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Abstract

In [3], Guan and Spruck prove that if Γ in Rn+1 (n ≥ 2) bounds
a suitable locally convex hypersurface Σ with Gauss curvature KΣ,
then Γ bounds a locally convex K-hypersurface whose Gauss curva-
ture is less than inf KΣ. In this article we are particularly interested
in K-hypersurfaces which are not global graphs and will extend sev-
eral results in [3]. The first main result is to establish the estimate
KM ≥ ( diamM/2)−n for the Gauss curvature KM of a K-hypersurface
M which satisfies Condition A below. The second main task is that,
in case Σ above is not a global graph, we construct a K-hypersurface
M̃ whose Gauss curvature KfM is slighter greater than inf KΣ. If, in
addition, the hypersurface Σ satisfies Condition B below, then for
each number K, 0 < K ≤ (diamΣ/2)−n, we show that there exists a
locally convex immersed hypersurface M1 in Rn+1 with ∂M1 = Γ and
the Gauss curvature KM1 ≡ K.
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1 Introduction

In the paper [3], Guan and Spruck are concerned with the problem of finding

hypersurfaces of constant Gauss-Kronecker curvature (K-hypersurfaces) with

prescribed boundary Γ in Rn+1 (n ≥ 2). They prove that if Γ bounds a suitable

locally convex hypersurface Σ, then Γ bounds a locally convex K-hypersurface.

Here a surface Σ in Rn+1 is said to be locally convex if at every point p ∈ Σ there

exists a neighborhood which is the graph of a convex function xn+1 = u(x),

x ∈ Rn, for a suitable coordinate system in Rn+1, such that locally the region

xn+1 ≥ u(x) always lies on a fixed side of Σ. More precisely, they proved:

Theorem 1.1. (cf. Theorem 1.1 in [3]) Assume that there exists a locally

convex immersed hypersurface Σ in Rn+1 with ∂Σ = Γ and the Gauss curvature

KΣ. Let K0 = inf KΣ. Suppose, in addition, that, in a tubular neighborhood of

its boundary Γ, Σ is C2 and locally strictly convex. Then there exists a smooth

(up to the boundary) locally strictly convex hypersurface M with ∂M = Γ such

that KM ≡ K0. Moreover, M is homeomorphic to Σ.

Note that a locally convex hypersurface is necessarily of class C0,1 in the

interior. For a locally convex hypersurface Σ which is not C2, we refer to [5]

the definition of Gauss curvature in weak sense.

As noted in [3], Theorem 1.1 is a huge jump in generality from the previous

results in, e.g., [3], for it deals with general immersed K-hypersurfaces and not

just graphs. In this article we are particularly interested in K-hypersurfaces

which are not global graphs. We will extend several results in [3]. The first

main result is concerning an estimate for the Gauss curvature KM of a K-

hypersurface M , which satisfies Condition A below. We shall establish the

estimate KM ≥ ( diam M/2)−n for such a K-hypersurface M . To introduce

Condition A, let pi, 1 ≤ i ≤ k, be the vertices of the hypersurface M . Let

Di be the maximal domain (i.e. the largest simply connected region) on M

containing pi which, as a hypersurface in Rn+1, can be represented as the graph

of a convex function ui defined in a domain Ωi, 1 ≤ i ≤ k.

Condition A. There exists some number m, 1 ≤ m ≤ k, such that the

maximal domain Dm lies in the interior of M .

We shall establish the following theorem, which is an immediate conse-

quence of the proof of Theorem 3.5 in [3].
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Theorem 1.2. Assume that M is a smooth locally strictly convex K-hypersurface

and also fulfills Condition A. Then there holds

KM ≥ ( diam M/2)−n.

We may notice that this result does not hold for proper subsets of a hemisphere,

which does not fulfill Condition A. Also notice that the graph of any function

does not fulfill Condition A.

