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Abstract 
 

The paper extends Chebyshev’s inequality to incorporate moments’ conver- gence 

in t-tests of model parameters. Size-dependent probability bounds are derived from 

one conditional higher-order moment of the distribution of the test statistic. Monte 

Carlo simulations attest that, in the cases of heteroskedastic and autocorrelated 

observations, the proposed bounds over-reject less than the asymptotic 

approximation and bootstrap methods. Therefore, when asymp- totic critical values 

are suspected to lead to the over-rejection of the null hy- pothesis, the proposed 

inequalities may be used in conjunction to bootstrap methods to reduce the number 

of instances in which multiple re-samplings and associated estimations have to be 

performed. 
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1.  Introduction   

        When  the  number  of  observations  is  not  large  enough  (relative  to  the  data

 

charac -

teristics)  for  the  asymptotic  distribution  of  a  test  statistic to  be a

 
good

 
approximation

 
to

 its  unknown  sample  distribution,  asymptotic  inference
 

will
 

lead to size distortions.
      

 
In  this  situation,  bootstrap  methods  present

 
a

 
valid

 
alternative: 

 
artificial

 
datasets, 

 
generated

 
by

 
resampling

    
the

 
data,

 
are

 
aggregated

 
into

 
statistics

 
which

 
may

 

be
 

used
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to construct confidence intervals for the statistic calculated on real data. When ap-

plied to approximate the distribution of model parameters, bootstrap methods require

parameter estimates for each of the artificial datasets. This otherwise time consum-

ing aspect, depending on the bootstrap resampling scheme, becomes computationally

demanding for parameter estimates that are not available in closed form as each boot-

strap replication will require the numerical optimization of the estimator’s objective

function.

In principle, another approach to testing could rely on the inequalities of Cheby-

shev and Cantelli which provide bounding probabilities of c−2 and (1 + c2)−1 to

outcomes that are c standard deviations below and above and below or above the

mean, respectively. Numerous extensions and refinements of these inequalities exist

which focus on bounding the probabilities of the {zi}Ni=1 draws of random variables:

P
(⋂2

i=1 |zi| < c
)

due to Berge [2], P
(⋂I

i=1 |zi| < ci

)
due to Olkin and Pratt [14] and

P
(∑I

i=1 z
2
i ≥ c2i

)
due to Birnbaum et al. [4], just to name a few. Isii [7] gives bounds

for P
(⋂2

i=1 c1 < xi < c2
)

for non-standardized random variables while Kotz et al. [8]

refine the bounds of Olkin and Pratt [14] for independent random variables. Further

refinements exist for random variables that are non-negative, bounded, have known

distributional characteristics and higher-order moments, as in Zelen [21] and Bhat-

tacharyya [3]. However, when applied to the testing of model parameters, none of

these inequalities takes into account the sample-size effects, induced by the Central

Limit Theorem (CLT) and moments’ convergence, on the shape of the distribution.

As a result, the ensuing loose1 probability bounds are hardly ever used in hypotheses

testing.

This paper extends Chebyshev’s inequality to incorporate sample-size effects into

the probability bounds. In particular, since the general concern behind size distor-

tions is the over-rejection of null hypotheses, the proposed probability bounds are

explicitly derived for t-tests with sample distributions that are leptokurtic, relative

to their asymptotic limit. Size-dependence is attained by considering one higher-

order moment of the estimator’s distribution and the rate at which it converges to

its asymptotic value. Furthermore, distinctively from other Chebyshev’s inequalities,

those put forth in this paper are explicitly aimed at the estimates of models’ pa-

rameters and associated t-tests. Monte Carlo Simulations show that the proposed

1Chebyshev’s (Cantelli’s) are sharp only for the worst case distributions of Section 3.1. For
example, if the true distribution is Gaussian, the probabilities of observing values that are more
than 2, 3, and 4 standard deviations from the mean are 4.55%, 0.27% and 0.006%, respectively.
Chebyshev’s bounds, on the other hand, are 25%, 11% and 6.25%, respectively.
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bounds may be used effectively in hypotheses testing and that they are a robust and

fast alternative to bootstrap methods. In particular, whenever the proposed bounds

reject the null hypothesis, simulation studies confirm that it is safe to forgo lengthier

bootstrap procedures on the grounds that they will also reject. Besides robustness,

the main advantage of the proposed approach to testing is simplicity: its implemen-

tation only requires the calculation of an arithmetic average from the building blocks

of the test statistic.

The paper is organized as follows. Section 2 introduces size-dependence from the

convergence of higher-order moments. Properties of the components of the proposed

inequalities are studied in Section 3. Implementation of the size-dependent bounds

is discussed in Section 4 followed by the simulations’ setup and results of Section 5.

Section 6 concludes.

