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Abstract 

We examine de Broglie matter waves in the rest frame of a mass undergoing 

circular motion. The matter waves are based on the de Broglie orbital condition. 

The fields of the matter waves satisfy Maxwell’s equations, the Schrodinger 

equation and Einstein’s equations, providing an electromagnetic, quantum 

mechanical, gravitational coupling. 
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1  Introduction  

Unified field theory, in particle physics is an attempt to describe all 

fundamental forces and the relationship between elementary particles in terms of a 
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single theoretical framework [1-2]. In physics, fields that mediate interactions 

between separate objects can describe forces. In the mid 19th century James Clerk 

Maxwell formulated the first field theory in his theory of electromagnetism [3]. 

Then, in the early part of the 20th century, Albert Einstein developed general 

relativity, a field theory of gravitation [4-5]. Later, Einstein and others attempted 

to construct a unified field theory in which electromagnetism and gravity would 

emerge as different aspects of a single fundamental field [6-7]. They failed, and to 

this day gravity remains beyond attempts at a unified field theory. 

At subatomic distances, fields are described by quantum field theories, which 

apply the ideas of quantum mechanics to the fundamental field. In the 1940s 

quantum electrodynamics (QED), the quantum field theory of electromagnetism, 

became fully developed [8-9]. 

The electroweak interaction is the unified description of two of the four 

known forces: electromagnetism and the weak interaction [10-11]. Although these 

two forces appear very different at everyday low energies, the theory models them 

as two different aspects of the same force. 

It is generally believed that a successful grand unified theory (GUT) will still 

not include gravity. The problem here is that theorists do not yet know how to 

formulate a workable quantum field theory of gravity based on the exchange of a 

hypothesized graviton [12-14]. The current quest for a unified field theory is 

largely focused on superstring theory and in particular, on an adaptation known as 

M-theory [15]. 

We have discovered that a slow de Broglie matter field is a coupled solution 

to electromagnetism, quantum mechanics and general relativity. The slow matter 

wave packet is considered in the rest frame of an orbiting mass and based on the 

de Broglie condition for integral wavelengths [16-17]. For a kilogram mass 

orbiting within a one meter radius, the wave packet has a velocity of 

approximately 10−34 m / s . For these waves, mass transforms into length. The 

“charge” of this field is curvature, but Maxwell’s equations are precisely satisfied. 
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In this paper, we present a detailed derivation of the field equations. 

 

 

2  Theory 

Given a mass M moving in a circular orbit of constant radius r  at a 

constant velocity −v , there is the de Broglie relationship: 

λ =
h
p

,                       (1) 

where λ  is the wavelength of the de Broglie wave, h  is Planck’s constant [18] 

and p  is the magnitude of the momentum of the mass. The de Broglie orbital 

condition [19] is: 

nλ = 2πr .                         (2) 

In the rest frame of the mass, define the following de Broglie wave fields for the 

rotating wave packet: 




B ≡

v
n
θ̂ .                                (3) 



E ≡ θθ̂                              (4) 

with  

θ =
ω
n

t                              (5) 

for 

ω =
v
r

.                          (6) 

The divergence of 

B in cylindrical coordinates is 

( )1 1 0z
r

B BB rB
r r r z

θ

θ
∂ ∂∂

∇ ⋅ = + + =
∂ ∂ ∂

 

.              (7) 

The curl of 

B  is 

( ) ( )ˆ ˆˆ 0z r rrB rBB B B Br zxB
r z r z r r

θ θθ θ
θ θ

∂ ∂   ∂ ∂ ∂ ∂ ∇ = − − − + − =    ∂ ∂ ∂ ∂ ∂ ∂    

 

.        (8) 
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The divergence of 

E  is 

( )1 1 1z
r

E EE rE
r r r z r

θ

θ
∂ ∂∂

∇ ⋅ = + + =
∂ ∂ ∂

 

.                 (9) 

The curl of 

E  is 

( ) ( )ˆ ˆˆ 0z r rrE rEE E E Er zxE
r z r z r r

θ θθ θ
θ θ

∂ ∂   ∂ ∂ ∂ ∂ ∇ = − − − + − =    ∂ ∂ ∂ ∂ ∂ ∂    

 

.       (10) 

Define the density ρ  with the equation: 

ρr dθ = 1
0

2π

∫ .                        (11) 

or 

ρ =
1

2πr
.                            (12) 

Define the function 

J  with the equation: 

2 0EJ
t

π ∂
+ =
∂





.                           (13) 

Based on equation (4) and (5), (13) becomes: 

ˆ2 0J
n
ωπ θ+ =



.  