As a consequence of Theorem 1.2, we obtain:

Corollary 1.3. Assume that M is a smooth locally strictly convex K-

hypersurface and there holds

KM ≤ ( diam M/2)−n,

then M does not satisfy Condition A; that is, each maximal domain Di,

1 ≤ i ≤ k, meets ∂M .

The second main task of this paper is to prove that, if Σ satisfies the hy-

potheses in Theorem 1.1, and if we assume, in addition, that Σ cannot globally

be represented as the graph of any function, then we are able to construct a K-

hypersurface M̃ whose Gauss curvature KfM is slighter greater than inf KΣ. In

order to prove this, it suffices, in view of Theorem 1.1, to establish Proposition

1.4 below. To put precisely, we let p̂` ∈ Σ, ` = 1, 2, · · · , k̂, be those vertices

where KΣ achieves the minimum value, i.e. K(p̂`) = infΣ K, 1 ≤ ` ≤ k̂. Also,

we let D̂` be the maximal domain on Σ which, as a hypersurface in Rn+1, can

be represented as the graph of the convex function û` defined in the domain

Ω̂`, 1 ≤ ` ≤ k̂.

Proposition 1.4. Suppose the hypersurface Σ satisfies the hypotheses of

Theorem 1. Assume Σ is not a global graph and and KΣ is not constant

inside D̂` for any `, 1 ≤ ` ≤ k̂. Then there exists a locally convex immersed

hypersurface Σ1 in Rn+1 with ∂Σ1 = Γ and Gauss curvature KΣ1 > inf KΣ

everywhere. Moreover, in a tubular neighborhood of its boundary Γ, Σ1 is C2

and locally strictly convex.

From Proposition 1.4 and Theorem 1.1 we obtain the following result.
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Theorem 1.5. Suppose the hypersurface Σ satisfies the hypotheses of Propo-

sition 1.4. Then there exists a number K1 > inf KΣ such that, for each number

0 < K < K1, there exists a smooth (up to the boundary) locally strictly convex

hypersurface M with ∂M = Γ and KM ≡ K; moreover, M is homeomorphic

to Σ.

We will further improve Theorem 1.1 in case Σ satisfies Condition B

below. We introduce:

Condition B. For each `, 1 ≤ ` ≤ k̂, the maximal domain D̂` lies in the

interior of M .

We shall show the following.

Proposition 1.6. If the hypersurface Σ satisfies the hypotheses in Propo-

sition 1.4 and Condition B, then there exists a locally convex immersed hy-

persurface Σ2 in Rn+1 with ∂Σ2 = Γ and inf KΣ2 > min1≤`≤bk(diam∂D̂`/2)−n.

Moreover, in a tubular neighborhood of its boundary Γ, Σ2 is C2 and locally

strictly convex.

From this and Theorem 1.1 we obtain:

Theorem 1.7. Suppose the hypersurface Σ satisfies the hypotheses in The-

orem 1 and Condition B. Then for each number K, 0 < K ≤ (diamΣ/2)−n,

there exists a locally convex immersed hypersurface M1 in Rn+1 with ∂M1 = Γ

and the Gauss curvature KM1 ≡ K. Moreover, in a tubular neighborhood of

its boundary Γ, M1 is C2 and locally strictly convex.

The key observation in proving Proposition 1.4 and Proposition 1.6 is that

along ∂D̂` \ Γ, the tangent hyperplane to Σ is vertical to the plane where Ω̂`

lies, and hence replacing D̂` by a graph ”below” it while keeping Σ \ D̂` fixed

we obtain another locally convex hypersurface.
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2 Proofs of Theorems

2.1 Proof of Theorem 1.2

We may first observe:

Lemma 2.1. If M is a compact K-surface without boundary, then there

holds

KM ≥ ( diam M/2)−n.

Indeed, let a and b be the points on M with d :=dist (a,b) =diamM . Let

0 be the midpoint of the segment ab. Consider the ball B := Bd/2(0) centered

at 0 and of radius d/2, of which the segment ab is a diameter. Then the sphere

∂B and the hypersurface M meet tangentially at the points a and b. We treat

two cases separetely.