2. Higher-Order Moments Bounds

Let {zi}Ni=1 be a sample of independent and identically distributed standardized

random variables and z̃N = N−1/2
∑N

i=1 zi be the corresponding standardized mean

estimator. Chebyshev’s inequality is derived from the variance of z̃N as follows:

1 = E
(
z̃2N
)
≥ E

(
z̃2N · 1[|z̃N | > c ]

)
≥ c2 · P (|z̃N | > c) (1)

where 1 is the indicator function. Although the bounds could be tightened by elimi-

nating the first inequality in (1):

E
(
z̃2N · 1[|z̃N | > c ]

)
≥ c2 · P (|z̃N | > c) (2)

it is not obvious how to estimate the tail variance of z̃N . Furthermore, the inequality

in (2) doesn’t account for the asymptotic effects of CLT and moments’ convergence.

2.1 Convergence and Size-Dependence

Assume z̃N is leptokurtic and that although CLT applies it does not yield good

finite sample approximations. Furthermore, assume the m-th moment of z̃N exists

and converges asymptotically to that of a Gaussian random variable. Let ML(N,m, c)

be the absolute m-th moment of z̃N conditional on z̃N < −c for some tail value c > 0:

ML(N,m, c) ≡ E (|z̃N |m · 1[z̃N < −c ]) ≥ cm · P(z̃N < −c) (3)
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As N diverges, the m-th moment converges to that of a Gaussian random variable

at the rate πN,m. Since ML(N,m, c) is a component of the m-th moment, its rate of

convergence is at least πN,m:

ML(N,m, c) = (1− πN,m)ML(∞,m, c) + πN,mML(1,m, c) (4)

Substituting equation (4) in (3) yields:

Pm(z̃N < −c) ≤ c−m {(1− πN,m)ML(∞,m, c) + πN,mML(1,m, c)}

and mutatis mutandis:

Pm(z̃N > −c) ≤ c−m {(1− πN,m)ML(∞,m, c) + πN,mMH(1,m, c)}

where MH(N,m, c) is the absolute m-th moment of z̃N conditional on z̃N > c and

MH(∞,m, c) = ML(∞,m, c), from asymptotic symmetry. The resulting two-sided

probability is:

Pm(|z̃N | > c) ≤ c−m {2 (1− πN,m)ML(∞,m, c) + πN,mML+H(1,m, c)}

where ML+H(1,m, c) = ML(1,m, c)+MH(1,m, c). For third moment bounds (Skew)

πN,3 = N−1/2 and ML(∞, 3, c) = (c2+2)φ(c) while for fourth moment bounds (Kurt)

πN,4 = N−1 and ML(∞, 4, c) = (c3 + 2c)φ(c) + 3[1− Φ(c)].

3. Properties

The probability bounds of Section 2 are convex combinations of the N = 1 com-

ponents ML(1,m, c), MH(1,m, c) and the N = ∞ component ML(∞,m, c). What

follows outlines their respective properties to shed light on the behavior of Skew and

Kurt bounds both in small samples and asymptotically.

3.1 N = 1 Components

Since ML(1,m, c) and MH(1,m, c) may be consistently estimated from the data,

in this section they will be treated as known. Let the standardized random variable

zi be distributed so that Chebyshev is sharp:

zi =


−(2p)−1/2 w.p. p

0)−1/2 w.p. 1− 2p

(2p)−1/2 w.p. p

⇒ PTrue(|zi| ≥ c) =

 2p for c ≤ (2p)−1/2

0 for c > (2p)−1/2

4
                                                                                                                            

Alessandro
  

Palandri



with p < 0.5. The probability bound from Chebyshev’s inequality is PCheby(|zi| ≥
c) ≤ c−2 which is sharp for c = (2p)−1/2. Skewness and kurtosis bounds are:

PSkew,Kurt(|zi| ≥ c) ≤

 (2p)1−m/2c−3 for c ≤ (2p)−1/2

0 for c > (2p)−1/2

with m = 3 for Skew and m = 4 for Kurt. Hence, for c < (2p)−1/2 Cheby gives

the sharpest bounds, for c = (2p)−1/2 all approaches provide sharp bounds of 2p,

while for c > (2p)−1/2 Skew and Kurt are sharper than Chebyshev2. Since statis-

tical tests are generally conducted for threshold values of two standard deviations or

more, compared to Chebyshev and Cantelli, the use of higher-order moments doesn’t

necessarily result in losses of sharpness.

