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Abstract

A family of higher order implicit methods with k —steps is constructed which was
used to solve initial value problems of third order ordinary differential equations
directly without reducing them to first order systems. Implicit methods with step
numbers k=3, 4, 5 are considered. For these methods, we discussed the local
truncation error with the basic properties. Analysis of the basic properties of the
methods shows that the methods are consistent, convergent and zero — stable. The
results obtained from numerical experiment shows that the methods are more

efficient and accurate than some existing methods.
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1 Introduction

Recently, researchers have beamed their light on the methods of solution of
higher order initial value problems.
In this paper we considered the method of approximate solution of the general

third order initial value problem of the form:
y=f(xy.y\y).y? =y,i=012 (1)
Where x, , is the initial point, y, is the solution atx,, f is continuous within the

interval of integration
The study of (1) is of interest to researcher because of its wide application in
engineering, and other real life problems.
For instance, the Blassius equation in fluid dynamics given as

2y"+yy"=0, y(0)=y'(0)=0, y"(0)=1 2)
is an application problem

The conventional method of solving (1) is to reduce it to a system of first
order differential equations (see [1, 2]). It has been reported in literature that the
direct method of solving the above equation is more efficient in terms of speed
and accuracy than the method of reduction to a system of first order ODES (see
[3-6]).

Implicit linear multistep methods have better stability properties than explicit
methods and are solved using predictor and corrector method. However, several
authors have proposed multi-derivative multistep methods for the solution of (1).
These methods were implemented in predictor-corrector mode [5, 6]. Although
these methods yield good results, but it has a major setback which includes

computational burden and the reducing order of accuracy of the predictors.
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In this study, our interest is to develop a class of k-step linear multistep

methods for the solution of general third order initial value problems.

2 Materials and Methods

We proposed a numerical method of the form

yn+k = aoyn + alyn+l +..t ak—lyn+k—1 + h3 (ﬁo fn +ﬂl fn+l t+..t /Bk fn+k) (3)

Taken from the classical K-step method of the form
k

Za yn+j ZIBJ fn+j' 1:n+j = f (Xn+j’yn+j’yn+j’yn+j) (4)
j=0

The coefficients «; and p; are constants with the conditions
a,=L|a,|+| B, [0 and are determined to ensure the method is symmetric,
consistent and zero stable. The method is implicit with g, =0 . The value of the

coefficients is determined from the local truncation error (Ite) defined by
k-1 3 k

T +k = yn+k + Zaj yn+k—1 —h Zﬂ] fn+k (5)
j=0 j=0

= yn+k + I:aoyn + alyn+l +..+ ak—lyn+k—l - h3 (ﬁo fn + ﬂl fn+l +..+ ﬂk fn+k ):| (6)
The accuracy of the methods depends on the real constants «; and ;. To obtain
the values of these constants, we adopted the Taylor series expansion of vy, ..,

Yoirs Youzreoo Yo @nd 0, foossen, £, @bout the point (x,,y,) to yield

kh)? Kh)?
=yn+(kh)yn1>+( ) yr(]z) . ( p!) yr(1p)+o(h(p+1))
1) (Jh) (2) (
+Za {yn L@y o

k

l) yr(]p) O( )p+1 yr(]p+l)} @)
WS { o (in) ym( o E ) oD y}

2! -3)! (p-2)!""
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Collecting terms in equal powers of h to obtain

RW—@+Za

JELS0°
31 & 3
k4 k—1(j)4 k .
R A 3N V'
41 = 417 ?; :
k5 k-1 J)S k
e e %A
- j=0 j=0
SR ST LR
|t : aj—z
p- j=0 p j=0

(p-3!

ﬂjhpp>+om“5

(8)

By imposing an accuracy of order pon T_,, to obtain the C, =0,0<i< p and

setting k =3(1)5 in (7) above, we obtain a system of algebraic equation in the

form

AX =B

)

For various step- number. This has helped us to determine the coefficients of the
methods as displayed in Table 0.