Caes 1. M contacts ∂B from the inner side of B at a or b; i.e. an

open nighborhood of a or b on M lies in the inner side of B. Therefore the

Gauss curvature of M at a or b is greater than that of ∂B at a or b, which is

( diam M/2)−n.

Case 2. An open subset D0 of M whose closure D0 contains a lies outside

B. Since d :=dist (a,b) =diamM , we know that some nonempty open subset

of M lies in the interior of B. Therefore D0 is included in a region D∗
0 whose

boundary ∂D∗
0 is an (n−2)-dimensional closed subset of ∂B without boundary.

A part of the region D∗
0 and a part of ∂B including p can be respectively

represented as the graphs of u0 and a function u over a domain Ω∗
0 such that

u0 = u along ∂Ω∗
0 and u0 < u in Ω∗

0. Were the Gauss curvature of D∗
0 less than

that of ∂B, the maximum principle would imply that u0 > u in Ω∗
0, which

would not be the case. Therefore over some point q ∈ Ω∗
0 the Gauss curvature

of D0 at (q, u0(q)) is greater than that of ∂B at (q, u(q)). Thus again we

conclude that KM ≥ ( diam M/2)−n.

This result will not be used in the rest of this article. However, the reason-

ing which leads to this result will be used in the proofs of Lemma 2.4 below,

Proposition 1.4 in 2.2 and Proposition 1.7 in 2.3.

Next we observe that the following result is essentially proved in the last

paragraph of the proof of Theorem 3.5 in [3].
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Proposition 2.2. Assume that M is a smooth locally strictly convex K-

hypersurface. Denote by κmax[M ] the maximum of all principal curvatures

of M . If κmax[M ] is achieved at an interior point p of M , and we choose

coordinates in Rn+1 with origin at p such that the tangent hyperplane at p is

given by xn+1 = 0 and M locally is written as a strictly convex graph xn+1 =

u(x1, · · · , xn), then

κmax(p) ≤ C0K, (1)

with

C0 = (x0
n+1)

n−1; (2)

here x0 = (x0
1, · · · , x0

n, x
0
n+1) ∈ Rn+1 is so chosen that the function ρ̂ := |x−x0|,

x ∈ M , achieves its local maximum value at p.

Indeed, in the last paragraph of the proof of Theorem 3.5 in [3], this es-

timate of κmax is obtained at a local maximum point of the function κeρ,

the maximum being taken for all the normal curvatures κ over M , where

ρ = |x − x0|2, x ∈ M and x0 ∈ Rn+1 is a fixed point. However, in order

to obtain an estimate of κmax(p), the point x0 has to be so chosen that the

function ρ̂ = |x − x0|, x ∈ M , achieves its local maximum value at p. Using

the argument in [3] we are able to derive

0 ≥ 2n
(κmax(p)

K

) 1
n−1 − 2nx0

n+1,

from which follows (1). We notice that, in the fourth and fifth lines from

the bottom in page 295 of [3], we should append the number n before the

parentheses.

We are now able to formulate the following.

Corollary 2.3. Under the hypotheses of Proposition 1 on M and p, we

have

K = K(p) ≥ C
−n/(n−1)
0 ,

where C0 is the constant introduced in (2).

Indeed, from Proposition 2.2, we have

K(p) = κ1κ2 · · ·κn ≤ (C0K(p))n,
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from which we obtain Corollary 2.3.

Instead of obtaining an estimate of the constant C0, we make the following

observation, from which and Corollary 2.3 we obtain Theorem 1.2.

Lemma 2.4. Under the hypotheses of Proposition 2.2 on M and p and

under Condition A with pm = p, we have either

C0 ≤ ( diam M/2)n−1, (3)

or

KM ≥ ( diam M/2)−n. (4)

Proof. As indicated in Condition A, Dm ⊂ M is the maximal domain on

M which can be represented as the graph of a convex function um defined in

a domain Ωm. Let Pm be the plane where Ωm lies. We notice that the tangent

hyperplane to M along ∂Dm is orthogonal to the plane Pm.

