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Abstract 

This paper is concerned with application of Kalman recursive estimates in the the 

capital asset pricing (CAPM) model with time varying beta parameters. Following 

Kyriazis (2011), Kalman estimates are derived using a Bayesian probability theory. 

Rate of convergence and sensitivity analysis of estimates are derived. Through 

five examples, applications of presented estimates are shown. Extension to the 

non-normal cases and suggestion of Bayes filter is also considered. Comparisons 

with method of moment estimates are given. 
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1 Introduction  

There are many asset pricing models such as equilibrium model (CAPM), an 

econometric model (Fama and French three factors model) or an arbitrage pricing 

model (APT). In this paper the first model is considered. The CAPM, introduced 

by Sharpe (1963), implies that the systematic risk is only risk which noticed by 

investors because diversification cannot eliminate this risk. It states that the 

expected return of a risky security is decomposed to the sum of riskless rate 

(𝑟𝑓) and a risk premium of market (𝑅𝑡𝑚 − 𝑟𝑓) which is multiplied by the asset's 

systematic risk measure beta (𝛽). There are many extensions to CAPM, for 

example, the ICAPM (Intertemporal CAPM) or the consumption-based CAPM 

(CCAPM). For a comprehensive review about the CAPM model see Alexander 

(2001) and references therein.  

In this paper, a CAPM model with time varying betas is considered as follows 

�
𝑅𝑡 − 𝑟𝑓 = 𝛽𝑡�𝑅𝑡𝑚 − 𝑟𝑓� + 𝜀𝑡

𝛽𝑡 = 𝑎𝑡𝛽𝑡−1 + 𝜉𝑡
          � 

and a Kalman filter is used to produces estimates mean and variance of 𝛽𝑡. In the 

above model, 𝑅𝑡  is the return of a risky asset at time t. Variables  𝜀𝑡 and 𝜉𝑡 are 

supposed normally distributed with zero means and variances 𝜎𝑡2 and 𝛿𝑡2. The 

Kalman filter is a mathematical power tool that is playing an increasingly 

important role in finance. It gives optimal recursive estimator of unknown 

parameters. Since it is in recursive form, new measurements can be processed 

once newcomer observations arrived. Kalman filter is increasingly used in 

financial applications. A comprehensive review about the application of Kalman 

filtering in financial models may be found in Harvey (1989). Nelson and Foster 

(1994) studied the estimation of ARCH time series using adaptive filtering. 

Racicot and Theoret (2007) studied the application of Kalman filter in hedge fund 

problems. Kyriazis (2011) proposed a simplified derivation of scalar Kalman filter 

using Bayesian setting. Habibi (2013) applied this method to derive adaptive filter 

https://en.wikipedia.org/wiki/William_F._Sharpe
http://financial-dictionary.thefreedictionary.com/investor
http://financial-dictionary.thefreedictionary.com/Expected+Return
http://financial-dictionary.thefreedictionary.com/Security
http://financial-dictionary.thefreedictionary.com/Premium
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in a regression model in known and unknown variance of residual cases.  

The paper is organized as follows. In the rest of Introduction, the Kalman filter 

equations are derived and the rate of convergence is studied. Sensitivity analysis 

are studied in Section 2. Some examples and applications are presented in Section 

3. Comparisons with method of moment estimates are given in Section 4. 

Concluding remarks are given in Section 5. 

 

 

1.1 Derivation  

Following Kyriazis (2011), let the posterior distribution of 𝛽𝑡−1 be a normal 

distribution with 𝜇𝑡−1 and variance 𝜗𝑡−12 . Thus, the prior density function of 

𝛽𝑡 at time 𝑡 is proportional to  

exp {
−1
2𝜏𝑡2

(𝛽𝑡 − 𝜃𝑡)2} 

where 

𝜃𝑡 = 𝑎𝑡𝜇𝑡−1 and 𝜏𝑡2 = 𝑎𝑡2𝜗𝑡−12 + 𝛿𝑡2. 