Table 0: Coefficients and order of the methods

K Qy | O | Ay | O a, | as | By B B Bs B, Bs
3 (1 |33 |1 0 1 1 |0
2 2
4 -1 2 10 2 1 1 56 126 56 1
120 | 120 120 | 120 | 120
5 |1 @ @ —_68 —_29 1 21 | 1177 | 3842 3842| 1177 21
31| 31| 31 31 2480| 2480 | 2480| 2480| 2480 | 2480
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Thus using the information in Table 1 for k=3(1)5, we have the following

symmetric schemes

3

h
Ynis = 3yn+2 _3yn+l + Y +?( fn+2 + fn+1) (10)

p=5 C,,,=416667x10"°

3

yn+4 = 2yn+3 - 2yn+1 - yn + 12_0( fn+4 +96 fn+3 +126 fn+2 +96 fn+1 + fn ) (ll)

p=7, C,,=33069x10"

y —gy +@y —ﬁy —Qy +y
n+5 31 n+4 31 n+3 31 n+2 31 n+1 n
he (21f,,,+1177f ,+3842f , (12)
+
2480| +3842f , +1177f  +21f

p=9, C,,,=5403x10".

3 Analysis of the basic properties of the methods

We wish to examine the basic properties of the methods in terms of the order
of accuracy and error constant, symmetry, consistency, zero stability and region of

absolute stability.

3.1 Order of accuracy and error constant

The error in approximation is actually the difference between the exact
solution y(xnﬂ.) at x=x,,; and solution value determined from a numerical
method. This is called the local truncation error (LTE)

As stated in [13], the Icocal truncation error of the general k-step method is

given by
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Zk:{a y(x+ jh) h”ﬁjy(”)(x+jh)} (13)

-0
Where o, =1, o, and 3, are not both zero and y(x) €[a,b] with a,beR.

y(x) is the theoretical solution assumed to have continuous derivatives of
sufficiently higher order. By expanding y(x+ jh) and y®(x+ jh), j=0()k
and comparing terms in equal power of h, we have that
T =Co¥ (%, ) +Chy'(x,)+C,h*y"(x, ) +...+C,,h*yP (x,)

+C,. P 2yP?(x,)

p+2

p+1

(14)

Definition 3.1 : A linear multistep method (9-11) is said to be of order p if in (13)

¢, =C=C,=..=C,=C,,=0,C_,=#0, C,, iserror constant.

p+2 p+2

Hence the methods (10-12) are of orders (5,7,9) and the error constants are

[4.16667 x10_3,3.3069><10_5,5.403><10'5] .

3.2 Region of Absolute stability for the method

The region of absolute stability is the set of points in the Ah— plane for which

the method is absolutely stable.

Definition 3.2 An interval (o, 8) of the real line is said to be an interval of
absolute stability if the method is absolutely stable for all he (a,p) [1]
When k=3

Using the boundary locus method [1]

2(r®=3r>+3r-1 _
hry =20 _ ( g ) ,where, h=h®
(r) r“+r

By settingr =€' , where €' =cos@+isin@ , we have
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ﬁ(@) ~ 2[(cos30 —3c0s 26 —1) +i(sin 39 —3sin 20+ 3sin 4]
B (cos 20 +cos @) +i(sin 26 +sin 0)

(15)

This is simplified to the form x(&)+iy(0)
The region of absolute stability curve for k=3 is given as

x 10°

ot -

2t i

-10} 4
-12 -
-14f 4

16 F _

-18 I I 1 1 B
Figure 1: Region of absolute stability curve for k=3

When k=4

p(n)=(r'=2r*+2r-1),o0(r) :%(r“ +56r° +126r% +56r +1)

p(ry  120(r*-2r®+2r-1)

h(r) = =
(") o(r) r*+56r°+126r>+56r+1

By putting r=e€" =cos@+isiné

h(9) = 120[(cos 46 +isin 46) — 2(cos 36 +isin 30) + 2(cos & +isin §) 1]