Let a and b be the points on ∂Dm such that d0 :=dist (a,b)=diam ∂Dm.

Let 0 be the midpoint of the segment ab, d1 := dist (0,pm) and d := max(d1, d0/2).

Consider the ball B := Bd(0) centered at 0 and of radius d. We treat two cases

separately.

Case 1. If d = d0/2 ≥ d1, then the segment ab is a diameter of the ball

B. Since the tangent hyperplane to M along ∂Dm is vertical to the plane Pm,

we know that the sphere ∂B and the hypersurface M meet tangentially at the

points a and b. Since d0 =(diam ∂Dm)/2 ≥ d1 :=dist (0,pm), an open subset

of the boundary ∂Dm, together with the vertex pm, lies inside the ball B. The

reasoning leading to Lemma 2.1 can be applied here to conclude that one of

the following holds:

(i) M contacts ∂B from the inner side of B at a or b and therefore (4)

holds.

(ii) An open subset D0
m of Dm whose closure contains a lies outside B.

Since pm lies inside B, we know that D0
m is included in a region D∗

m whose

boundary ∂D∗
m is an (n−2)-dimensional subset of ∂B without boundary. The

reasoning in Case 2 in the proof of Lemma 2.1 again enables us to conclude

(4).

Case 2. If d = d1 ≥ d0/2, then the sphere ∂B meets the hypersurface M

tangentially at the point pm. We shall treat two possibilities separately.



44 Constant Gauss curvature

(i) If the function ρ̂0 := |x− 0|, x ∈ M , achieves its local maximum value

at pm, we are allowed to take x0 = 0 in Proposition 2.2, and then, setting the

origin of the coordinate system to be at pm, we obtain |x0| = d1, from which

(3) follows.

(ii) If the function ρ̂0 = |x−0|, x ∈ M , fails to take its local maximum value

at pm, then, since M meets ∂B tangentially, an open subset D̂′
m of Dm whose

closure contains pm lies outside B. However, since d1 ≥ d0/2, we know that

some open subset of ∂Dm lies in the interior of B. Therefore D̂′
m is included

in a region D̂′′
m whose boundary ∂D̂′′

m is an (n− 2)-dimensional subset of ∂B

without boundary. The reasoning in Case 2 in the proof of Lemma 2.1 again

yields (4).

2.2 Proof of Proposition 1.4 and Theorem 1.5

We first recall the approach taken in [3]. Namely, according to [1], if Σ is

the graph of a locally convex function xn+1 = u(x) over a domain Ω in Rn,

then KΣ = K if and only if u is a viscosity solution of the Gauss curvature

equation

det(uij) = K(1 + |∇u|2)n+2
2 in Ω. (5)

A major difficulty in proving Theorem 1.1 lies in the lack of global coordinate

systems to reduce the problem to solving certain boundary value problem

for this Monge-Ampère type equation. To overcome the difficulty, Guan and

Spruck [3] adopted a Perron method to deform Σ into a K-hypersurface by

solving the Dirichlet problem for the equation (5) locally. They consider a disk

on Σ which can be represented as the graph of a function and use the following

existence result to replace such a disk by another graph of less curvature.

Lemma 2.5. (Theorem 1.1. [2], Theorem 2.1 [3]) Let Ω be a bounded

domain in Rn with ∂Ω ∈ C0,1. Suppose there exists a locally convex viscosity

subsolution u ∈ C0,1(Ω) of (5), i.e.