Also, the likelihood function of 𝛽𝑡  given 𝑅𝑡  , 𝑅𝑡𝑚 is the probability density 

function of a normal distribution with mean 𝛾𝑡 and variance 𝑢𝑡2. The Kalman gain 

is 𝑘𝑡 where  

⎩
⎪⎪
⎨

⎪⎪
⎧  𝛾𝑡 =

𝑅𝑡 − 𝑟𝑓
𝑅𝑡𝑚 − 𝑟𝑓

 

𝑢𝑡2 =
𝜎𝑡2

(𝑅𝑡𝑚 − 𝑟𝑓)2

𝑘𝑡 =
𝜏𝑡2

𝑢𝑡2 + 𝜏𝑡2

� 

Therefore, the posterior distribution of beta at state t is normal with mean 𝜇𝑡 and 

variance 𝜗𝑡2 as follows 
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⎩
⎪
⎨

⎪
⎧𝜇𝑡 =

𝑢𝑡2

𝑢𝑡2 + 𝜏𝑡2
𝜃𝑡 +

𝜏𝑡2

𝑢𝑡2 + 𝜏𝑡2
𝛾𝑡 

1
𝜗𝑡2

=
1
𝑢𝑡2

+
1
𝜏𝑡2

� 

The following Kalman equations are derived  

�
𝜇𝑡 = 𝑎𝑡𝜇𝑡−1 + 𝑘𝑡(𝛾𝑡 − 𝑎𝑡𝜇𝑡−1) 

𝜗𝑡2 = (1 − 𝑘𝑡)𝜏𝑡2.
� 

Remark 1. Estimates  𝜇𝑡  and 𝜗𝑡2  are the conditional mean and variance of 

𝛽𝑡given 𝑅𝑡𝑚. The marginal mean, variance and density function of 𝛽𝑡 are given as 

follows 

�
𝐸(𝛽𝑡) = 𝐸�𝐸(𝛽𝑡|𝑅𝑡𝑚)� = 𝐸(𝜇𝑡) 

𝑣𝑎𝑟(𝛽𝑡) = 𝐸(𝑣𝑎𝑟(𝛽𝑡|𝑅𝑡𝑚) + 𝑣𝑎𝑟(𝜇𝑡)

𝑓𝛽𝑡(𝛽) = 𝐸𝑅𝑡𝑚 �𝑓𝛽𝑡|𝑅𝑡
𝑚(𝛽)� .

� 

Using a Monte Carlo simulation the marginal density of 𝛽𝑡 is computed. 

 

Remark 2. Here, we investigate the condition for the CAPM holds. It can be seen 

that 

𝑅𝑡+1 = 𝑟𝑓 + (𝑎𝑡+1𝛽𝑡 + 𝜉𝑡+1)�𝑅𝑡+1𝑚 − 𝑟𝑓� + 𝜀𝑡+1 

Then, 

𝐸(𝑅𝑡+1) = 𝑟𝑓 + 𝑎𝑡+1𝐸(𝛽𝑡�𝑅𝑡+1𝑚 − 𝑟𝑓�). 

Also, 𝐸(𝑅𝑡+1) = 𝑟𝑓 + 𝐸(𝛽𝑡+1�𝑅𝑡+1𝑚 − 𝑟𝑓�).  Thus, the condition is  

𝐸(𝛽𝑡+1�𝑅𝑡+1𝑚 − 𝑟𝑓�) = 𝑎𝑡+1𝐸(𝛽𝑡�𝑅𝑡+1𝑚 − 𝑟𝑓�). 

Moreover, it is seen that the conditional distribution of 𝛽𝑡+1 given 𝑅𝑡𝑚 is normal 

with mean and variance  

⎩
⎪
⎨

⎪
⎧ 𝐸(𝛽𝑡+1|𝑅𝑡𝑚) = 𝑎𝑡+1𝛾𝑡

𝑣𝑎𝑟(𝛽𝑡+1|𝑅𝑡𝑚) =
𝑎𝑡+12

�𝑅𝑡+1𝑚 − 𝑟𝑓�
2 𝜎𝑡

2 + 𝛿𝑡2.
� 
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Remark 3. Cheng et al. (2003) considered a discrete time process which is a 

semi-martingale given as follows 

𝑋𝑡 = 𝑓𝑡 + �𝜃𝑡𝜖𝑡, 

They defined the adaptive filter as 𝜌𝑓𝑡−1 − (1 − 𝜌)(𝑋𝑡 − 𝑓𝑡−1). The coefficient 𝜌 

is derived by minimizing a MSE. Here, we want to apply this method. That is,  

𝜇𝑡 = 𝜌𝑎𝑡𝛽𝑡−1 + (1 − 𝜌)(𝛽𝑡 − 𝑎𝑡𝛽𝑡−1) 