[(cos 46 +isin 46) +56(cos 36 +isin 39) +126(cos 26 +sin 26) +56(cos & +isin §) +1]
(16)
After much algebraic simplification of (15) we obtained the equation of the form
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x(0) +iy(9)

The region of absolute stability curve for the method k=4 is given below.
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Figure.2: Region of absolute stability curve for method k=4

When k=5, we have

r 29 4 @r3+@r2 29

3
h80[21+1177r4+3842r3+3842r2+1177r+21]

By putting r=e“ =cos@+isind and substituting in (16), after much
simplification, we have

(cos50 — 29 cos 46 —68cos 30 + 68cos 26 + 29cosH —1)
+i(sin56 — 29sin 460 — 68sin 30 + 68sin 20 + 29sin ) }

1 (21cos56 +1177cos40 + 3542 cos 36 +3542c0s 20 +1177 cos H) (18)
+1(21sin50 +1177sin 40 + 35425sin 30 + 3542sin 260 +1177sin )

2480{
h(o) =
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This is in the form x(8) +1y(6)

The region of absolute stability curve is given below

10r

10k

Figure 3: Region of absolute stability curve for the method k=5

3.3 Zero stability

Definition 3.3: The LMM (3) is said to be zero stable if the roots of the first
characteristics polynomial lie inside or on the unit circle.

A method is stable if the cumulative effect of all errors, including the round-off
errors is bounded independent of the mesh points or a numerical solution of the
class (1) is said to be stable if the difference between the numerical and theoretical
solution is as small as possible.The methods (9-11) were all found to be zero
stable since no roots of the methods has modulus greater than one.
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3.4 Consistency

According to [1, 9, 10, 12], a linear multistep method is said to be consistent
if it satisfies the following conditions:
l.p=1

aj:O

2. .k
3. p(r)=p'(r)=p"(r)=.=p""(r)
4. p"(r)=nlo(r)

For our n =3 and methods (9-11) were found to be consistent.

3.5 Convergence

The Linear multistep method (3) is said to be convergent if
Lmyn:y(xn) , 0<n<N (29)

provided the rounding-off errors arising from all initial conditions tend to zero.

Theorem 3.1: The LMM (3) is said to be convergent if and only if it is consistent
and zero stable. Hence the methods (9-11) are convergent.

3.6 Symmetry
Following [2, 10], the methods (9-11) are symmetric if
a;=a,_;, B=PB; j:O(l)g for k even (20)

a,=-a,_;, Bi=-P; =00k for k odd
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4 Numerical Experiments

The methods that we have derived were tested some third initial value
problems of special and general nature. The results obtained compared with results

obtained in some existing methods. Below are the problems used as test problems.

Problem 1:
y"=x-4y',y(0)=0,y'(0)=0,y"(0)=1,h=0.1

Exact solution: y(x) - %(1_(;052)() %Xz

Problem 2:
y"+y=0,y(0)=1y'(0)=-1y"(0)=1,0<x<1h=0.1
Exact solution: y(x) =e™*

Problem 3:

y"=-e
y(0)=1,y'(0)=-1,y"(0)=3,0<x<1,h=0.1

Exact solution: y(X) =2+ 2x* —e*

Problem 4:

y"+y"+3y' =5y =2+ 46X —5x°
y(0)=-1,y'(0)=1,y"(0)=-3,0<x<1h=0.1

Exact solution: y(x) = x* —e* +e*sin(2x)
Problem 5:

y =y +y)

y(0)=1y'(0)= % y"(0)=0,h=0.01

Exact solution: y(x) = 1+%in| (?j
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Table 1: Result of test problem 1 using the third order methods of order p=5, 7 and