det(uij) ≥ K(1 + |∇u|2)n+2
2 in Ω, (6)

where K ≥ 0 is a constant. Then there exists a unique locally convex viscosity

solution u ∈ C0,1(Ω) of (5) satisfying u = u on ∂Ω.
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Motivated by the approach taken in [3], we now proceed to establish Propo-

sition 1.4. We consider a disk on Σ which can be represented as the graph of

a function and contains a point at which the Gauss curvature takes the value

inf KΣ and then, instead of using Lemma 2.5, we shall replace such a disk by

a graph whose Gauss curvature is everywhere greater than inf KΣ. Namely, as

introduced before, we let p̂` ∈ Σ, ` = 1, 2, · · · , k̂, be those vertices where KΣ

achieves the minimum value, i.e. K(p̂`) = infΣ K, 1 ≤ ` ≤ k̂, and let D̂` be the

maximal domain on Σ which, as a hypersurface in Rn+1, can be represented

as the graph of a convex function û` defined in a domain Ω̂`, 1 ≤ ` ≤ k̂. Then

the tangent hyperplane to M along ∂D̂` \ Γ is vertical to the plane P`.

For 1 ≤ ` ≤ k̂, let Ω̂`,δ be the tubular neighborhood with width δ along

∂Ω̂`, i.e.

Ω̂`,δ = {x ∈ Ω` : dist (x, ∂Ω̂`) ≤ δ}.
We shall construct a convex function ũ` defined over Ω̂` with ũ` = û` along ∂Ω̂`

and ũ` < û` in Ω̂`,δ\∂Ω̂` for some δ > 0. The graph of the function ũ` over Ω̂` is

then a convex hypersurface D̃`. This naturally induces a C0,1-diffeomorphism

ΨeΣ : Σ → Σ̃ := ∪D̃` ∪ (Σ \ ∪D̂`) which is fixed on Σ \ ∪D̂`. Since the tangent

hyperplane to D̃` along ∂D̂` \ Γ is vertical to the plane P`, ũ` = û` over ∂Ω̂`

and ũ` < û` in Ω̂`,δ \ ∂Ω̂`, 1 ≤ ` ≤ k̂, we know that the hypersurface Σ̃ is

locally convex with ∂Σ̃ = ∂Σ.

In order to obtain the inequality inf KeΣ > inf KΣ, we choose the coor-

dinate system with p` = ((0, · · · , 0), u`(0, · · · , 0)), and then, letting p̃` =

((0, · · · , 0), ũ`(0, · · · , 0)), we choose the function ũ` to be strictly convex and

to have inf KeΣ = KeΣ(p̃`) > KΣ(p`). For this, we observe that, since KΣ(p`) =

inf KΣ < sup bD`
KΣ, the equality in inf KeΣ = KeΣ(p̃`) can be achieved by

choosing v` := û` − ũ` defined over Ω̂` to be nonnegative and small enough.

In order to obtain the strict convexity of ũ`, we make v`(x) strictly decreasing

as the distance from x to (0, · · · , 0) increases. This also yields the inequality

KeΣ(p̃`) > KΣ(p`). Indeed, let en+1 be the unit vector pointing in the direction

of positive xn+1 axis and move the surface D̃` in the direction of en+1 and in the

distance v`(0, · · · , 0) to obtain the parallel surface D̃`+v`(0, · · · , 0)en+1, which

is the graph of the function ũ`(x) + v`(0, · · · , 0) inside Ω̂`. Because v` achieves

its maximum value at (0, · · · , 0), the surface D̃` + v`(0, · · · , 0)en+1 meets the

surface D̂` tangentially at p` and ũ`(x) + v`(0, · · · , 0) > u`(x) inside Ω̂`. This
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yields KeΣ(p̃`) = K eD`
(p̃`) = K eD`+v`(0,··· ,0)en+1

(p`) > K bD`
(p`) = KΣ(p`). We

therefore obtain Proposition 1.4 by taking Σ1 = ∪D̃` ∪ (Σ \ ∪D̂`), from which

follows Theorem 1.5.

2.3 Proof of Proposition 1.4 and Theorem 1.5

We now proceed to prove Proposition 1.4. It suffices to construct, for

each `, 1 ≤ ` ≤ k̂, a strictly convex hypersurface D̃` with ∂D̃` = ∂D̂` and

inf K eD`
≥ (diam ∂D̂`/2)−n, for we can then take Σ2 = ∪D̃` ∪ (Σ \ ∪D̂`) to

complete the proof of Proposition 1.4. For this purpose, we fix `, 1 ≤ ` ≤ k̂.