Define 𝜑 = 𝑎𝑡2𝜗𝑡−12 �𝑅𝑡+1𝑚 − 𝑟𝑓�
2

. By minimizing the variance �̂�𝑡 with respect to 

𝜌,  it is seen that  

𝜌∗ =
𝜑 + 𝜎𝑡2

2𝜑 + 𝜎𝑡2
 

It is known that 𝛽𝑡 is close to the 𝛾𝑡 and  𝛽𝑡−1 may be approximated by 𝜇𝑡−1, 

then 

𝜇𝑡 = 𝜌∗𝑎𝑡𝜇𝑡−1 + (1 − 𝜌∗)(𝛾𝑡 − 𝑎𝑡𝜇𝑡−1). 

This is the adaptive filter version of above problem. However, this filter is dropped 

and hereafter properties of Kalman filter is studied.  

 

 

1.2 Rate of Convergence  

A natural question may arise is that when the value of 𝜇𝑡 is close to its 

previous value 𝜇𝑡−1. To see this, let 𝑎𝑡 = 1
1−𝑘𝑡

 and notice that 

|𝜇𝑡 − 𝜇𝑡−1�≤ |𝜇𝑡−1|�𝑎𝑡(1− 𝑘𝑡) − 1| + |𝑘𝑡𝛾𝑡| ≤ |𝑘𝑡𝛾𝑡|. 

Since 𝛾𝑡 ≈ 𝛽𝑡, thus 

 |𝜇𝑡 − 𝜇𝑡−1| ≤
𝛽𝑡|𝑎𝑡 − 1|

𝑎𝑡
.  

The following proposition summaries the above result and proposes the rate of 

convergence of 𝜇𝑡.  

 

Proposition 1. Suppose that 
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𝛽𝑡|𝑎𝑡 − 1|

𝑎𝑡
= 𝑂(𝑐𝑡) and 𝑐𝑡 → 0 as 𝑡 → ∞.   

|𝜇𝑡 − 𝜇𝑡−1| = 𝑂(𝑐𝑡). 

Here, we continue as follows. Write 𝜇𝑡 = 𝑎𝑡𝜇𝑡−1 + 𝑘𝑡(𝛾𝑡 − 𝑎𝑡𝜇𝑡−1) = 𝑎𝑡𝜇𝑡−1 +

𝑘𝑡𝑍𝑡. So 

𝜇𝑡 − 𝑎𝑡𝜇𝑡−1 = 𝑘𝑡𝑍𝑡 = 𝑘𝑡 �𝛽𝑡 +
𝜀𝑡

(𝑅𝑡𝑚 − 𝑟𝑓)
− 𝑎𝑡𝛽𝑡−1� = 𝑘𝑡(

𝜀𝑡
(𝑅𝑡𝑚 − 𝑟𝑓)

+ 𝜉𝑡) 

The variance of error term 𝑘𝑡𝑍𝑡  is 𝑣𝑎𝑟(𝑘𝑡𝑍𝑡) = 𝑘𝑡
2(𝑢𝑡2 + 𝛿𝑡2).  Now, Suppose 

that  

�𝑘𝑡
2(𝑢𝑡2 + 𝛿𝑡2) = 𝑂(𝑑𝑡),𝑑𝑡 → 0 as 𝑡 → ∞, 

Then, 𝜇𝑡  behaves like the 𝑎𝑡𝜇𝑡−1.  The following proposition summaries the 

above result and proposes the rate of convergence of 𝜇𝑡.  

 

Proposition 2. Suppose that  

�𝑘𝑡
2(𝑢𝑡2 + 𝛿𝑡2) = 𝑂(𝑑𝑡),𝑑𝑡 → 0 as 𝑡 → ∞, 

Then, 𝜇𝑡 behaves like the 𝑎𝑡𝜇𝑡−1.   

Also, it is seen that 

𝜗𝑡2 − 𝜗𝑡−12 = �(1 − 𝑘𝑡)𝑎𝑡2 − 1�𝜗𝑡−12 + (1 − 𝑘𝑡)𝛿𝑡2. 

Let 1 − 𝑘𝑡 = 1
𝑎𝑡2

. Therefore, if 𝛿𝑡2

𝑎𝑡2
→ 0 as 𝑡 → ∞,  then 𝜗𝑡2 − 𝜗𝑡−12 → 0.   The 

following proposition summaries the above result. 

