolios with a variety number of 

selected contracts, otherwise the sampling procedure would concentrate on portfolio 

with approximately 𝑚/2 selected contracts, preventing a good exploration of the 

solution space. All candidate solutions are then evaluated and compared to all the 

other to identify the efficient ones. Finally, the procedure selects only those 

solutions flagged as efficient resulting in the UMCS approximation of the Pareto 

Frontier. 

Although extremely simple, this method can be effortlessly implemented and 

provide a baseline performance on which compare other search strategies. Being a 

Monte Carlo Method, the quality of the approximation is mainly determined by the 

number of simulations run, therefore the dimension of the population 𝑃. It is worth 

notice that, in order to evaluate the Risk metric, for each candidate solution 𝑿𝑗 

additional simulations of the policyholder behaviour are run since the probability of 

acceptance of a potential costumer depends on the renewal strategy contained in 𝑿𝑗.  

 

Therefore, the total number of simulations run by the procedure is 𝑆 × 𝑃. 

Algorithm 1: UMCS 

Input 

• 𝑃 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

• 𝑆𝑒𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑒𝑒𝑑 

Monte Carlo Search 

• 𝑆𝑒𝑡 𝑆𝑒𝑒𝑑 

• 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐𝑟𝑒𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑿𝑃𝑜𝑝 = {𝑿1, … , 𝑿𝑃} 

• �̅� = 𝐹𝑖𝑛𝑑𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝑿𝑃𝑜𝑝) 

Output 

• 𝑅𝑒𝑡𝑢𝑟𝑛 �̅� 

 

where function FindFrontier filters the efficient subset from 𝐗Pop. 
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DEMO is a multi-objective evolutionary search algorithm that has been recently 

introduced by Robic and Filipic [21]. Its core procedure combines single-objective 

Differential Evolution with Pareto-sorting and Crowding Distance mechanisms. 

This paper proposes a DEMO inspired search algorithm which introduces an 

external archive [22] that will be used to both store all efficient solutions as well as 

to further promote the search towards the solution space most promising area. 

Through the rest of this paper, the proposed approach will be referred as ADEMO. 

While UMCS evaluates a single population of candidate solutions, ADEMO 

approach starts with a smaller population that evolves through an iterative procedure 

for a defined number of rounds called generations. To allow fair comparability, the 

total number of generations multiplied by the dimension of ADEMO population is 

set equal to the UMCS population, therefore both algorithms’ search procedures use 

the same amount of trials. 

As in UMCS, the ADEMO procedure starts by generating an initial population of 

𝑝 candidate solutions 𝑿1, … , 𝑿𝑝 with 𝑝 < 𝑃 with the same procedure employed 

by UMCS. Each candidate solution is evaluated and compared to all the others to 

identify the initial Pareto Frontier approximation. The subset of efficient solutions 

is then copied in an external archive called �̅� that will be used to store all efficient 

solutions observed by the search procedure at each generation. After initializing 

population and archive, the search procedure employs an iterative procedure 

composed by the following operators (see Algorithm 2). 

 

Algorithm 2: ADEMO - Reproduce 

A new set of candidate solutions is generated by combining the external archive 

with the current population, specifically each new solution 𝑿1
𝐶 , … , 𝑿𝑝

𝐶 is generated 

as: 

• 𝐻𝑗
𝐶 = 𝐻𝑃1

�̅� ⊙ 𝑆𝑗 + 𝐻𝑃2 ⊙ 𝑆�̅� 

• 𝐴𝑗
𝐶 = 𝐴𝑃1

�̅� ⊙ 𝑆𝑗 + 𝐴𝑃2 ⊙ 𝑆�̅� 

• 𝑃1 = 𝑆𝑎𝑚𝑝𝑙𝑒(1, min (𝑝, 𝑙𝑒𝑛𝑔𝑡ℎ(�̅�))  

• 𝑃2 = 𝑆𝑎𝑚𝑝𝑙𝑒(1, 𝑝) 

• 𝑆𝑗 = {𝑠1
𝑗
, … , 𝑠𝑚

𝑗
} with 𝑠𝑖

𝑗
~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) for 𝑖 = 1, … , 𝑚 

• 𝑆�̅� = {�̅�1
𝑗
, … , �̅�𝑚

𝑗
} with �̅�𝑖

𝑗
= 1 − 𝑠𝑖

𝑗
 ∀ 𝑖 = 1, … , 𝑚 

 

where 𝐻  and 𝐴  represent respectively the selection and renewal vectors of a 

solution 𝑿. 𝑿𝑃1
�̅� = (𝐻𝑃1

�̅� , 𝐴𝑃1
�̅� ) represents a candidate solution randomly picked 

from the external archive while 𝑿𝑃2 = (𝐻𝑃2, 𝐴𝑃2) has been drawn from the current 

population 𝑿1, … , 𝑿𝑝 . 𝑆𝑗  is a randomly generated binary vector that allow to 

efficiently select features from 𝑿𝑃1
𝐴  while 𝑆�̅�  will select the remaining features 

from 𝑿𝑃2. 
Notice that only the first 𝑝 elements from the archive are selected for reproduction, 
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indeed the searching procedure will update the external archive at each iteration 

allowing it to grow unlimitedly. Furthermore, for each element in �̅� and each 

iteration, the so-called crowding distance ([23]), which represents the Euclidean 

distance of an element with its nearest neighbourhood in the solution space, will be 

evaluated. Thereafter, the archive is decreasingly sorted by the crowding distance 

allowing for reproduction only those solutions with the greater crowding distance. 

This procedure is meant to avoid excessively concentration of the search algorithm 

in a specific area of the solution space. 

Finally, each candidate solution 𝑿𝑗
𝐶 will be randomly mutated by switching each 

element of its selection vector with a probability 𝑝𝑚𝑢𝑡𝑎𝑡𝑒  that is an external 

parameter of the ADEMO algorithm. For each selection element that has been 

mutated, the related renewal price would be mutated as well by adding a value equal 

to 𝜀~𝑈(𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥). If the resulted renewal price would exceed the allowable 

range, it will automatically set to its nearest limit. 