Let a` and b` be the points on ∂D̂` such that d` :=dist (a`,b`) =diam ∂D̂`.

Let 0` be the midpoint of the segment a`b`. Consider the ball B` := Bd`/2(0`)

centered at 0` and of radius d`/2, of which the segment a`b` is a diameter.

Since the tangent hyperplane to D̂` along ∂D̂` is vertical to the plane P`, the

sphere ∂B` and the hypersurface D̂` meet tangentially at the points a` and b`.

We claim

Lemma 2.6. The whole ∂D̂` lies inside B`.

Proof. It suffices to claim that each curve which is cut from ∂D̂` by a

plane containing a` and b` lies in B`. Indeed, consider such a curve Γ0. Since

d` :=dist (a`,b`) =diam ∂D̂`, an open subset Γ̃0 of Γ0 lies in B`. Suppose

another open subset of Γ0 does not lie in B`. We shall derive respective con-

tradictions in two cases below and finish the proof.

Case i. Suppose the curvature of Γ0 is increasing from a` to a point c ∈ Γ0

and then decreasing from c to b`. Then near a` and b` the curvature of Γ0 is

less than (diam ∂D̂`/2)−1, and hence this part of Γ0 lies outside B`. Since Γ̃0

lies in B`, Γ0 intersects ∂B` at points c1 and c2 such that a` is nearer to c1 than

c2. The maximum principle produces two points with curvature greater than

(diam ∂D̂`/2)−1 one of which is between a` and c1, and the other is between

b` and c2. Therefore the part of Γ0 between c1 and c2, which lies inside

B`, has curvature greater than (diam ∂D̂`/2)−1 everywhere, contradicting the

maximum principle.

Case ii. Suppose the curvature of Γ0 is decreasing from a` to a point

c0 ∈ Γ0 and then increasing from c0 to b`. We first claim that in this case

near a` and b` the curve Γ0 lies inside B` and the curvatures of Γ0 at a` and
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b` are greater than (diam ∂D̂`/2)−1. Indeed, would a part of Γ0 between a`

and some point c3 lie outside B`, then the maximum principle would produce a

point with curvature greater than (diam ∂D̂`/2)−1 in this part of Γ0. Therefore

the curvature at a` would be greater than (diam ∂D̂`/2)−1, contradicting the

assumption that near a` the curve Γ0 lies outside B`. Hence near a` the

curve Γ0 lies inside B` and hence the curvature of Γ0 at a` is greater than

(diam ∂D̂`/2)−1. The behavior of the curve Γ0 near b` can be understood

analogously.

If Γ0 intersects ∂B` at some points c4 other than a` and b`, then the

part of Γ0 between c4 and some other point c5 lies outside B`, which provides

us with a point with curvature greater than (diam ∂D̂`/2)−1 by the maximum

principle. This implies that the part of Γ0 between a` and c4, which lies inside

B`, has curvature greater than (diam ∂D̂`/2)−1 everywhere, contradicting the

maximum principle.

To proceed further, we consider two cases separately.

Case I. The point p` lies inside B`.

We proceed to prove the following.

Lemma 2.7. In Case I, the whole D̂` lies in B`.

Proof. Consider the plane P̃` containing a`b` and the point p`. Let Γ` :=

P̃` ∩ B` and Γ̂` := P̃` ∩ D̂`. We first observe that in Case I the curve Γ̂` in

D` lies inside B`; in other words, Γ̂` situates “above” Γ`. Indeed, would some

part of Γ̂` lie outside B`, then we would, analogously to the proof of Lemma

2.6, derive respective contradictions in two cases.

From this observation, Lemma 2.6 and the assumption that p` ∈ B`, we

conclude that each curve in D̂` which is cut by a plane containing 0`p` lies

inside B`. This enables us to conclude that the whole D̂` lies in B`.