 

Proposition 3. Suppose that 1 − 𝑘𝑡 = 1
𝑎𝑡2

,  and  𝛿𝑡
2

𝑎𝑡2
→ 0 as 𝑡 → ∞, then 

𝜗𝑡2 − 𝜗𝑡−12 = 𝑂 �
𝛿𝑡2

𝑎𝑡2
�. 

Sometimes 𝜗𝑡2 behaves like 𝑎𝑡2𝜗𝑡−12 . The following proposition states this fact.  
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Proposition 4. Assume that 1 − 𝑘𝑡 = 1
𝛿𝑡2

 and  𝑎𝑡2𝑘𝑡 → 0. Then, 𝜗𝑡2 behaves like 

𝑎𝑡2𝜗𝑡−12 . 

 

 

2  Sensitivity analysis 

Here, the sensitivity of Kalman estimates with respect to their parameters is 

considered.  

 

 

2.1 Effect of heteroskedasticity  

When volatility sequence 𝜎𝑡2 follows a GARCH series, it has too fluctuations. 

Thus, it may be too large or too small. First, suppose that for some time point 𝑡, 

variance term 𝜎𝑡2 gets large, then 𝑢𝑡2 goes to infinity (if 𝑅𝑡𝑚 − 𝑟𝑓 is small with 

respect to 𝜎𝑡2), and 𝑘𝑡 goes to zero. Therefore  

𝜇𝑡 = 𝑎𝑡𝜇𝑡−1. 

Here, 𝜗𝑡2 behaves like the 𝜏𝑡2. Also, suppose that variance 𝜎𝑡2 goes to zero, then 

𝑘𝑡 closes to unity, therefore 𝜇𝑡 = 𝛾𝑡, where it is the 𝛽𝑡,   approximately. In this 

case, it is seen that 𝜗𝑡2 goes to zero. Therefore, considering a GARCH series for 

𝜎𝑡2, then  

�𝑎𝑡𝜇𝑡−1 𝑖𝑓 𝜎𝑡2 → ∞ 
𝛽𝑡 𝑖𝑓 𝜎𝑡2 → 0

� 

This phenomena usually happens and is referred as volatility clustering, when the 

arch or GARCH coefficients of heteroskedaticity model is too large or too small.  

 

 

2.2 Sensitivity to 𝒂𝒕.  

The partial derivative of 𝜇𝑡 with respect to 𝑎𝑡is given by 
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𝜕𝜇𝑡
𝜕𝑎𝑡

= (1 − 𝑘𝑡)𝜇𝑡−1. 

As 𝑘𝑡 goes to one, the effect of 𝑎𝑡 on 𝜇𝑡 is small. To study the effect of 𝑎𝑡 on 𝜗𝑡2 

let 𝑏𝑡 = 𝑎𝑡2. Then,  

𝜕𝜗𝑡2

𝜕𝑏𝑡
=
𝜕𝜗𝑡2

𝜕𝜏𝑡2
×
𝜕𝜏𝑡2

𝜕𝑏𝑡
=

𝑢𝑡4𝜗𝑡−12

(𝜗𝑡2 + 𝑢𝑡4)2
 

As the ut goes to zero, then at has no effect on 𝜗𝑡2.  However, as 𝑢𝑡 goes to 

infinity, then  
𝜕𝜗𝑡2

𝜕𝑏𝑡
= 𝜗𝑡−12

(1+kt)𝟐
. 

 

Remark 4. This method may be applied in hedging a portfolio. Suppose that a 

portfolio contains a stock where its dynamic of return follows the model of 

Introduction. Then, the mean of 𝛽𝑡 may change as 

𝑢𝑡4𝜗𝑡−12

(𝜗𝑡2 + 𝑢𝑡4)2
 

because of variation in  𝑏𝑡. Therefore, to hedge this risk, it is possible to modify the 

𝜇𝑡  to  

𝜇𝑡 − 𝑏𝑡
𝑢𝑡4𝜗𝑡−12

(𝜗𝑡2 + 𝑢𝑡4)2
. 

The other sensitivity may be applied in the same way.  

 

 

2.3 Effect of Kalman gain  

Again, it is seen that 
𝜕𝜇𝑡
𝜕𝑘𝑡

= 𝛾𝑡 − 𝑎𝑡𝜇𝑡−1  and  𝜕𝜗𝑡
2

𝜕𝑘𝑡
= −𝜏𝑡2. 