 

Algorithm 2: ADEMO - Merge 

Each element of population 𝑿1
𝐶 , … , 𝑿𝑝

𝐶  is evaluated and compared with the 

corresponding element of the current population 𝑿1, … , 𝑿𝑝 . Following the 

preference structure previously defined, the merge step operates as follow: 

1. If 𝑿𝑗
𝐶 ≻ 𝑿𝑗  then 𝑿𝑗

𝐶 substitutes 𝑿𝑗 in the current population; 

2. else if 𝑿𝑗
𝐶 ≺ 𝑿𝑗  then 𝑿𝑗

𝐶 is discard; 

3. else 𝑿𝑗
𝐶 is added to the current population. 

This procedure will lead to a new population whose dimension 𝑝∪ will range from 

𝑝 to 2𝑝. 

 

Algorithm 2: ADEMO - Truncate 

To restore the original cardinality of 𝑝  elements in the population, 𝑝∪ − 𝑝 

solutions are discarded through the following procedure: 

1. start with the complete population of 𝑝∪ elements; 

2. compare each solution in the population with all the other and select the 

efficient ones; 

3. store those solutions in an external memory and mark their level of 

efficiency; 

4. remove efficient solutions from population; 

5. re-execute steps 2, 3 and 4 until all candidate solutions have been marked. 

 

The level of efficiency is defined by the cycle iteration in which a solution is flagged 

as efficient. Intuitively, solutions that are selected in the first iteration belong to the 

highest generation’s efficient frontier, the second iteration will identify the 

generation’s efficient frontier that do not consider those already selected and so on. 

Therefore, the population is stratified in a sequence of frontiers where the highest 
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one represents the actual Pareto Frontier of the generation (notice: this procedure is 

called Pareto Sorting). Following, for each frontiers the crowding distance of their 

solution is evaluated by the same procedure presented for the external archive in the 

reproduction step. 

Finally, solutions are sorted by their ascending level of efficiency and descending 

crowding distance. Intuitively, solution that stays on a higher frontier are preferable 

being a closer approximation to the real unknown Pareto Frontier. At the same time, 

more spaced solutions are preferred to induce a better exploration of the solution 

space. Once sorted, the current population discard the last 𝑝∪ − 𝑝  solutions 

restoring the original cardinality of 𝑝. 
 

Algorithm 2: ADEMO - Update 

The last step of the iterative cycle will update the external archive by adding the 

current population and then filtering only those solutions that are efficient. As 

mentioned above, the archive can grow unlimitedly but for reproduction purposes 

only the first 𝑝 elements associated with the greatest crowding distance will be 

considered. Notice that this step does not execute the Pareto Sorting procedure 

because the external archive will only consider the highest frontier known by the 

search algorithm at any iterative step. 

 

This iterative cycle of Reproduce, Merge, Truncate and Update will be repeated for 

a given number of generations defined as an external procedure parameter. When 

compared with UMCS, ADEMO adopts an iterative procedure that is engineered to 

push the random search towards the more promising area of the solution space 

allowing a faster convergence rate. Therefore, greater computational efficiency is 

expected by this former algorithm. 
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Algorithm 2: ADEMO 

Input 

• 𝑝 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

• 𝑝𝑚𝑢𝑡𝑎𝑡𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

• 𝐺 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

• 𝑆𝑒𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑒𝑒𝑑 

Initialization 

• 𝑆𝑒𝑡 𝑆𝑒𝑒𝑑 

• 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐𝑟𝑒𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑿𝑃𝑜𝑝 = {𝑿1, … , 𝑿𝑝} 

• �̅� = 𝐹𝑖𝑛𝑑𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝑿𝑃𝑜𝑝) 

Evolutionary Cycle 

𝐹𝑜𝑟 𝑔 = 1 𝑡𝑜 𝐺 

• 𝑿𝑃𝑜𝑝
𝐶 = {𝑿1

𝐶 , … , 𝑿𝑝
𝐶} = 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒(𝑿𝑃𝑜𝑝, �̅�;  𝑝𝑚𝑢𝑡𝑎𝑡𝑒) 

• 𝑿∪ = 𝑀𝑒𝑟𝑔𝑒(𝑿𝑃𝑜𝑝, 𝑿𝑃𝑜𝑝
𝐶 ) 

• 𝑿𝑃𝑜𝑝 = 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑿∪; 𝑝) 

• �̅� = 𝐹𝑖𝑛𝑑𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(�̅� ∪ 𝑿𝑃𝑜𝑝) 

𝑛𝑒𝑥𝑡 𝑔 

Output 

• 𝑅𝑒𝑡𝑢𝑟𝑛 �̅� 

 

4. Empirical Evidence  

ADEMO and UMCS algorithms have been compared through several simulation 

experiments designed to allow a fair performance comparison. A total of 3.708 runs 

of both algorithms have been performed to asses performance’s sensitivity to 

changes in: 

 

• Portfolio’s Dimension: number of potential insured; 

• Portfolio’s Level of Homogeneity: single insured risk profile diversity; 

• Market Competency Level: customer sensitivity level to change in renewal 

strategies; 

• Algorithms’ total of iteration. 

•  

Following sub-sections will present: IT infrastructure specification, single 

experiment run detailed description and adopted evaluation metrics. Numerical 

results will be display in final section.  

 

4.1 Technical Specifications 

Both UMCS and ADEMO algorithm have been implemented using base R code 

(version x64 3.5.2), libraries were used only for graphical representation, efficient 

data management and to evaluate algorithms’ Pareto Frontier approximation. 
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Code and results can be found at: “https://github.com/AndreaRiva1991/Portfolio-

Optimization”. 

Considering the remarkable computing effort required to run the full simulation 

experiment, all runs execution has been performed on a Compute Optimized 

Instance (c4.8xlarge – 36 CPU) provided by Amazon Web Service cloud computing 

EC2. 

Overall, 3.708 single runs have been executed through 103 macro cycles in each of 

which 36 experiments where run in parallel. 