3.2 N =∞ Components

The limiting bounding probabilities of the proposed approaches are:

lim
N→∞

PSkew(|z̃N | > c) ≤ 2ML(∞, 3, c) = 2(c−1 + 2c−3)φ(c)

lim
N→∞

PKurt(|z̃N | > c) ≤ 2ML(∞, 4, c) = 2(c−1 + 3c−3)φ(c) + 6c−4[1− Φ(c)]

Since they do not converge to Gaussian probabilities, it is worth investigating their

limits. To begin, there exist c∗ such that for every c > c∗ Skew and Kurt are

sharper than Cantelli (Cant) and Chebyshev (Cheby):

limN→∞ PSkew(|z̃N | > c) < (1 + c2)−1 ; ∀c > 1.171274

limN→∞ PSkew(|z̃N | > c) < c−2 ; ∀c > 1.279774

limN→∞ PKurt(|z̃N | > c) < (1 + c2)−1 ; ∀c > 1.394795

limN→∞ PKurt(|z̃N | > c) < c−2 ; ∀c > 1.543475

For N → ∞ and c → ∞ the ratios of the Gaussian probability to Cant, Cheby,

Skew and Kurt are:

limc→∞ (PGauss/PCant) = 0 ; limc→∞ (PGauss/PCheby) = 0

limc→∞ (PGauss/PSkew) = 1 ; limc→∞ (PGauss/PKurt ) = 1

Since, for diverging threshold values, Skew and Kurt probabilities converge to

Gauss, their asymptotic tail-behavior is superior to both Cant and Cheby. For

2Analogous results may be derived for Cantelli (Cant) by setting p = 0.5. For c < 1 Cant gives
the sharpest bounds, for c = 1 all approaches provide sharp bounds of 0.5, while for c > 1 Skew
and Kurt are sharper than Cantelli.
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nominal sizes of (0.01, 0.05, 0.10), asymptotic significance levels3 are: (0.0000, 0.0000,

0.0016) for Cheby, (0.0070, 0.0301, 0.0542) for Skew and (0.0062, 0.0254, 0.0445)

for Kurt.

4. Extension to Model Parameters

Implementation of the proposed approaches to the class ofM -estimators is straight-

forward. To begin, recall that, given the objective function ψ, standard asymptotic

confidence intervals for the estimates β̂ are obtained starting from the mean-value-

theorem expansion around the vector of true parameter values β0:

β̂ = β0 −

 1

N

N∑
i=1

∂2ψi
∂β∂β′

∣∣∣∣∣
β=β∗

−1 ·
 1

N

N∑
i=1

∂ψi
∂β

∣∣∣∣∣
β=β0


where ψi is the objective function evaluated at the i-th observation and β∗ is a convex

combination of β0 and β̂. Now consider the same mean-value-theorem expansion but

around the vector of parameter estimates β̂:

β̂ = β̂ −

 1

N

N∑
i=1

∂2ψi
∂β∂β′

∣∣∣∣∣
β=β̂

−1 ·
 1

N

N∑
i=1

∂ψi
∂β

∣∣∣∣∣
β=β̂


From the above tautology it is possible to define the pseudo-observations {β̂i}Ni=1 with

average β̂:

β̂i ≡ β̂ −

 1

N

N∑
i=1

∂2ψi
∂β∂β′

∣∣∣∣∣
β=β̂

−1 ·
∂ψi
∂β

∣∣∣∣∣
β=β̂


The {β̂i}Ni=1, which are readily available as a by-product of the calculation of stan-

dard t-tests, may be used to calculate p-values according to the proposed bounds. It

is important to emphasize that, since estimating the variance of the k-th parameter

β̂k from the pseudo-observations {β̂k,i}Ni=1 produces White’s [20] Heteroskedasticity-

Consistent (HC) variance estimates, the following approach to the calculation of prob-

ability bounds is by construction robust to heteroskedasticity.

3Let gi(c) ≡ Pi (|z̃N | > c) be the monotonically non-decreasing p-value function. The actual
significance level is qi ≡ P (gi(c) ≤ p) = P

(
c ≥ g−1

i (p)
)
, where p is the nominal level. Since under the

null, c converges to a standardized Gaussian random variable, it follows that qi = 2
[
1− Φ

(
g−1
i (p)

)]
.
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Estimation of the N = 1 components, needed for Skew and Kurt bounds, is par-

ticularly undemanding. From the pseudo-observations of the k-th parameter {β̂k,i}Ni=1:

β̃k,i =
β̂k,i − β0,k

σ̂k
; σ̂2

k =
1

N

N∑
i=1

(
β̂k,i − β̂k

)2
; ck =

√
N
∣∣∣β̂k − β0,k∣∣∣
σ̂k

(5)

where β0,k is the parameter value under the null, β̂k is the parameter estimate and ck

is the realization of the standard t-test statistic. Then, the N = 1 components may

be estimated consistently from:

M̂L(1,m, c) =
1

N

∑
β̃k,i<−ck

|β̃k,i|m and M̂H(1,m, c) =
1

N

∑
β̃k,i>ck

|β̃k,i|m

Since in finite samples there is a non-zero probability that −c < ẑmin and ẑmax < c,

for which M̂L(1,m, c) = 0 and M̂H(1,m, c) = 0, the resulting p-values would be

downward biased and lead to over-rejections. A simple solution to this problem is to

use Cantelli/Chebyshev to replace the N = 1 components whenever the conditioning

sets are empty4. Specifically, in the case of third moment bounds for the t-test statistic

tk associated to the k-th model parameter, if
∑
|β̃k,i|>ck 1 > 0:

PSkew(|tk| > ck) ≤ 2(1−N−1/2)(c−1k + 2c−3k )φ(ck) + c−3k N−3/2
∑
|β̃k,i|>ck

|β̃k,i|3

while in the case of an empty conditioning set:

PSkew(|tk| > ck) ≤ 2(1−N−1/2)(c−1k + 2c−3k )φ(ck) + c−2k N−1/2

With respect to Cantelli and Chebyshev, which require estimation of the parame-

ters’ standard errors σ̂k, the proposed bounds require the estimation of one additional

higher-order moment. Using consistent moment estimates produces the same prob-

ability bounds as if the higher-order moment was known, asymptotically. In finite

samples, however, moment estimates, which contain estimation error, are likely to

have a non-negligible impact on the resulting probability bounds. The simulation

studies allow to evaluate, among others, the effects that estimation errors in mo-

ments have on the overall goodness of the bounds.

4Using the bound of equation (3), P(zi < −c) = c−mML(1,m, c). When the moment’s condition-
ing set is empty, it may substituted with P(zi < −c) ≤ (1+c2)−1. Similarly for two-sided probability
bounds where c−m [ML(1,m, c) +MH(1,m, c)] is substituted with P(|zi| > c) ≤ c−2.
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4.1 Extension to Autocorrelated Observations

Since time series observations may not be assumed to be serially uncorrelated, the

proposed probability bounds are not immediately applicable. The standard approach

is to define the number of lags l after which the correlations either vanish or become

negligible. In Newey and West [13] l corresponds to the truncation lag while in

block-bootstrap5 it corresponds to the block-size. Following the same principle, let

{β̂k,τ}T/lτ=1 be the l-aggregated pseudo-observations. Then, the setup of equation (5)

becomes:

β̃k,τ =
β̂k,τ − l · β0,k√

l · σ̃k
with σ̃2

k = T · VARHAC

[
β̂k

]
and ck =

√
T
∣∣∣β̂k − β0,k∣∣∣
σ̃k

where VARHAC

[
β̂k

]
is a Heteroskedasticity-Autocorrelation-Consistent (HAC) esti-

mator of the variance of β̂k.

5. Simulations Set Up and Results

In the experiments that follow, Monte Carlo simulations are set at S = 10000

and bootstrap replications at B = 2000. Both pairs-bootstrap P-Boot and residual-

bootstrap R-Boot are calculated and reported for comparisons. The pairs-bootstrap

only assumes existence of the joint empirical distribution function, from which it

samples. Hence, since it makes no underlying homoskedasticity assumptions, P-Boot

is robust to heteroskedasticity by construction. On the other hand, residual-bootstrap

requires that the parametric model correctly describes the conditional expectation of

the dependent variable. Residual-bootstrap that accounts for heteroskedasticity is

the wild-bootstrap developed in Liu [10]. Specific details of the pairs- and residual-

bootstrap implementation are discussed in Sections 5.1 and 5.2.

In addition, the performance of the proposed Skew and Kurt bounds is bench-

marked against that of Chebyshev’s and Berry-Esseen’s inequalities. Berry-Esseen’s

inequality (B&E) bounds the distance between the true distribution of the test statis-

tic tk and its Gaussian limit. In the context of this paper, it reads:

sup
c∈R

∣∣∣P(tk < c)− Φ(c)
∣∣∣ ≤ κN−1/2E

(
|β̃3
k,i|
)

5See Künsch [9], Liu and Singh [11], Politis and Romano ([16],[17]), Carlstein et al. [5] and Par-
oditis and Politis [15], among others, for some block-bootstrap methods and resampling procedures.
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which leads to the following probability bounds:

PB&E(tk < −c) ≤ 1− Φ(c) + κ ·N−1/2E
(
|β̃3
k,i|
)

PB&E(tk > −c) ≤ 1− Φ(c) + κ ·N−1/2E
(
|β̃3
k,i|
)

PB&E(|tk| > c) ≤ 2[1− Φ(c)] + 2κ ·N−1/2E
(
|β̃3
k,i|
)

Currently, the best estimate of the constant is κ = 0.4748, due to Shevtsova [18].

Notice that, contrary to Skew and Kurt, B&E bounds converge to Gaussian prob-

abilities. Due to its undisputed theoretical properties6, B&E delivers state of the art

probability bounds incorporating asymptotic convergence to Gaussian probabilities.