or 




J = −

ω
2πn

θ̂ .                        (14) 

Equations (12) and (14) satisfy the equation of continuity [20]: 

0J
t
ρ∂

∇ ⋅ + =
∂

 

.                           (15) 

If we let the permittivity ∈0  and the permeability µ0  be such that: 

∈0=
1

2π
and µ0 = 2π                       (16) 

so the velocity of light is 

c = 1
∈0 µ0

= 1.                       (17) 
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Then the system of field equations become: 

0

E ρ
∇⋅ =

∈

 

  0B∇⋅ =
 

 

BxE
t

∂
∇ = −

∂



 

  0 0 0
ExB J
t

µ µ ∂
∇ = + ∈

∂



  

.               (18) 

These are Maxwell’s equations [21] for an electromagnetic field. Some additional 

support for these equations is provided by Ampere’s law [22]: 
2

0
0

B d I
π

µ⋅ =∫


 ,                       (19) 

where I is the enclosed current. 
2 2

0 0

2vr rvB d d v
n n

π π πθ λ⋅ = = =∫ ∫


 .                 (20) 

vr
n

dθ
0

2π

∫ =
hv
p

.                        (21) 

or 

pr dθ = nh
0

2π

∫ .                        (22) 

Equation (22) is the de Broglie condition. From (20) we see that the current is 

I = rv
n

.                               (23) 

The radiation flux of the electromagnetic field is given by the Poynting vector 

[23]: 

( )
0

1 0S ExB
µ

= =
  

.                       (24) 

The energy density [24] is 

2 2
0

0

1 1
2

u E B
µ

 
= ∈ + 

 

 

.                      (25) 

The conservation law for the field energy [25] is 



6                                                         de Broglie wave  

u S J E
t

∂
+∇ ⋅ = − ⋅

∂

  

.                       (26) 

0S∇⋅ =


.                            (27) 

Therefore, 

u J E
t

∂
= − ⋅

∂

 

.                        (28) 

The energy circulates through the electric field. Therefore, the total energy UB  

stored in the field is due to 

B : 

2
21

4 2B
BU rB
πρ

= =




.                       (29) 

Observe that in this field, mass transforms into length: 

m → r .                            (30) 

Let the scalar potential be ϕ : 

ϕ = −
1
2

rθ 2 .                        (31) 

The gradient of ϕ  is given as: 




∇ϕ =

∂ϕ
∂r

r̂ + 1
r
∂ϕ
∂θ

θ̂ +
∂ϕ
∂z

ẑ .                  (32) 

ˆ Eϕ θθ∇ = − = −
 

.                       (33) 

The vector potential 

A  is given by the equation: 

B xA= ∇
 

.                            (34) 

Therefore, we must have: 




B =

r̂
r

∂Aθ

∂θ
−
∂ rAθ( )
∂z







− θ̂

∂Az

∂r
−
∂Ar

∂z





+

ẑ
r

∂ rAθ( )
∂r

−
∂Ar

∂θ






.       (35) 

Equation (35) reduces to: 




B = −θ̂

∂Az

∂r
−
∂Ar

∂z






.                   (36) 

Since r is constant, we must have: 
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


B =

∂Ar

∂z
θ̂ .                        (37) 

or 

Ar =
v
n∫ dz = vz

n
 

 from which we can deduce: 




A =

vz
n

r̂ .                            (38) 

Therefore, 

AE
t

ϕ∂
= − −∇

∂



 

.                       (39) 

We see that: 

( )1 1 0z
r

A AA rA
r r r z

θ

θ
∂ ∂∂

∇ ⋅ = + + =
∂ ∂ ∂



.             (40) 

This is a Coulomb gauge [26]. 

 

The quantum mechanical wave function of the de Broglie wave packet is the 

phase wave: 

ψ = ρe− iE .                        (41) 

This function is normalized since 

ψ *ψ r dθ = 1
0

2π

∫ .                       (42) 

The traditional Schrodinger equation [27] is: 


ih∂ψ

∂t
= −

h2

2m
∇2ψ +Uψ .                  (43) 

However, for this field, mass transforms into length. Therefore, the equation 

becomes: 
2

2

2
i U

t r
ψ ψ ψ∂

= − ∇ +
∂







 ,                  (44) 
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where 


=
v
n







r2 . The energy eigenvalue derives from: 

i
t n
ψ ω ψ∂  =  ∂  

 

  .                       (45) 

Consequently, the total energy of the system is the Hamiltonian H : 
2vH r

n n
ω   = =   
   


 . 

or 
2H rB=


.                            (46) 

∇2ψ =
1
r2

∂2ψ
∂θ 2 = −

1
r2 ψ .                      (47) 

Therefore, 
22 2

2 3
2

1 ( / ) 1
2 2 2

v n vr r
r r n

ψ ψ ψ
     − ∇ = =             



 . 

or 
2

2 21
2 2

rB
r

ψ ψ − ∇ =  
 





 .                      (48) 

The potential energy, U  is the magnetic energy stored in the field: 21
2BU rB=


. 