 

4.2 Single Run Description 

Single run is defined by the following five macro steps: 

 

1. Simulate Portfolio Homogeneity Level; 

2. Simulate Synthetic Portfolio; 

3. UMCS Execution; 

4. ADEMO Execution; 

5. Algorithms performances recording. 

 

A portfolio is featured by 𝑚 statistically independent contracts fully described by 

their frequency and severity distributional profile. Each synthetic contract is 

generated as follow: 

• �̃�𝑖~𝑃𝑜𝑖(𝜆𝑖) with 𝜆𝑖 = |𝐹𝑚𝑛 + 𝑁(0, 𝐹𝑚𝑛𝑠𝑑
)|; 

• �̃�𝑗,𝑖~Λ(𝜇𝑖, 𝜎𝑖)  with 𝜇𝑖 = |𝑆𝑚𝑛 + 𝑁(0, 𝑆𝑚𝑛𝑠𝑑
)|  and 𝜎𝑖 = |𝑆𝑠𝑑 +

𝑁(0, 𝑆𝑠𝑑𝑠𝑑
)|. 

where  

• 𝐹𝑚𝑛 =  𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑀𝑒𝑎𝑛 
• 𝑆𝑚𝑛 =  𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
• 𝑆𝑠𝑑 =  𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
• 𝐹𝑚𝑛𝑠𝑑

= 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑀𝑒𝑎𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

• 𝑆𝑚𝑛𝑠𝑑
=  𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

• 𝑆𝑠𝑑𝑠𝑑
=  𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

•  

Individual variability parameters (𝐹𝑚𝑛𝑠𝑑
, 𝑆𝑚𝑛𝑠𝑑

, 𝑆𝑠𝑑𝑠𝑑
) allow to control the level of 

portfolio homogeneity ranging from perfectly homogeneous to highly non-

homogeneous one. To assess portfolio homogeneity’s impact on algorithms’ 

performance, each run initially simulates a set of variability parameters as: 
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𝐹𝑚𝑛𝑠𝑑
~𝑈(0, 𝐹𝑀𝑎𝑥

𝑚𝑛𝑠𝑑
) 

𝑆𝑚𝑛𝑠𝑑
~𝑈(0, 𝑆𝑀𝑎𝑥

𝑚𝑛𝑠𝑑
) 

𝑆𝑠𝑑𝑠𝑑
~𝑈(0, 𝑆𝑀𝑎𝑥

𝑠𝑑𝑠𝑑
) 

where 𝐹𝑀𝑎𝑥
𝑚𝑛𝑠𝑑

, 𝑆𝑀𝑎𝑥
𝑚𝑛𝑠𝑑

, 𝑆𝑀𝑎𝑥
𝑠𝑑𝑠𝑑

 are external parameter defined by user. 

 

The simulated portfolio is then processed by both UMCS and ADEMO algorithms 

as described in previous section. Finally, both Efficient Frontier Approximations 

are assessed through several metrics that will be described in the following sub-

section. 

 

4.3 Evaluation Metrics 

Multi-objective optimization algorithm’s performance can be evaluated by 

measuring the approximated Efficient Frontier quality which is defined by two 

opposites goals: 

 

1. find an approximated frontier as close as possible to the real Pareto Frontier; 

2. find an approximated frontier as diverse as possible. 

 

Specifically, the diversity goal is meant to balance algorithm’s Exploitation-

Exploration Trade Off, preventing an excessively concentration on a limited area of 

the solution space.  

 

The following evaluation metrics have been adopted in this simulation experiment 

([24]): 

1. Spacing: defined as the standard deviation of the Euclidean distances 

between each non-dominated solutions with its closest neighbourhood. If 

solutions are nearly spaced, the corresponding distance will be small, indeed 

Pareto Frontier approximation with small spacing is preferred. 

2. Spread: defined as 

𝑆 =  
∑ 𝑑ℎ

𝑒 + ∑ (𝑑𝑖 − �̅�)𝑖∈𝐸𝐹
3
ℎ=1

∑ 𝑑ℎ
𝑒 +  #𝐸𝐹 3

ℎ=1 �̅�
 

where  

• EF = efficient frontier set; 

• 𝑑𝑖 = Euclidean distance of solution 𝑖 to its closest neighbourhood 

in the solution space; 

• �̅� =  
1

#𝐸𝐹
∑ 𝑑𝑖𝑖∈𝐸𝐹 ; 

• 𝑑ℎ
𝑒 = difference between the minimum and maximum values 

obtained in the solution set for the objective function 𝑓ℎ. 
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Approximations associated with smaller 𝑆 are featured by a better 

diversity and therefore preferred. 

3. Range: defined as the sum of differences between maximum and minimum 

values for each objective function. It measures the largest area covered by 

the optimization search, hence algorithms’ solutions featured by a greater 

Range are preferred. 

4. Hypervolume: defined as the volume covered by the approximated Efficient 

Frontier. Intuitively, the true but unknown Pareto Frontier would overhang 

every other approximated frontier, therefore its underlying volume would 

be greater. Approximations with greater Hypervolumes are then preferable. 

5. Dominance: given several Efficient Frontier approximations, a new one can 

be obtained by combining all candidate solutions. From this new 

approximation it is then possible to count how many solutions originated 

from each primitive Pareto Frontier. Algorithms that originate a greater 

amount of solutions are then preferred. 

6. Cardinality: defined as the number of non-dominated solutions that feature 

an Efficient Frontier approximation, hence algorithms that produce 

approximation with a greater cardinality are preferred. 

 

As described in ([24]) hypervolume is the most adopted evaluation metric in Multi-

Objective Optimization literature being both a convergence and diversity metric. 

However, in some particular instances, the assessment of algorithms based solely 

on hypervolume could lead to biased perception of their performances. 

As an example, consider a general case in which there are two Efficient Frontier 

approximations, one of which is consistently above the other, therefore its 

hypervolume metric would be greater. Now assume that the lower Efficient Frontier 

is featured by few exceptionally high solution, indeed these outliers could 

abnormally increase the underlying volume of the lower approximation up to a point 

in which its hypervolume metric would be greater than the normally higher frontier. 

Hence, speculate instance could occur with low outliers that could abnormally 

decrease the underlying volume of a higher solution set. 

Without considering the highness in the solution space of a given point, Dominance 

metric is meant to recognize which approximation normally dominates the other. 