As 𝑢𝑡 is large (small), then the sensitivity of 𝜗𝑡2 to 𝑘𝑡 is small (large), conversely. 
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2.4 Effect of normality  

The proposed results lies heavily on the normality of  𝜀𝑡. Here, it is assumed 

that 𝜀𝑡 has a 𝛼 − percent pollution normal distribution given by 

𝛼𝑁(0,𝜎𝑡∗2) + (1 − 𝛼)𝑁(0,𝜎𝑡2). 

Therefore,  

⎩
⎪
⎨

⎪
⎧𝑢𝑡∗2 =

𝛼𝜎𝑡∗2 + (1 − 𝛼)𝜎𝑡2

(𝑅𝑡𝑚 − 𝑟𝑓)2
 

𝑘∗𝑡 =
𝜏𝑡2

𝑢𝑡∗2 + 𝜏𝑡2
.

� 

One can see that  

𝜕𝜇𝑡
𝜕𝛼

=
𝜕𝜇𝑡
𝜕𝑘∗𝑡

×
𝜕𝑘∗𝑡
𝜕𝛼

=
−(𝛾𝑡 − 𝑎𝑡𝜇𝑡−1)𝜏𝑡2

(𝑢𝑡∗2 + 𝜏𝑡2)2
. 

As 𝛼 goes to one, then 𝜎𝑡2 is replaced by 𝜎𝑡∗2, more. In the following Remark, the 

Bayes filtration is suggested for general non-normal cases.  

 

Remark 5. Kalman filtering uses the normality assumption for 𝜀𝑡. However, it is 

not a realistic assumption, in practice. Historical data analysis shows that fat tail   

distributions are usually suitable for 𝜀𝑡. Thus, in the case of heavy tail distribution, 

Kalman filter fails and some extensions like the particle filters or generally the 

Bayes filter are needed (Arulampalam et al.). Using the Chapman-Kolmogorov 

equation, the Bayes prediction step is given by 

𝑓(𝛽𝑡|𝑅𝑡−1, … ,𝑅1) = ∫ 𝑓(𝛽𝑡|𝛽𝑡−1)𝑓(𝛽𝑡−1|𝑅𝑡−1, … ,𝑅1)𝑑𝛽𝑡−1, 

and the Bayes update equation is 

𝑓(𝛽𝑡|𝑅𝑡 , … ,𝑅1) ∝ 𝑓(𝑅𝑡|𝛽𝑡)𝑓(𝛽𝑡|𝑅𝑡−1, … ,𝑅1). 

In order to initialize the recurrence algorithm, it is assumed that the initial return 

R0  has known probability distribution f(R0).  Using the Bayes filter, the 

probability distribution 𝑓(𝛽𝑡|𝑅𝑡, … ,𝑅1) and 𝑓(𝛽𝑡|𝑅𝑡−1, … ,𝑅1) are not computed. 

Only, the expectations 𝐸(𝛽𝑡|𝑅𝑡, … ,𝑅1) and 𝐸(𝛽𝑡|𝑅𝑡−1, … ,𝑅1) are calculated.  
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Remark 6. Distribution of 𝛽𝑡+1. Suppose that the mean of market risk of a 

special stock at time 𝑡 is 𝜇𝑡. Using the Kalman estimate µt+1, it is possible to 

forecast the future market risk distribution βt+1. Notice that  

 

𝑓(βt+1|𝜇𝑡 = 𝜇∗) = �𝑓(βt+1|𝜇𝑡+1)𝑓(𝜇𝑡+1|𝜇𝑡 = 𝜇∗)𝑑𝜇𝑡+1, 

where 𝑓(βt+1|𝜇𝑡+1) comes from normal distribution with mean 𝜇𝑡+1 and 𝜗𝑡+12  

and  𝑓(𝜇𝑡+1|𝜇𝑡 = 𝜇∗) is a normal with mean  

𝑘𝑡+1𝛾𝑡+1
1 − 𝑎𝑡+1(1 − 𝑘𝑡+1)

 

and variance 𝑎𝑡+12 (1 − 𝑘𝑡+1)2𝜗𝑡+12 .  Term 𝜗𝑡+12  is obtained by updating the 

variance term of Kalman equation. 