5.1 Heteroskedastic OLS

Simulated data is generated from the linear regression model:

yi = 0 + 1 · x1,i + 2 · x2,i + |x1,i · x2,i|d · εi

where x1,i, x2,i and εi are uncorrelated zero mean random variables with distributions

N(0, 1), χ2
(1)− 1, F(1,10)− 5/4 and F(1,5)− 5/3. d = 1 except for the Gaussian control

case with d = 0. The sample sizes considered are N = {100, 200, 1000}.
R-Boot is the wild-bootstrap of Davidson and Flachaire [6] which, as shown

by their simulation studies, provides the most accurate rejection rates in the het-

eroskedastic case. Specifically, regression residuals ε̂i are rescaled by (1 − hi), with

hi = x′i(X
′X)−1xi, and their sign changed7 with probability 1/2.

Simulation results of Table 1 show that in the homoskedastic Gaussian case the

sizes of Gauss, P-Boot and the wild-bootstrap R-Boot are very accurate. B&E

bounds perform the worst with no observed rejections of the null hypothesis. Cheby

does slightly better but still under-rejects severely. Also the proposed bounds Skew

and Kurt exhibit substantial under-rejections: due to the lack of tail observations,

in most Monte Carlo simulations, infeasible estimates of the N = 1 components are

replaced with Chebyshev’s bounds, hence the similar, although less severe, under-

rejections.

6See van der Vaart and Wellner [19].
7Davidson and Flachaire [6] show that residuals’ sign changes following the Radamacher distri-

bution give better results than changes following the distribution of Mammen [12].
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Table 1: OLS with Gaussian Homoskedastic Variables

Empirical rejection rates for the bounds of Gaussian (Gauss), Pairs-Bootstrap (P-Boot), Residual-Bootstrap (R-
Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt). Nom are the nominal
values and N the sample size of the tests. Monte Carlo simulations are 10000 and bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100

0.0010 0.0021 0.0012 0.0010 0.0000 0.0000 0.0000 0.0000
0.0100 0.0163 0.0128 0.0097 0.0000 0.0000 0.0000 0.0004
0.0500 0.0634 0.0580 0.0470 0.0000 0.0000 0.0005 0.0059
0.1000 0.1175 0.1080 0.0953 0.0030 0.0000 0.0023 0.0133

N= 200

0.0010 0.0017 0.0015 0.0010 0.0000 0.0000 0.0000 0.0000
0.0100 0.0114 0.0105 0.0079 0.0000 0.0000 0.0000 0.0006
0.0500 0.0532 0.0532 0.0482 0.0000 0.0000 0.0004 0.0076
0.1000 0.1052 0.1050 0.0969 0.0029 0.0000 0.0030 0.0186

N=1000

0.0010 0.0001 0.0008 0.0016 0.0000 0.0000 0.0000 0.0000
0.0100 0.0091 0.0104 0.0090 0.0000 0.0000 0.0000 0.0013
0.0500 0.0479 0.0524 0.0467 0.0000 0.0000 0.0008 0.0165
0.1000 0.0947 0.1014 0.0976 0.0006 0.0000 0.0080 0.0321

Table 2: OLS with χ2
(1) Heteroskedastic Variables

Empirical rejection rates for the bounds of Gaussian (Gauss), Pairs-Bootstrap (P-Boot), Residual-Bootstrap (R-
Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt). Nom are the nominal
values and N the sample size of the tests. Monte Carlo simulations are 10000 and bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100

0.0010 0.0471 0.0167 0.0160 0.0000 0.0000 0.0000 0.0092
0.0100 0.1068 0.0654 0.0524 0.0000 0.0000 0.0198 0.0431
0.0500 0.2046 0.1514 0.1233 0.0137 0.0003 0.0667 0.0932
0.1000 0.2840 0.2203 0.1835 0.0537 0.0029 0.1068 0.1261

N= 200

0.0010 0.0286 0.0184 0.0151 0.0000 0.0000 0.0008 0.0069
0.0100 0.0742 0.0606 0.0503 0.0000 0.0000 0.0141 0.0338
0.0500 0.1578 0.1356 0.1182 0.0062 0.0004 0.0597 0.0810
0.1000 0.2263 0.2044 0.1790 0.0339 0.0035 0.0944 0.1121

N=1000

0.0010 0.0127 0.0140 0.0084 0.0000 0.0000 0.0004 0.0047
0.0100 0.0416 0.0461 0.0365 0.0000 0.0000 0.0102 0.0251
0.0500 0.1019 0.1114 0.0958 0.0016 0.0000 0.0482 0.0630
0.1000 0.1591 0.1739 0.1557 0.0152 0.0012 0.0764 0.0864
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Results for the heteroskedastic case with Chi-square innovations are reported in

Table 2. Despite the use of White’s [20] HC variance-covariance estimates, Gauss

over-rejects severely. Over-rejection rates similar to those of the asymptotic test

are reported for P-Boot. On the other hand, wild-bootstrap R-Boot displays

substantially lower size distortions in small samples. In fact, for sample sizes of N =

1000, the best performing wild bootstrap R-Boot exhibits rejection rates similar to

those of the asymptotic Gauss. At the other hand of the spectrum: Cheby and B&E

under-reject, with the latter displaying rejection rates that are approximately one-

tenth of nominal. Skew and Kurt have rejection rates that are closest to nominal

for all sample sizes considered with the former slightly more conservative than the

latter.