Resuming ADEMO’s formal notation, assume two different solutions 𝑿1 and 𝑿2 

featured by their Efficient Frontier approximations �̅�𝑗 = 𝐹𝑖𝑛𝑑𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝑿𝑗) for 

𝑗 = 1, 2. 

Define the combined approximation as: 

�̅�∪ = 𝐹𝑖𝑛𝑑𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝑿1 ∪ 𝑿2) 

Dominance metric is then defined as: 
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𝐷𝑗 =
#{𝑥𝑖 ∈ 𝑿ℎ ∧ 𝑥𝑖 ∈ �̅�∪}

#�̅�∪

 

Intuitively, Dominance defines the frequency of solutions originated from 𝑿𝑗 that 

are also found in the combined approximation. By not taking into account solutions’ 

positions, dominance metric is not affected by possible outliers’ distortions in 

hypervolume. To the author’s knowledge, this type of evaluation metric is still 

lacking in multi-objective optimization literature and hence will be presented here. 

As a final remark, closeness metrics could not be exploit in present simulation 

experiment having the true Pareto Frontier unknown. However, the numerical 

experiment aimed to compare algorithms’ performances to each other, therefore the 

following section will actually present standardized performance deltas for all 

evaluation metrics. Standardization compels performance metrics into [0,1] range 

allowing to easily compare algorithms’ performance on several aspects. 

 

4.4 Numerical Results 

This section presents the numerical results achieved by 3.708 runs described in 

previous section, full parameterization can be found in the Appendix. For each run, 

both UMCS and ADEMO frontier approximations have been evaluated through six 

quality metrics (Spacing, Spread, Range, Hypervolume, Dominance and 

Cardinality). Following figures will present standardized differences between the 

two searching algorithms for each evaluation metric. 

Specifically, the simulation experiment has been organized in two main chunks: 

1. Evaluate algorithms’ performance sensitivity to change in external 

conditions such as Portfolio Homogeneity, Portfolio Dimension and Market 

Competency Level; 

2. Evaluate algorithms’ performance sensitivity to change in algorithms’ 

internal parameters 

To easily represents Portfolio Homogeneity Level with a standardize metric the 

following measurement has been proposed: 

𝑇 =
𝐹𝑚𝑛𝑠𝑑

+ 𝑆𝑚𝑛𝑠𝑑
+ 𝑆𝑠𝑑𝑠𝑑

𝐹𝑀𝑎𝑥
𝑚𝑛𝑠𝑑

+ 𝑆𝑀𝑎𝑥
𝑚𝑛𝑠𝑑

+ 𝑆𝑀𝑎𝑥
𝑠𝑑𝑠𝑑

 

where 𝑇 ∈ [0,1]. 
Intuitively, if 𝑇 = 0  then all potential customers are featured by the same 

distributional profile, if 𝑇 = 1 the maximum level of diversity allowed is reached. 

Figure 1 shows Portfolio Homogeneity’s distribution achieved through all 

simulation experiments. As expected from the definition of 𝑇, as a sum of three 

uniform distributions, the empirical distribution presents a seemingly Gaussian 

shape. 
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Figure 1: Numerical Distribution of Portfolio Homogeneity Level. 

 

Concerning Figure 2, it appears that all the standardized values of delta are not 

affected by change in Portfolio Homogeneity Level, therefore both algorithms 

similarly react to in 𝑇. 
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Figure 2: Standardized Evaluation Metric Deltas per Homogeneity Level. 

 

Table 1 presents all standardized deltas Monte Carlo statistics achieved considering 

all runs from experiment’s first chunk. 

 
Table 1: Monte Carlo Statistics from all runs in experiment’s first chunk. 

Index Statistic P_Hyper P_CardinalityStd P_SpacingStd P_SpreadStd P_RangeStd P_DominanceStd

1 Min -40.46% -47.21% -89.09% -4.93% -34.33% -16.41%

2 q_0.05 -19.73% -21.39% -49.13% -2.51% -19.77% 20.70%

3 q_0.25 -9.90% -7.46% -14.67% -1.74% -8.94% 32.95%

4 q_0.50 0.91% -1.02% 13.70% -1.14% 0.55% 40.72%

5 q_0.75 33.00% 4.92% 56.10% -0.56% 16.26% 47.98%

6 q_0.95 41.68% 13.79% 78.13% 0.29% 22.11% 57.77%

7 Max 48.56% 38.15% 96.00% 2.93% 37.75% 74.10%

8 Mean 9.63% -1.81% 18.04% -1.14% 2.63% 40.13%

9 Sd 22.74% 10.48% 41.67% 0.87% 14.12% 11.40%

10 Skew 8.50% -50.03% -12.42% 8.29% -8.84% -43.33%

11 Prob(ADEMO>UMCS) 52.46% 44.53% 59.32% 9.46% 51.59% 99.74%
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From the diversity perspective, algorithms’ approximation seems to provide 

comparable results in terms of Spread and Range although latter metric present a 

considerably high deviation which indicates possible substantial divergence from 

the mean. Interestingly, 𝑃𝑟𝑜𝑏(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆) on Range, which indicates the 

frequency in which ADEMO solutions provide a greater range than UMCS, is 

almost 50% which could indicate that both algorithms provide essentially the same 

quality in terms of this metrics. Differently, the probability of having higher Spread 

metric from ADEMO algorithms is only approximately 10% which indicate a better 

diversity in ADEMO solution than UMCS in terms of Spread metric. 

 

Figure 3: Standardize Spread Delta distribution from all runs in 

experiment’s first chunk. 

 

In terms of Spacing, UMCS seems to bring better spaced solutions although the 

skewness of the distribution shows a considerably high value which could be 

affected by abnormal realizations. Nonetheless, UMCS algorithm probability to 

provide better spaced solutions is almost 60%. 
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Figure 4: Spacing Delta distribution from all runs in experiment’s first 

chunk. 

 

Cardinality metric distribution seems to presents Gaussian’s attributes as shown in 

Figure 5. From numerical distribution it seems that no algorithm is able to provide 

consistently more granular solutions as indicated by 𝑃𝑟𝑜𝑏(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆) 

which indicates the frequency in which ADEMO solutions present a greater 

cardinality than UMCS. 