 

Remark 7. Application in VaR. One of the main factors which exists in each 

financial activity is risk. The risk induces the uncertainty to the financial problems 

and therefore decision making is too difficult in such conditions. Indeed, after 

famous financial disasters, it is advised to estimate the market risk (see, Alexander 

(2001)). One of these risk measures is VaR. VaR calculations attempt to provide a 

risk assessment of the form: we are (1 − α)% certain that we will not lose more than 

Y dollars in the next N days. The variable Y is function of two parameters. The first 

is N, the time horizon, and the second is (1 − α), the confidence level.  

For a portfolio with initial value 𝑉0, the (1 − α) % VaR is −𝑉0𝑞1−𝛼, where  𝑞1−𝛼 

is the  α-th quantile of return process. Here, suppose that  VaR𝑡+1 is the value of 

VaR at time point 𝑡 + 1. Thus, 

 

𝑃 �𝑅𝑡+1 ≤
VaR𝑡+1

−𝑉0
|𝜇𝑡 = 𝜇∗� = 

�𝑃 �𝑅𝑡+1 ≤
VaR𝑡+1

−𝑉0
|𝜇𝑡+1, 𝜇𝑡 = 𝜇∗� 𝑓(𝜇𝑡+1𝜇𝑡 = 𝜇∗)𝑑𝜇𝑡+1 = 
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𝐸𝜇𝑡+1|𝜇𝑡=𝜇∗ �𝛷 �
−𝑉0−1VaR𝑡+1 − 𝜇𝑡+1

𝑣𝑡+1
�� = 𝛼 

where density f(µt+1|µt = µ∗)  proposed in Example 4 and 𝛷  is the CDF of 

standard normal distribution.  

 

 

3 Comparisons 

Here, we compare the Kalman filter estimate with the method of moment 

estimate. One can see that 𝑅𝑡 = 𝑟𝑓 + 𝑎𝑡𝛽𝑡−1�𝑅𝑡𝑚 − 𝑟𝑓� + �𝑅𝑡𝑚 − 𝑟𝑓�𝜉𝑡 + 𝜀𝑡+1 . 

Thus, the method of moment (mm) estimate of �̂�𝑡 is given 

�̂�𝑡 = 𝐸(𝑅𝑡|𝑅𝑡𝑚) = 𝐸(𝐸(𝑅𝑡|𝛽𝑡−1,𝑅𝑡𝑚)) = 𝑟𝑓 + 𝑎𝑡𝜇𝑡−1�𝑅𝑡𝑚 − 𝑟𝑓�. 

It is seen that  

𝜇𝑡 − 𝐸(�̂�𝑡) = �kt𝛾𝑡 − 𝑟𝑓� − 𝑎𝑡𝜇𝑡−1(kt − 𝑟𝑓 + 𝐸(𝑅𝑡𝑚) − 1). 

Suppose that γt is close to one and 𝐸(𝑅𝑡𝑚) is close to unity. Then,  

𝜇𝑡 − 𝐸(�̂�𝑡) = �kt − 𝑟𝑓�(1− 𝑎𝑡𝜇𝑡−1). 

When kt  is close to 𝑟𝑓 then 𝜇𝑡  is close to 𝐸(�̂�𝑡) . The following proposition 

summaries the above discussion. 

 

Proposition 5. Suppose that γt is close to one and 𝐸(𝑅𝑡𝑚) is close to unity and kt 

is close to 𝑟𝑓 . Then, the Kalman estimate 𝜇𝑡 is close to the expectation of mm 

estimate of �̂�𝑡. Next, the proportion of variance of 𝑅𝑡 to is given by  

𝜎�2

𝜗𝑡2
=
𝑎𝑡2

𝜗𝑡2
(𝜇𝑡−12 + 𝜗𝑡−12 + 𝛿𝑡2)𝑣𝑎𝑟(𝑅𝑡𝑚) +

𝜎𝑡2

𝜗𝑡2
. 

Suppose that at
2

ϑt2
→ 0 then 𝜎�

2

𝜗𝑡2
= 𝜎𝑡2

𝜗𝑡2
. That is as soon as σt2 < ϑt2, then the Kalman 

filter method works better that the method of moment estimate.  
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Proposition 6. If at
2

ϑt2
→ 0, then  σ�

2

ϑt2
= σt2

ϑt2
.  

 

 

4 Some examples 

In this section, some examples are proposed. 