In Tables 3 and 4, with F -distributed innovations, Gauss exhibits the worst over-

rejections. P-Boot does substantially better than HC asymptotic tests but still

over-rejects. Interestingly, with F -distributed shocks, R-Boot does only marginally

better than P-Boot. Skew and Kurt perform always and nearly always better

than R-Boot, respectively. In this setting, the conservative nature of Cheby comes

in handy to deliver rejection rates that are coincidentally closest to nominal. B&E

still under-rejects severely: one-fiftieth of nominal.

Table 3: OLS with F(1,10) Heteroskedastic Variables

Empirical rejection rates for the bounds of Gaussian (Gauss), Pairs-Bootstrap (P-Boot), Residual-Bootstrap (R-
Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt). Nom are the nominal
values and N the sample size of the tests. Monte Carlo simulations are 10000 and bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100

0.0010 0.1053 0.0247 0.0267 0.0003 0.0000 0.0010 0.0280
0.0100 0.1768 0.0812 0.0775 0.0049 0.0000 0.0471 0.0965
0.0500 0.2874 0.1745 0.1587 0.0490 0.0001 0.1384 0.1671
0.1000 0.3649 0.2497 0.2188 0.1157 0.0020 0.1863 0.2048

N= 200

0.0010 0.0656 0.0261 0.0280 0.0000 0.0000 0.0029 0.0218
0.0100 0.1304 0.0844 0.0763 0.0010 0.0000 0.0397 0.0767
0.0500 0.2354 0.1738 0.1556 0.0211 0.0004 0.1188 0.1416
0.1000 0.3099 0.2465 0.2202 0.0738 0.0022 0.1641 0.1790

N=1000

0.0010 0.0291 0.0234 0.0200 0.0000 0.0000 0.0011 0.0155
0.0100 0.0707 0.0666 0.0582 0.0002 0.0000 0.0285 0.0468
0.0500 0.1502 0.1448 0.1286 0.0061 0.0003 0.0818 0.0964
0.1000 0.2120 0.2081 0.1942 0.0343 0.0017 0.1162 0.1253
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Table 4: OLS with F(1,5) Heteroskedastic Variables

Empirical rejection rates for the bounds of Gaussian (Gauss), Pairs-Bootstrap (P-Boot), Residual-Bootstrap (R-
Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt). Nom are the nominal
values and N the sample size of the tests. Monte Carlo simulations are 10000 and bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100

0.0010 0.2014 0.0325 0.0476 0.0072 0.0000 0.0020 0.0183
0.0100 0.2836 0.1067 0.1152 0.0347 0.0000 0.0276 0.0890
0.0500 0.3958 0.2195 0.2007 0.1247 0.0000 0.1322 0.2041
0.1000 0.4728 0.3016 0.2656 0.2112 0.0003 0.2123 0.2659

N= 200

0.0010 0.1663 0.0468 0.0498 0.0034 0.0000 0.0016 0.0188
0.0100 0.2508 0.1270 0.1142 0.0187 0.0000 0.0307 0.0999
0.0500 0.3566 0.2344 0.2043 0.0901 0.0000 0.1439 0.1988
0.1000 0.4319 0.3067 0.2697 0.1794 0.0005 0.2119 0.2554

N=1000

0.0010 0.1066 0.0445 0.0451 0.0012 0.0000 0.0015 0.0218
0.0100 0.1737 0.1158 0.1023 0.0089 0.0000 0.0375 0.0898
0.0500 0.2706 0.2151 0.1940 0.0501 0.0001 0.1284 0.1670
0.1000 0.3475 0.2827 0.2574 0.1165 0.0002 0.1839 0.2104

5.2 Heteroskedastic and Autocorrelated OLS

The T autocorrelated variables are generated from:

yt = 0 + 1 · x1,t + 2 · x2,t + ut with ut = 0.7 · ut−1 + |x1,t · x2,t| · εt

where x1,t, x2,t and εt are zero mean uncorrelated random variables with distributions

N(0, 1), χ2
(1) − 1, F(1,10) − 5/4 and F(1,5) − 5/3. Following Andrews [1], the number

of lags l in the HAC estimator (Gauss and Cheby), is automatically selected by a

quadratic spectral kernel with α(2) = 4ρ2(1 − ρ2)−4. For comparison purposes, the

same l is used as block-size (P-Boot and R-Boot) and to aggregate the pseudo-

parameters’ estimates8 (Skew, Kurt and B&E). In particular, while P-Boot is the

standard pairs-block-bootstrap, R-Boot is the wild-bootstrap with block-sampling

of size l. The latter is presented purely for completeness since the sign changes of

the scaled resampled residuals are expected to disrupt the autocorrelation structure

despite block-resampling.