 

Figure 5: Cardinality Delta distribution from all runs in experiment’s first 

chunk. 
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Regarding hypervolume metric, numerical results show that on average ADEMO 

algorithm is capable to find an approximation featured by a 10% greater underlying 

volume. However, other statistics highlighted how this better performance occurs 

with a 50% frequency which suggest that there could be no substantial difference 

between ADEMO and UMCS algorithms. Indeed, the positive average result could 

be caused by few abnormally positive runs in which ADEMO performed 

substantially better than UMCS. 

 

Figure 6: Hypervolume Delta distribution from all runs in experiment’s first 

chunk. 

 

This interpretation seemed to be confirmed by the bi-modals numerical 

distribution’s shape which could suggest that solutions from the two algorithms are 

not substantially different in terms of hypervolume metric. 

As previously suggested, hypervolume metric could be biased by both high and low 

outlier in the Efficient Frontier approximations, to avoid this shortcoming the 

Dominance metric has been proposed. Interestingly, Dominance numerical 

distribution shows that, on average, ADEMO provides 40% more solution to the 

aggregate approximation than UMCS. From the 𝑃𝑟𝑜𝑏(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆) 

statistics it seems that ADEMO approximation normally dominate UMCS solution 

in almost all runs. 
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Figure 7: Dominance Delta distribution from all runs in experiment’s first 

chunk. 

 

Dominance and Hypervolume results could collectively suggest that first chunk’s 

experimental runs are potentially still affected by a non-trivial amount of 

uncertainty which could indicate that both algorithm haven’t converge yet to stable 

solutions. Specifically, both algorithms could need more iterations to achieve stable 

approximations, therefore experiment’s second chunk of run will be featured by a 

greater amount of iterations for both ADEMO and UMCS. The following two tables 

report Monte Carlo mean and 𝑃(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆)  sensitivity to change in 

portfolio and market condition, Specifically, Portfolio High sensitivity assumes a 

greater number of contracts selectable by the insurer while Market Low, Medium 

and High define three different policy holder behaviour modelling settings featured 

by an increasing level of competition in the market. For further details on the 

assumed parameterization please go to appendix. 
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Table 2: Monte Carlo Average sensitivity to change in Portfolio and Market 

conditions. 

 

 

 
Table 3: Monte Carlo P(ADEMO>UMCS) sensitivity to change in Portfolio and 

Market conditions. 

 

 

While Dominance metric seems to be fairly resilient, other metrics such as 

Hypervolume and Range show greater sensitivity. As expected, statistic 

𝑃(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆)  is apparently not impacted by change in external and 

portfolio condition. By definition, the latter statistic only considers frequency on 

which ADEMO solutions are better than UMCS but it does not take into account by 

how much ADEMO solutions are better, therefore, 𝑃(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆) is less 

affected by potential outliers in algorithms performance. Finally, table 4 presents 

Monte Carlo statistics achieved by considering all runs from second experiment’s 

chunk. Specifically, this second chunk of simulations allows both algorithms to 

execute a higher amount of trials, precisely from 1000 to 2000. 

 

 

 

Index Trials Type P_Hyper P_CardinalityStd P_SpacingStd P_SpreadStd P_RangeStd P_DominanceStd

1 1000 Total 9.63% -1.81% 18.04% -1.14% 2.63% 40.13%

2 1000 Portfol io Low 10.86% -0.49% 17.62% -1.20% 4.08% 40.34%

3 1000 Portfol io High 8.41% -3.13% 18.46% -1.08% 1.19% 39.93%

4 1000 Market Low 12.64% -3.85% 20.84% -1.24% 5.49% 43.63%

5 1000 Market Medium 9.43% -1.57% 18.07% -1.15% 2.46% 38.66%

6 1000 Market High 6.83% -0.01% 15.21% -1.03% -0.04% 38.11%

Index Trials Type P_Hyper P_CardinalityStd P_SpacingStd P_SpreadStd P_RangeStd P_DominanceStd

1 1000 Total 52.46% 44.53% 59.32% 9.46% 51.59% 99.74%

2 1000 Portfol io Low 54.92% 48.38% 58.62% 9.03% 53.59% 99.65%

3 1000 Portfol io High 50.00% 40.68% 60.01% 9.90% 49.59% 99.83%

4 1000 Market Low 51.13% 36.72% 60.76% 5.99% 54.08% 99.91%

5 1000 Market Medium 51.91% 46.53% 59.29% 10.24% 49.83% 99.83%

6 1000 Market High 54.34% 50.35% 57.90% 12.15% 50.87% 99.48%
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Table 4: Monte Carlo Statistics from all runs in experiment’s second chunk. 

 

 

In terms of Hypervolume, ADEMO seems to experience a considerable increase in 

performance moving from an average of 9.63% up to 28.69% while standard 

deviation decrease of about 4%. Furthermore, 𝑃(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆)  statistic 

moved from 52.46% to 78.89% suggesting that ADEMO better performance is not 

purely incidental. Concurrently, Dominance metric raises from 40.13% to 51.35% 

while Range gains 15%. 

Comparing with Table 1, Cardinality average increases from -1.81% to 2.91% with 

an almost invariant standard deviation and a 𝑃(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆)  statistic 

indicating that this better performance, although slight, happens with a 60% 

frequency. 

Finally, comments from experiment first chunk about Spacing metric are confirmed 

with an average of 43.53%, starting from 18% in first chunk, and a 

𝑃(𝐴𝐷𝐸𝑀𝑂 > 𝑈𝑀𝐶𝑆)  statistic of almost 92% which indicates that ADEMO 

consistently provide poor performance in terms of Spacing when compared with 

UMCS. 

 

5. Conclusion, Limitations and Future Work 

This paper presents an application of Evolutionary Multi-Objective Optimization to 

the portfolio renewal problem for a non-life insurance company. Assuming a 

competitive market, an existing insurance contract portfolio and a 

pricing/policyholder behavioural model, the insurer has to decide which contracts 

retain as well as the renewal quotation to offer. 