Therefore, 

21
2

U rBψ ψ =  
 



                       (49) 

and the Schrodinger equation (44) is satisfied. We can show that the wave 

functions are orthonormal. Let 

ψ 1 = ρe
− i ω

n1
t
 and ψ 2 = ρe

− i ω
n2

t
.             (50) 

Manipulation of the Schrodinger equation yields: 

( ) ( )
2

2 * * 2 *
1 2 2 1 2 1 1 22

U U
r
ψ ψ ψ ψ ψ ψ− ∇ − ∇ = −



 ,            (51) 
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where U1 =
1
2

r v
n1







2

 and U2 =
1
2

r v
n2







2

. If we integrate equation (51) over a 

volume, it becomes: 

( ) ( )
2

2 * * 2 *
1 2 2 1 2 1 1 22 V V

dV U U dV
r

ψ ψ ψ ψ ψ ψ− ∇ − ∇ = −∫ ∫


 .          (52) 

Application of Green’s theorem yields: 

( ) ( )
2

* * *
1 2 2 1 2 1 1 22 S V

da U U dV
r

ψ ψ ψ ψ ψ ψ− ∇ − ∇ ⋅ = −∫ ∫


 

  .          (53) 

The left side vanishes and we have: 

0 = U2 −U1( ) ψ 1ψ 2
*

V
∫ dV .                      (54) 

Thus, the wave functions are orthonormal. 

 

We can calculate the field tensor [28]: 

Fαβ = ∂αAβ − ∂βAα ,                   (55) 

where ( )0/ xα∂ = ∂ ∂ −∇


 and x0 , x1, x2 , x3( )= t,r,θ, z( ). This results in: 

Fαβ =

0 0 −Eθ 0
0 0 0 −Bθ

Eθ 0 0 0
0 Bθ 0 0





















.                 (56) 

The covariant form of Maxwell’s equations are as follows. The inhomogeneous 

equations are: 

∂αFαβ = µ0J β .                           (57) 

The homogeneous equations are: 

∂αFβγ + ∂βFγα + ∂γ Fαβ = 0 .                  (58) 

The scalar curvature R  can be written as 

R = µ0ρ .                            (59) 

The contravariant metric tensor [29] is 



10                                                         de Broglie 
wave  

gµν =

−1 0 0 0
0 ∞ 0 0
0 0 µ0

2ρ2 0
0 0 0 1



















.                 (60) 

The diagonal components of the Ricci curvature tensor [30] Rµν  can be derived 

from the equation: 

R = gµνRµν .                        (61) 

Therefore we can write: 

Rµν =

−µ0ρ R01 R02 R03

R10 0 R12 R13

R20 R21 ∈0 /ρ R23

R30 R31 R32 µ0ρ





















.                (62) 

The contravariant stress tensor [31] is derived from the following equations: 

( ) ( )00 2 21 1
4 2

T E B Eϕ
π π

= + + ∇⋅
   

. 

( ) ( )0 1 1
2 2

i
ii

T ExB A E
π π

= + ∇⋅
   

. 

( ) ( ) ( )0

0

1 1
2 2

i
ii i

T ExB x B E
x

ϕ ϕ
π π

 ∂
= + ∇ − ∂ 

    

.           (63) 

The covariant form is derived from  

Tµν = T αβgαµgβν .                       (64) 

The covariant metric tensor is 

gαβ =

−1 0 0 0
0 0 0 0
0 0 ∈0

2 /ρ2 0
0 0 0 1



















.                 (65) 

Equations (62)-(65) can be used to determine: 

Rµν −
1
2

gµνR + gµνΛ =
8πG
c4 Tµν ,                 (66) 
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the Einstein equations [32] with Λ  and G  as the cosmological and 

gravitational constants, respectively. 

 

 

3  Conclusion 
In summary, we have shown that the slow de Broglie matter field in the rest 

frame of an orbiting mass, based on the de Broglie condition, is a solution to the 

Maxwell-Schrodinger-Einstein equations. This result is a unified field 

configuration that has, until now, been unsuccessfully sought by theoretical 

physicists. We believe that the success of our approach derives from a redirection 

into non-relativistic, extremely slow wave fields. 
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