9
X-
Value | Exact solution New result New result New result
(k=3, p=5) (k=4, p=7) (k=5,p=9)
0.1 0.4987516803E-02 0.4987500148E-02 | 0.4987516815E-02 | 0.4987516803E-02
0.2 0.1980106421E-01 0.1980000058E-01 | 0.1980106725E-01 | 0.1980106420E-01
0.3 0.4399957491E-01 0.4399643528E-01 | 0.4399957128E-01 | 0.4399957317E-01
0.4 0.7686749420E-01 0.7686125420E-01 | 0.76867644979E-01 | 0.7686744887E-01
0.5 0.1174433209E+00 | 0.1174329233E+00 | 0.1174436264E+00 | 0.1174433151E+00
0.6 0.1645579255E+00 | 0.1645421445E+00 | 0.1645583865E+00 | 0.1645579086E+00
0.7 0.2168811664E+00 | 0.2168581157E+00 | 0.2168818701E+00 | 0.2168811499E+00
0.8 0.2729749173E+00 | 0.2729406708E+00 | 0.2729759349E+00 | 0.2729748812E+00
0.9 0.3313504007E+00 | 0.3312956599E+00 | 0.3313520535E+00 | 0.3313503618E+00
1.0 0.3905275407E+00 | 0.3904304488E+00 | 0.3905306192E+00 | 0.3905274468E+00

Table 2: Comparision of the errors in test problem 1 with the errors in the results
obtained by Adesanya (2011) and Olabode (2007).

X Errorsin | Errorsin | Errorin Errorsin [7] | Errorin [8]
(k=3, (k=4, (k=5, p=9) | (k=4, p=7) (k=4, p=7)
p=5) p=7)

0.1 | 1.6655E-08 | 1.1189E-11 | 5.29004E-15 | 1.1889E-11 1.66547E-08

0.2 | 1.0636E-06 | 3.0422E-09 | 5.41143E-12 | 3.0422E-09 3.80957E-07

0.3 | 3.1382E-06 | 7.7779E-08 | 3.11578E-10 | 7.7956E-08 1.56646E-06

0.4 | 6.2400E-06 | 1.5559E-07 | 5.52122E-09 | 7.7467E-07 3.98657E-06

0.5 | 1.0398E-05 | 3.0544E-07 | 5.83875E-09 | 4.5990E-06 7.95971E-06

0.6 | 15781E-05 | 4.6102E-07 | 1.69100E-09 | 6.4783E-06 1.36800E-05

0.7 | 2.3051E-05 | 7.0374E-07 | 1.64365E-08 | 5.7839E-06 2.11958E-05

0.8 | 3.4246E-05 | 1.0177E-06 | 3.60644E-08 | 2.3547E-06 3.03963E-05

0.9 |[5.4741E-05 | 1.6528E-06 | 3.88199E-08 | 3.7665E-06 4.10086E-05

1.0 | 9.7092E-05 | 3.0768E-06 | 9.37880E-08 | 1.2331E-05 5.26051E-05
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Table 3: Result of test problem 2 using the methods of order 5, 7and 9

Exact New result New result New result
X | solution (k=3, P=5) (k=4, P =7) (k=5,P =9)
0.1 | 0.9048374167 0.9048374153 0.9408374167 | 0.9408374167
0.2 | 0.8187307506 0.8187306642 0.8187307506 | 0.8187307506
0.3 | 0.7408182174 0.7408179701 0.7408182158 | 0.7408182174
0.4 | 0.6703200420 0.6703195741 0.6703200389 | 0.6703200420
0.5 | 0.6065306552 0.6065299326 0.6065306490 | 0.6065306552
0.6 | 0.5488116312 0.5488106630 0.5488116220 | 0.5488116311
0.7 | 0.4965852986 0.4965841717 0.4965852853 | 0.4965852985
0.8 | 0.4493289588 0.4493279091 0.4493289424 | 0.4493289586
0.9 | 0.4065696543 0.4065692080 0.4065696372 | 0.4065696542
1.0 | 0.3678794357 0.3678806687 0.3678794282 | 0.3678794355