In view of Lemma 2.7, it is easy to construct a C0,1 convex surface D0,`

passing through Γ` as well as ∂D̂`, which situates ”below” D̂` and ”above” ∂B`

in the sense that D0,` and a portion of ∂B` can be represented respectively as

the graphs of functions u0,` and v` in Ω̂` such that v` ≤ u0,` ≤ û` in Ω̂`. We

may replace D̂` by D0,` while fixing Σ \ D̂`. This provides us with a C0,1

hypersurface Σ̃0. Since the tangent hyperplane to Σ along ∂D̂` is vertical to
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the plane P`, the hypersurface Σ̃0 is locally strictly convex. By approximation,

we may assume without loss of generality that D0,` is C2.

Let p0,` be the “lowest” point of D0,`. Each curve on D0,` which is cut by

a plane containing 0`p0,` lies in B` and hence has the curvature at p0,` greater

than or equal to (diam ∂D̂`/2)−1. Therefore the hypersurface Σ̃0 has the Gauss

curvature KeΣ0
(p0,`) ≥ (diam (∂D̂`))

−n.

We now consider two possibilities separately.

(i) If KΣ(x) > (diam ∂D̂`/2)−n at each point x ∈ ∂D̂`, then by choosing

û` − u0,` small enough, there still holds KD0,`
(x) > (diam ∂D̂`/2)−n at each

point x ∈ ∂D̂`. Then, since there holds also KD0,`
(p0,`) > (diam ∂D̂`/2)−n

and D0,` is C2, we have KD0,`
(x) > (diam ∂D̂`/2)−n at every point x ∈ D0,`.

Therefore in this case we take D̃` = D0,` to complete the proof of Proposition

1.4.

(ii) Suppose KΣ(x) ≤ (diam ∂D̂`/2)−n at some points x ∈ ∂D̂`. Then we

consider a small neighborhood of ∂D̂` on Σ

D`,δ = {x ∈ Σ; dist (x, ∂D̂`) < δ}
and replace D`,δ by a C2 hypersurfacce D̃`,δ with K eD`,δ

> (diam ∂D̂`/2)−n

everywhere and ∂D̃`,δ = ∂D`,δ, while keeping Σ \ D`,δ fixed. Let D̃∗
`,δ be the

largest region in D̃`,δ which can be represented as the graph of some function

and has ∂D`,δ ∩ D̂` as one component of its boundary. We then apply the

previous construction to the hypersurface D̃∗
`,δ ∪ (D̂` \ D̃`,δ), instead of D̂`, and

obtain the desired hypersurface D̃` to complete the proof of Proposition 1.4.

Case II. The point p` lies outside B`.

In this case, to prove Proposition 1.4 it suffices to prove the following lemma

and then take D̃` = D̂`.

Lemma 2.8. In Case II, the Gauss curvature KΣ(p`) of Σ at p` is greater

than (diam ∂D`/2)−n at p`.

Indeed, in this case we choose the coordinate system whose origin 0 is

at p` and whose xn+1-axis points in the normal direction of D` from p` to
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∂B`. Then a portion of D̂` and a portion of ∂B` can be represented as

the graphs of functions ũ and ṽ respectively over a neighborhood E of 0.

Consider the nonnegative function w := ṽ − ũ over E. In view of Lemma

2.6, the function w achieves its maximum value at 0. We now use the rea-

soning used at the last paragraph in the proof of Proposition 1.3. Namely,

Let en+1 be the unit vector in the direction of the xn+1-axis. By moving

the hypesurface D̂` in the direction of en+1 and in the distance of w(0), we

obtain the parallel hypersurface D̂` + w(0)en+1, which meets ∂B` tangen-

tially at p0,` and has greater curvature than ∂B` at p` + w(0)en+1. That

is, KΣ(p`) = K bD`+w(0)en+1
(p` + w(0)en+1) > K∂B`

(p` + w(0)en+1). Since

K bD`
(p`) = inf K bD`

, we conclude that KΣ ≥ (diam ∂D̂`/2)−n.
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