8The rates of convergence of the moments in equation (4) and that of the Berry-Esseen inequality
are derived under the assumption of no serial correlation.
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Table 5: OLS with Gaussian Autocorrelated and Heteroskedastic Variables

Empirical rejection rates for the bounds of Gaussian (Gauss), Pairs-Bootstrap (P-Boot), Residual-Bootstrap (R-
Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt). Nom are the nominal
values and N the sample size of the tests. Monte Carlo simulations are 10000 and bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100, l= 6

0.0010 0.0148 0.0019 0.0147 0.0001 0.0000 0.0000 0.0000
0.0100 0.0425 0.0188 0.0416 0.0010 0.0000 0.0002 0.0015
0.0500 0.1112 0.0732 0.1090 0.0044 0.0000 0.0053 0.0126
0.1000 0.1790 0.1297 0.1731 0.0166 0.0000 0.0132 0.0267

N= 200, l= 7

0.0010 0.0058 0.0017 0.0027 0.0000 0.0000 0.0000 0.0000
0.0100 0.0239 0.0172 0.0259 0.0000 0.0000 0.0001 0.0017
0.0500 0.0832 0.0701 0.1100 0.0009 0.0000 0.0057 0.0161
0.1000 0.1434 0.1253 0.1957 0.0072 0.0000 0.0155 0.0324

N=1000, l=10

0.0010 0.0011 0.0015 0.0070 0.0000 0.0000 0.0000 0.0001
0.0100 0.0119 0.0137 0.0488 0.0000 0.0000 0.0004 0.0040
0.0500 0.0546 0.0596 0.1417 0.0000 0.0000 0.0100 0.0202
0.1000 0.1054 0.1127 0.2199 0.0014 0.0000 0.0243 0.0393

Table 6: OLS with χ2
(1) Autocorrelated and Heteroskedastic Variables

Empirical rejection rates for the bounds of Gaussian (Gauss), Pairs-Bootstrap (P-Boot), Residual-Bootstrap (R-
Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt). Nom are the nominal
values and N the sample size of the tests. Monte Carlo simulations are 10000 and bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100, l= 6

0.0010 0.0633 0.0090 0.0083 0.0002 0.0000 0.0002 0.0005
0.0100 0.1259 0.0442 0.0559 0.0011 0.0000 0.0083 0.0407
0.0500 0.2258 0.1236 0.1959 0.0234 0.0000 0.0709 0.0994
0.1000 0.3046 0.1898 0.3207 0.0713 0.0002 0.1119 0.1329

N= 200, l= 7

0.0010 0.0349 0.0118 0.0169 0.0000 0.0000 0.0000 0.0005
0.0100 0.0865 0.0504 0.0853 0.0000 0.0000 0.0089 0.0375
0.0500 0.1690 0.1233 0.2414 0.0084 0.0000 0.0702 0.0899
0.1000 0.2424 0.1864 0.3748 0.0404 0.0004 0.1056 0.1194

N=1000, l=10

0.0010 0.0133 0.0113 0.0430 0.0000 0.0000 0.0000 0.0065
0.0100 0.0399 0.0404 0.1397 0.0000 0.0000 0.0156 0.0242
0.0500 0.1046 0.1053 0.3088 0.0009 0.0001 0.0514 0.0609
0.1000 0.1613 0.1645 0.4442 0.0163 0.0008 0.0790 0.0863
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In the Gaussian case of Table 5, Gauss over-rejects in small samples. P-Boot

and R-Boot do better and worse than asymptotic test, respectively. Cheby severely

under-rejects while B&E never rejects. Severe under-rejections are observed also for

Skew and Kurt: as for the homoskedastic Gaussian case of Table 1, the lack of tail

observations causes infeasible estimates of the N = 1 components to be replaced by

Chebyshev’s bounds, causing under-rejections.

Chi-square innovations, in Table 6 produce substantial over-rejections in Gauss.

P-Boot does better than asymptotic tests in small samples while it is indistinguish-

able for large N . Despite block-sampling, R-Boot does worse than Gauss due to

the sign changes of the wild-bootstrap that destroy persistence. Skew and Kurt

display rejection rates that are closest to nominal, with the former slightly more con-

servative than the latter. With the exception of very small samples, Cheby severely

under-rejects while B&E barely ever rejects.