As described by the policyholder behavioural model, potential customers accept a 

proposed quotation with probability dependent on their risk profiles, the renewal 

proposition and the market’s competency level. Therefore, companies need to 

Index Statistic P_Hyper P_CardinalityStd P_SpacingStd P_SpreadStd P_RangeStd P_DominanceStd

1 Min -13.56% -35.78% -33.95% -2.98% -8.78% 22.42%

2 q_0.05 -10.37% -16.95% -7.47% -2.21% -4.11% 34.77%

3 q_0.25 35.58% -2.68% 30.31% -1.71% 16.99% 45.75%

4 q_0.50 36.15% 5.01% 48.45% -1.18% 20.18% 52.56%

5 q_0.75 38.32% 10.36% 62.43% -0.73% 22.68% 56.77%

6 q_0.95 43.52% 17.18% 82.13% -0.11% 28.84% 64.48%

7 Max 45.01% 21.24% 95.72% 0.59% 46.05% 69.70%

8 Mean 28.69% 2.91% 43.53% -1.19% 17.33% 51.35%

9 Sd 18.76% 10.28% 26.69% 0.67% 10.37% 8.51%

10 Skew -136.17% -83.91% -62.62% 12.67% -75.25% -58.32%

11 Prob(ADEMO>UMCS) 78.89% 63.89% 91.67% 3.89% 87.78% 100.00%
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carefully design a selection/optimization strategy that allows to reach the 

profitability/solvency targets defined by the management committee as well as to 

maximally retain desirable customers. The renewal problem is then naturally 

formalize as a three objective optimization problem whose ultimate goal is to 

approximate the Pareto Frontier of all possible selection/renewal strategies. 

Several search algorithms are available in multi-objective optimization literature, 

nonetheless this paper focused on the evolutionary family for its built-in capability 

to simultaneously handle several candidate solutions which is particularly suitable 

in a multi-objective problem where there is no single optimal solution but a set of 

non-dominated one instead.  

Introducing an external archive mechanism for both elitism preservation and faster 

convergence, a DEMO inspire algorithm has been compared with a simple Uniform 

Monte Carlo Search strategy. Several numerical experiments showed that, as the 

number of iteration of both algorithms increase, performance achieved by the 

propose evolutionary approach substantially and consistently outperform the pure 

random search for almost all the evaluation metrics adopted. While UMCS simply 

evaluates several independently random generated selection/renewal strategies, 

ADEMO exploits knowledge acquired through generations, driving the random 

search towards more promising areas of the solution space, indeed achieving better 

performance. 

Algorithms’ performance comparison on not entirely stabilized run induced the 

design of the Dominance evaluation metric which, by assessing the frequency of 

solutions originated by a search strategy on a combined Pareto Frontier 

approximation without considering their actual search space position, is not affected 

by abnormally high or low realization that could anomaly increase/decrease the 

hypervolume metric. 

Presently, actuarial literature’s discussion on non-life portfolio optimization 

problem has mainly focused on the design of accurate policyholder behaviour model 

and Efficient Frontier approximation on Risk and Retention metrics. Present paper’s 

purpose is to highlight meta-heuristic optimization algorithm’s capability to easily 

handle more general problems by introducing a third optimization objective. Indeed, 

on a pure actuarial perspective, the underlying model structure presents several 

improvement opportunities such as: 

 

1. dependencies through potential customers may be introduce; 

2. new customers, that do not belong to the starting portfolio, could be 

modelled; 

3. multiple portfolios, possibly dependent, could be simultaneously modelled; 

4. renewal quotations could be define on a discrete grid. 

 

Although all these extension potentially present non-trivial implementation issues, 

remarkably both optimization procedures would not be affected by these 

improvements. By their very nature, meta-heuristic algorithms are not concerned by 
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the underlying structure of the objective functions which are dealt as black boxes. 

Therefore, all actuarial concept and sophistications will only affect the underlying 

behaviour of the black box without affecting the searching strategy. 

Meta-heuristic optimization could then be exploit in several actuarial contests 

featured by complexity levels such as classical mathematical optimization is 

infeasible. Simultaneously, meta-search strategies may also allow actuaries to 

enrich classical optimization problems with realistic constraints that may 

excessively burden their mathematical formalization . 

Regarding the optimization strategies, practical implementations showed how 

objective function evaluation appears to be the most time-consuming task therefore, 

a hybrid approach could presents an initial warm up UMCS phase that is employed 

to train an objective function approximation 𝑓 whose computation time shall be 

considerable lower than 𝑓. Reproducing a Least Square Monte Carlo approach, 

ADEMO procedure should then rely on 𝑓  instead of actually recalculate the 

objective functions at each generation for all candidate solutions. Another 

promising research area may consists in designing a parallelized version of both 

search algorithms allowing a potentially massive computation time reductions by 

exploiting modern computation accelerator such as Graphical Processing Unit. 
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Appendix 
Following tables display the parameterization setting adopted by the simulation 

experiment as well as all macro cycles specification. Within each macro cycle, 36 

portfolios are generated in parallel and then evaluated by both UMCS and ADEMO 

leading on a total of 3.708 single runs. As a final remark, each portfolio simulation 

adopted a Poisson/Lognormal distributional assumption for single policyholder 

frequency/severity modelling. 