 

Example 1: Simulation. For first Example, let 𝜎𝑡2 = 𝛿𝑡2 = 1 and the monthly 

risk free rate if 𝑟𝑓 = 0.05.  It is assumed that 𝑅𝑡𝑚 is normally distributed with 

mean 0.6 and standard deviation 0.1. Coefficients 𝛽𝑡 are sampled from a first order 

autoregressive model with mean 1, 𝑎𝑡 = 0.2 and 𝑅𝑡 's are computed. The actual 

beta is given by 0.083. The following plot again proposes the accuracy of 

presented method. 

 

Table 1: Descriptive statistics of 𝜇𝑡 and  𝜗𝑡 

Kalman est. Min 1st Qu Median Mean 3rd Qu Max 

𝜇𝑡 0.011 0.057 0.0846 0.0826 0.106 0.13 

𝜗𝑡 0 0.529 0.739 0.716 0.933 1.01 
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Figure 1: Plot of Kalman filter estimate mu(t)
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Example 2: Real data set. Here, a real data set is studied. The S&P 500 stock 

market index comprises 505 common stocks where one of them is Affiliated 

Managers Group (AMG) stock. It is a global asset management company. The 

monthly and daily risk free rates are 0.13, 0.00433, respectively. To test the truth 

of CAPM, the model 𝑅𝑡 − 𝑟𝑓 = 𝛼 + 𝛽�𝑅𝑡𝑚 − 𝑟𝑓� + 𝜀𝑡 

is fitted and it is tested to check if 𝐻0:𝛼 = 0 isn't rejected or not. The data set is 

chosen such that the null hypothesis is retained. The following Table gives the 

values of 𝑅2, the p-value for 𝐻0:𝛼 = 0 and the estimated beta for various choice 

of sample size 𝑛. 

 

Table 2: Sample size selection 

n 100 150 200 

p-value 0.346 0.764 0.006 

R2 0.52 0.50 0.17 

β 1.12 1.12 0.58 

 

 

https://en.wikipedia.org/wiki/S%26P_500
https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Common_stock
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Using this strategy, the data set (taken from Google-finance) contains 150 

daily returns for time period January 2, 2015 to August 7, 2015. During this period, 

the best fit of CAPM model is observed (see Table 2). The sequential least square 

estimates are computed as the time varying betas. Using the Modelrisk Vose 

software (Adds-in Excel) an first order Autoregressive AR(1) model with mean 

0.182 is fitted to betas and it is seen that 𝑎𝑡 = 0.8436 and 𝛿𝑡 = 0.1068. Also, a 

GARCH(1,1) is fitted for 𝜎𝑡2. It is seen that 

𝜎𝑡2 = 0.000018 + 0.584𝜀𝑡2 + 0.416𝜎𝑡−12 . 

The following Table gives the descriptive characteristics Kalman estimates 𝜇𝑡 

and 𝜗𝑡2 of Example 1. 

 

Table 3: Descriptive statistics of 𝜇𝑡 and  𝜗𝑡 

Kalman est. Min 1st Qu Median Mean 3rd Qu Max 

𝜇𝑡 0 1.33 1.35 1.34 1.38 1.39 

𝜗𝑡 0 0.0239 0.0239 0.0237 0.0239 0.0239 

 

The mean of µt corresponds to the actual beta which is 1.37. The standard 

deviation of µt also shows the accuracy of results. The following plot shows the 

convergence of Kalman estimates of  𝜇𝑡 on actual estimate of beta. In the above 

example, Kalman filter works well because in spite of existence of a GARCH 

series, it does not generate too large or too small variance values. 

The stability of 𝜇𝑡 can be checked by drawing the CUSUM plot. It is presented as 

follows 

𝑐𝑢𝑠𝑢𝑚𝑡 = �(
𝑡

𝑖=1

𝛽𝑖 − 𝛽), 𝑡 = 1,2, … 149. 

If there is no change in betas then this plot fluctuates around zero. The below 

figure shows that the stability of betas in mean is failed and a time varying beta 

CAPM model is a suitable selection.  
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Figure 2: Plot of Kalman filter estimate mu(t)
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5 Concluding remarks 

In this paper, the Bayesian approach is applied to provide recursive Kalman 

estimation of the time varying beta of the CAPM model.  Applications of method 

are presented and rate of convergence are derived. Comparisons with method of 

moment estimates are given. 

 

Figure 3: CUSUM of betas
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