Table 4: Comparison of the errors in the result of test problem 2 with errors in [8]

and [10] .
X Errors Errors Errors Error in [10] | Errorsin[8] | Errorsin [8]
in order in order in order (Predictor- (block (block
(k=3, P=5) (k=4, P=7) (k=5, P=9) corrector method) method)
method) (k=4,P=7) (k=5,P=9)
(k=3,P=5)
0.1 1.36929E-09 | 2.4525E-13 0.0000+00 1.36929E-09 1.36929E-09 | 2.1760E-12
0.2 | 8.64113E-08 | 6.2109E-11 2.7756E-14 3.12272E-08 3.12272E-08 | 1.3935E-11
0.3 2.47223E-08 | 1.5746E-10 1.5838E-12 1.27694E-07 1.27694E-07 | 3.4443E-11
0.4 2.05452E-07 | 3.1477E-09 2.7879E-11 3.25196E-07 3.25196E-07 | 6.4477E_11
0.5 7.22629E-07 | 6.1617E-09 2.9477E-11 6.54297E-07 6.54297E-07 | 1.0316E-10
0.6 9.68177E-06 | 9.1732E-09 8.5048E-11 1.14406E-06 1.14406E-06 | 1.4979E-10
0.7 1.12692E-06 | 1.3329E-08 8.0357E-11 1.81784E-06 1.81784E-06 | 2.0486E-10
0.8 | 1.04962E-06 | 1.6378E-08 1.6601E-10 2.69774E-06 2.69774E-06 | 2.6756E-10
0.9 4.46241E-06 | 1.7134E-08 1.11757E-10 3.80241E-06 3.80241E-06 | 6.9382E-10
1.0 1.23330E-06 | 7.4405E-09 1.4871E-10 5.14755E-06 5.14755E-06 | 1.4224E-10
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Table 5: Results of test problem 3 using the methods of order p=5, 7 and 9

% | Exact solution New result New result New result

(k=3, p=5) (k=4, p=7) (k=5, p=9)
0.1 | 0.9148290809E+00 | 0.9148290809E+00 | 0.9148290809E+00 | 0.9148290809E+00
0.2 | 0.8585972406E+00 | 0.8585972406E+00 | 0.8585972406E+00 | 0.8585972406E+00
0.3 | 0.8301411918E+00 | 0.8301411918E+00 | 0.8301411918E+00 | 0.8301411918E+00
0.4 | 0.8281753030E+00 | 0.8281753030E+00 | 0.8281753030E+00 | 0.8281753030E+00
0.5 | 0.8512787319E+00 | 0.8512787319E+00 | 0.8512787319E+00 | 0.8512787319E+00
0.6 | 0.8978812048E+00 | 0.8978812048E+00 | 0.8978812048E+00 | 0.8978812048E+00
0.7 | 0.9662473007E+00 | 0.9662473007E+00 | 0.9662473007E+00 | 0.9662473007E+00
0.8 | 0.1054459083E+01 | 0.1054459083E+01 | 0.1054459083E+01 | 0.1054459083E+01
0.9 | 0.1160396904E+01 | 0.1160396904E+01 | 0.1160396904E+01 | 0.1160396904E+01
1.0 | 0.1281718191E+01 | 0.1281718191E+01 | 0.1281718191E+01 | 0.1281718191E+01

Table 6: Comparison of the errors in the results of test problem 3 with the errors

in [8]
Errors Errors Errors Errors in [8](block
X in Order in order in order method)
(k=3,p=5) (k=4, p=7) (k=5, p=9) (p=9)
0.1 1.40898E-09 2.5080E-13 0.0000+00 7.56477E-11
0.2 9.14935E-08 6.4932E-11 2.8644E-14 2.60171E-10
0.3 | 2.70784E-07 1.6831E-09 1.6720E-12 5.76003E-10
0.4 | 5.40391E-07 3.3668E-09 2.9932E-11 8.41271E-10
0.5 | 9.04450E-07 6.6147E-09 3.1673E-11 1.00013E-09
0.6 | 1.37831E-06 9.9982E-09 9.1890E-11 1.09051E-09
0.7 | 2.00976E-06 1.5283E-08 8.9834E-11 1.07048E09
0.8 | 2.92566E-06 2.1980E-08 1.9682E-10 1.49247E-09
0.9 | 4.42266E-06 3.4643E-08 2.1110E-10 3.15695E-09
1.0 | 7.12929E-06 5.9998E-08 4.9310E-10 4.45905E-09
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Table 7: Result of test problem 4 using the method of orders p=5 and 7