Table 7: OLS with F(1,10) Autocorrelated and Heteroskedastic Variables

The table reports probabilities of a Type I error. In the Nom column are reported the nominal values of the
test. Empirical rejection rates are reported for the bounds based on Gaussian (Gauss), Pairs-Bootstrap (P-Boot),
Residual-Bootstrap (R-Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt).
N indicates the sample size of the tests. The number of Monte Carlo simulations is 10000 and the number of
bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100, l= 6

0.0010 0.1141 0.0099 0.0096 0.0005 0.0000 0.0010 0.0054
0.0100 0.1849 0.0522 0.0669 0.0063 0.0001 0.0204 0.0733
0.0500 0.2911 0.1420 0.2192 0.0576 0.0009 0.1156 0.1536
0.1000 0.3742 0.2126 0.3543 0.1234 0.0023 0.1710 0.1921

N= 200, l= 7

0.0010 0.0787 0.0180 0.0249 0.0000 0.0000 0.0001 0.0049
0.0100 0.1395 0.0599 0.1104 0.0020 0.0000 0.0231 0.0754
0.0500 0.2481 0.1524 0.2891 0.0284 0.0004 0.1158 0.1410
0.1000 0.3215 0.2273 0.4294 0.0871 0.0015 0.1657 0.1799

N=1000, l=10

0.0010 0.0297 0.0227 0.0795 0.0000 0.0000 0.0000 0.0153
0.0100 0.0766 0.0663 0.2019 0.0001 0.0000 0.0311 0.0520
0.0500 0.1559 0.1454 0.4087 0.0070 0.0001 0.0896 0.1019
0.1000 0.2240 0.2080 0.5519 0.0359 0.0013 0.1266 0.1339

Tables 7 and 8 report simulation results in the case of F -distributed shocks. Al-

though Gauss over-rejects severely, R-Boot does worse. P-Boot does substantially

better than the asymptotic test although the over-rejection is still severe. Like in the
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Chi-square case, both Skew and Kurt exhibit better size properties than bootstrap

with the former, again, mildly more conservative than the latter. With the exception

of large samples N = 1000, Cheby under-rejects with F (1, 10) shocks but over-rejects

with F (1, 5) shocks. One more time, B&E barely ever rejects.

Table 8: OLS with F(1,5) Autocorrelated and Heteroskedastic Variables

The table reports probabilities of a Type I error. In the Nom column are reported the nominal values of the
test. Empirical rejection rates are reported for the bounds based on Gaussian (Gauss), Pairs-Bootstrap (P-Boot),
Residual-Bootstrap (R-Boot), Chebyshev (Cheby), Berry-Esseen (B&E), Skewness (Skew) and Kurtosis (Kurt).
N indicates the sample size of the tests. The number of Monte Carlo simulations is 10000 and the number of
bootstrap replications 2000.

Nom Gauss P-Boot R-Boot Cheby B&E Skew Kurt

N= 100, l= 6

0.0010 0.2021 0.0137 0.0101 0.0052 0.0001 0.0021 0.0068
0.0100 0.2804 0.0644 0.0709 0.0355 0.0004 0.0167 0.0572
0.0500 0.3875 0.1683 0.2374 0.1300 0.0023 0.0921 0.1587
0.1000 0.4577 0.2457 0.3844 0.2138 0.0041 0.1652 0.2206

N= 200, l= 7

0.0010 0.1710 0.0252 0.0348 0.0045 0.0000 0.0018 0.0086
0.0100 0.2481 0.0879 0.1358 0.0237 0.0001 0.0246 0.0737
0.0500 0.3556 0.1961 0.3309 0.1008 0.0011 0.1156 0.1738
0.1000 0.4292 0.2729 0.4767 0.1821 0.0021 0.1860 0.2293

N=1000, l=10

0.0010 0.1110 0.0444 0.1166 0.0023 0.0000 0.0003 0.0183
0.0100 0.1815 0.1116 0.2651 0.0078 0.0000 0.0343 0.0883
0.0500 0.2792 0.2107 0.4881 0.0494 0.0000 0.1310 0.1686
0.1000 0.3529 0.2827 0.6218 0.1205 0.0001 0.1845 0.2135

6. Conclusions

In finite samples, higher-order moments bounds have better size properties than

the Berry-Esseen’s inequality which exhibits under-rejection rates9 that are more

severe than Chebyshev’s. Most interestingly, the rejection rates of the proposed

bounds are found to be lower than those of bootstrap, regardless of sample size and

degree of leptokurtosis of the test statistic. This finding suggests that the proposed

bounds may be used as a robust and fast alternative to bootstrap in suspected cases of

over-rejection of the null hypothesis. In fact, should either Skew or Kurt reject the

9The actual significance level of B&E is q = p − 2κN−1/2E(|zi|3). For Gaussian random
variables, a no more than 10% discrepancy between actual and nominal size requires N =
{23104, 92416, 2310400} observations for p = {0.1, 0.05, 0.01}, respectively. For leptokurtic random
variables, the same level of discrepancy is attained by significantly larger sample sizes.
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null, performing bootstrap would not produce a different outcome. The advantage of

calculating the proposed bounds first is that, in case of rejection of the null, the more

computationally demanding bootstrap may be avoided altogether. On the other hand,

should Skew or Kurt fail to reject, it is always possible to implement bootstrap

methods, should they be deemed more accurate in the given setting. Refinements

of the proposed bounds in the case of empty conditioning sets and extensions to

unit-root testing are left as areas for future work.
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