 
Table 5: Simulation Experiment Parameterization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index Sector Parameter Value Description

1 Macro Setting al fa 0.99 Tai l  Va lue at Risk confidence level

2 Macro Setting C_Min -0.50 Renewal  Quotation lower l imit

3 Macro Setting C_Max 0.50 Renewal  Quotation upper l imit

4 Macro Setting m_low 100 Number of pol icy holder in Low Portfol io Sens i tivi ty

5 Macro Setting m_high 200 Number of pol icy holder in High Portfol io Sens i tivi ty

6 Pol icyholder Behaviour Beta_0_Low 0.10 Beta 0 for Low Market Sens i tivi ty

7 Pol icyholder Behaviour Beta_0_Medium 0.20 Beta 0 for Medium Market Sens i tivi ty

8 Pol icyholder Behaviour Beta_0_High 0.30 Beta 0 for High Market Sens i tivi ty

9 Pol icyholder Behaviour Beta_1_Low 0.30 Beta 1 for Low Market Sens i tivi ty

10 Pol icyholder Behaviour Beta_1_Medium 0.50 Beta 1 for Medium Market Sens i tivi ty

11 Pol icyholder Behaviour Beta_1_High 0.80 Beta 1 for High Market Sens i tivi ty

12 Pol icyholder Behaviour Beta_2_Low 1.00 Beta 2 for Low Market Sens i tivi ty

13 Pol icyholder Behaviour Beta_2_Medium 1.50 Beta 2 for Medium Market Sens i tivi ty

14 Pol icyholder Behaviour Beta_2_High 2.00 Beta 2 for High Market Sens i tivi ty

15 Synthetic Portafol io Simulation s 10 000 Col lective loss  number of s imulation for each  pol icyholder

16 Synthetic Portafol io Simulation F_mn 1.00 Portfol io Frequency Mean

17 Synthetic Portafol io Simulation S_mn 5.00 Portfol io Severi ty Pos i tion Parameter

18 Synthetic Portafol io Simulation S_sd 1.00 Portfol io Severi ty Di ffus ion Parameter

19 Synthetic Portafol io Simulation F_mn_sd_Max 2.50 Frequency Mean maximum deviation for a  s ingle pol icyholder

20 Synthetic Portafol io Simulation S_mn_sd_Max 1.50 Severi ty Pos i tion maximum deviation for a  s ingle pol icyholder

21 Synthetic Portafol io Simulation S_sd_sd_Max 0.50 Severi ty Di ffus ion maximum deviation for a  s ingle pol icyholder

22 UMCS Tria ls_low 1 000 Number of Monte Carlo tria ls  for experiment chunk 1

23 UMCS Tria ls_high 2 000 Number of Monte Carlo tria ls  for experiment chunk 2

24 ADEMO Generation 10 Number of evolutionary cycles  in ADEMO algori thm

25 ADEMO Pop_N_low 100 Population cardinal i ty for experiment chunk 1

26 ADEMO Pop_N_high 200 Population cardinal i ty for experiment chunk 2

27 ADEMO prob_m 0.01 Mutation probabi l i ty in ADEMO algori thm
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Table 6: Macro Cycles Control Table.  
Index Trials Name Seed m Beta0 Beta1 Beta2

1 1000 Run_PrtLow_MktLow_Number_1 11 100 0.1 0.3 1

2 1000 Run_PrtLow_MktLow_Number_2 12 100 0.1 0.3 1

3 1000 Run_PrtLow_MktLow_Number_3 13 100 0.1 0.3 1

4 1000 Run_PrtLow_MktLow_Number_4 14 100 0.1 0.3 1

5 1000 Run_PrtLow_MktLow_Number_5 21 100 0.1 0.3 1

6 1000 Run_PrtLow_MktLow_Number_6 22 100 0.1 0.3 1

7 1000 Run_PrtLow_MktLow_Number_7 23 100 0.1 0.3 1

8 1000 Run_PrtLow_MktLow_Number_8 24 100 0.1 0.3 1

9 1000 Run_PrtLow_MktLow_Number_9 31 100 0.1 0.3 1

10 1000 Run_PrtLow_MktLow_Number_10 32 100 0.1 0.3 1

11 1000 Run_PrtLow_MktLow_Number_11 33 100 0.1 0.3 1

12 1000 Run_PrtLow_MktLow_Number_12 34 100 0.1 0.3 1

13 1000 Run_PrtLow_MktLow_Number_13 41 100 0.1 0.3 1

14 1000 Run_PrtLow_MktLow_Number_14 42 100 0.1 0.3 1

15 1000 Run_PrtLow_MktLow_Number_15 43 100 0.1 0.3 1

16 1000 Run_PrtLow_MktLow_Number_16 44 100 0.1 0.3 1

17 1000 Run_PrtLow_MktMed_Number_1 11 100 0.2 0.5 1.5

18 1000 Run_PrtLow_MktMed_Number_2 12 100 0.2 0.5 1.5

19 1000 Run_PrtLow_MktMed_Number_3 13 100 0.2 0.5 1.5

20 1000 Run_PrtLow_MktMed_Number_4 14 100 0.2 0.5 1.5

21 1000 Run_PrtLow_MktMed_Number_5 21 100 0.2 0.5 1.5

22 1000 Run_PrtLow_MktMed_Number_6 22 100 0.2 0.5 1.5

23 1000 Run_PrtLow_MktMed_Number_7 23 100 0.2 0.5 1.5

24 1000 Run_PrtLow_MktMed_Number_8 24 100 0.2 0.5 1.5

25 1000 Run_PrtLow_MktMed_Number_9 31 100 0.2 0.5 1.5

26 1000 Run_PrtLow_MktMed_Number_10 32 100 0.2 0.5 1.5

27 1000 Run_PrtLow_MktMed_Number_11 33 100 0.2 0.5 1.5

28 1000 Run_PrtLow_MktMed_Number_12 34 100 0.2 0.5 1.5

29 1000 Run_PrtLow_MktMed_Number_13 41 100 0.2 0.5 1.5

30 1000 Run_PrtLow_MktMed_Number_14 42 100 0.2 0.5 1.5

31 1000 Run_PrtLow_MktMed_Number_15 43 100 0.2 0.5 1.5

32 1000 Run_PrtLow_MktMed_Number_16 44 100 0.2 0.5 1.5

33 1000 Run_PrtLow_MktHig_Number_1 11 100 0.3 0.8 2

34 1000 Run_PrtLow_MktHig_Number_2 12 100 0.3 0.8 2

35 1000 Run_PrtLow_MktHig_Number_3 13 100 0.3 0.8 2

36 1000 Run_PrtLow_MktHig_Number_4 14 100 0.3 0.8 2

37 1000 Run_PrtLow_MktHig_Number_5 21 100 0.3 0.8 2

38 1000 Run_PrtLow_MktHig_Number_6 22 100 0.3 0.8 2

39 1000 Run_PrtLow_MktHig_Number_7 23 100 0.3 0.8 2

40 1000 Run_PrtLow_MktHig_Number_8 24 100 0.3 0.8 2

41 1000 Run_PrtLow_MktHig_Number_9 31 100 0.3 0.8 2

42 1000 Run_PrtLow_MktHig_Number_10 32 100 0.3 0.8 2

43 1000 Run_PrtLow_MktHig_Number_11 33 100 0.3 0.8 2

44 1000 Run_PrtLow_MktHig_Number_12 34 100 0.3 0.8 2

45 1000 Run_PrtLow_MktHig_Number_13 41 100 0.3 0.8 2

46 1000 Run_PrtLow_MktHig_Number_14 42 100 0.3 0.8 2

47 1000 Run_PrtLow_MktHig_Number_15 43 100 0.3 0.8 2

48 1000 Run_PrtLow_MktHig_Number_16 44 100 0.3 0.8 2

49 1000 Run_PrtMed_MktLow_Number_1 11 200 0.1 0.3 1

50 1000 Run_PrtMed_MktLow_Number_2 12 200 0.1 0.3 1

51 1000 Run_PrtMed_MktLow_Number_3 13 200 0.1 0.3 1

52 1000 Run_PrtMed_MktLow_Number_4 14 200 0.1 0.3 1

53 1000 Run_PrtMed_MktLow_Number_5 21 200 0.1 0.3 1

54 1000 Run_PrtMed_MktLow_Number_6 22 200 0.1 0.3 1

55 1000 Run_PrtMed_MktLow_Number_7 23 200 0.1 0.3 1

56 1000 Run_PrtMed_MktLow_Number_8 24 200 0.1 0.3 1

57 1000 Run_PrtMed_MktLow_Number_9 31 200 0.1 0.3 1

58 1000 Run_PrtMed_MktLow_Number_10 32 200 0.1 0.3 1

59 1000 Run_PrtMed_MktLow_Number_11 33 200 0.1 0.3 1

60 1000 Run_PrtMed_MktLow_Number_12 34 200 0.1 0.3 1

61 1000 Run_PrtMed_MktLow_Number_13 41 200 0.1 0.3 1

62 1000 Run_PrtMed_MktLow_Number_14 42 200 0.1 0.3 1

63 1000 Run_PrtMed_MktLow_Number_15 43 200 0.1 0.3 1

64 1000 Run_PrtMed_MktLow_Number_16 44 200 0.1 0.3 1

65 1000 Run_PrtMed_MktMed_Number_1 11 200 0.2 0.5 1.5

66 1000 Run_PrtMed_MktMed_Number_2 12 200 0.2 0.5 1.5

67 1000 Run_PrtMed_MktMed_Number_3 13 200 0.2 0.5 1.5

68 1000 Run_PrtMed_MktMed_Number_4 14 200 0.2 0.5 1.5

69 1000 Run_PrtMed_MktMed_Number_5 21 200 0.2 0.5 1.5

70 1000 Run_PrtMed_MktMed_Number_6 22 200 0.2 0.5 1.5

71 1000 Run_PrtMed_MktMed_Number_7 23 200 0.2 0.5 1.5

72 1000 Run_PrtMed_MktMed_Number_8 24 200 0.2 0.5 1.5

73 1000 Run_PrtMed_MktMed_Number_9 31 200 0.2 0.5 1.5

74 1000 Run_PrtMed_MktMed_Number_10 32 200 0.2 0.5 1.5

75 1000 Run_PrtMed_MktMed_Number_11 33 200 0.2 0.5 1.5

76 1000 Run_PrtMed_MktMed_Number_12 34 200 0.2 0.5 1.5

77 1000 Run_PrtMed_MktMed_Number_13 41 200 0.2 0.5 1.5

78 1000 Run_PrtMed_MktMed_Number_14 42 200 0.2 0.5 1.5

79 1000 Run_PrtMed_MktMed_Number_15 43 200 0.2 0.5 1.5

80 1000 Run_PrtMed_MktMed_Number_16 44 200 0.2 0.5 1.5

81 1000 Run_PrtMed_MktHig_Number_1 11 200 0.3 0.8 2

82 1000 Run_PrtMed_MktHig_Number_2 12 200 0.3 0.8 2

83 1000 Run_PrtMed_MktHig_Number_3 13 200 0.3 0.8 2

84 1000 Run_PrtMed_MktHig_Number_4 14 200 0.3 0.8 2

85 1000 Run_PrtMed_MktHig_Number_5 21 200 0.3 0.8 2

86 1000 Run_PrtMed_MktHig_Number_6 22 200 0.3 0.8 2

87 1000 Run_PrtMed_MktHig_Number_7 23 200 0.3 0.8 2

88 1000 Run_PrtMed_MktHig_Number_8 24 200 0.3 0.8 2

89 1000 Run_PrtMed_MktHig_Number_9 31 200 0.3 0.8 2

90 1000 Run_PrtMed_MktHig_Number_10 32 200 0.3 0.8 2

91 1000 Run_PrtMed_MktHig_Number_11 33 200 0.3 0.8 2

92 1000 Run_PrtMed_MktHig_Number_12 34 200 0.3 0.8 2

93 1000 Run_PrtMed_MktHig_Number_13 41 200 0.3 0.8 2

94 1000 Run_PrtMed_MktHig_Number_14 42 200 0.3 0.8 2

95 1000 Run_PrtMed_MktHig_Number_15 43 200 0.3 0.8 2

96 1000 Run_PrtMed_MktHig_Number_16 44 200 0.3 0.8 2

97 1500 Run_PrtLow_MktLow_Number_1 11 100 0.1 0.3 1

98 1500 Run_PrtLow_MktLow_Number_2 12 100 0.1 0.3 1

99 2000 Run_PrtLow_MktLow_Number_1 11 100 0.1 0.3 1

100 2000 Run_PrtLow_MktLow_Number_2 12 100 0.1 0.3 1

101 2000 Run_PrtLow_MktLow_Number_3 13 100 0.1 0.3 1

102 2000 Run_PrtLow_MktLow_Number_4 14 100 0.1 0.3 1

103 2000 Run_PrtLow_MktLow_Number_5 21 100 0.1 0.3 1