X- Exact solution New result New result
value for order for order

(k=3, P =5) (k=4, p=7)
0.1 0.9154074727E+00 | 0.9154074156E+00 | 0.9154074736E+00
0.2 0.8625739844E+00 | 0.8625706656E+00 | 0.8625740814E+00
0.3 0.8415613749E+00 | 0.8415516452E+00 | 0.8415628319E+00
0.4 0.8509665312E+00 | 0.8509469738E+00 | 0.8509694533E+00
0.5 0.8883433229E+00 | 0.8883086925E+00 | 0.8883491589E+00
0.6 0.9506049113E+00 | 0.9505428695E+00 | 0.9506151121E+00
0.7 0.1034392864E+01 | 0.1034270208E+01 | 0.1034415176E+01
0.8 0.1136403570E+01 | 0.1136136123E+01 | 0.1136461778E+01
0.9 0.1253666228E+01 | 0.1253061116E+01 | 0.1253833292E+01
1.0 0.1383770019E+01 | 0.1382425664E+01 | 0.1384234604E+01

81

Table 8: Comparison of the errors in the results of test problem 4 with the errors

in [8]

X Errorsin Errorsin Errorin [8]
(k=3, p=5) (k=4, p=7) (block method)
(k=4, P=7)
0.1 5.70895E-08 8.4706E-10 6.40864E-07
0.2 3.31883E-06 9.7040E-08 1.51133E-05
0.3 9.72966E-06 1.4570E-06 6.36444E-05
0.4 1.95574E-05 2.9221E-06 1.67567E-04
0.5 3.46304E-05 5.8360E-06 3.56771E-04
0.6 6,20418E-05 1.0201E-05 6.410875E-04
0.7 1.22655E-04 2.2313E-05 1.071642E-03
0.8 2.67447E-04 5.8208E-05 1.682213E-03
0.9 6.05112E-04 1.6706E-04 2.520604E-03
1.0 1.34436E-03 4.6458E-04 3.644104E-03
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Table 9: The result for problem 5 (a non-linear problem) using the methods of

ordersp =5, 7 and 9

X- Result for Result for Result for
valu | Exact solution (k=3,p=5) ( k=4, p=7) (k=5, p=9)

e

0.1 0.1050041730E+01 | 0.1050041709E+01 0.1050041711E+01 | 0.1050041711E+01
0.2 0.1100335349E+01 | 0.1100334068E+01 0.1100334788E+01 | 0.1100334788E+01
0.3 0.1151140438E+01 | 0.1151136321E+01 0.1151136661E+01 | 0.1151136683E+01
0.4 0.1202732557E+01 | 0.1202718413E+01 0.1202719110E+01 | 0.1202719154E+01
0.5 0.1255412816E+01 | 0.1255378917E+01 0.1255380137E+01 | 0.1255380225E+01
0.6 0.1309519609E+01 | 0.1309459191E+01 0.1309461310E+01 | 0.1309461444E+01
0.7 0.1365443760E+01 | 0.1365368057E+01 0.1365372025E+01 | 0.1365372236E+01
0.8 0.1423648937E+01 | 0.1423614604E+01 0.1423622965E+01 | 0.1423623289E+01
0.9 0.1484700287E+01 | 0.1484851641E+01 0.1484870617E+01 | 0.1484871202E+01
1.0 0.1549306154E+01 | 0.1549931907E+01 0.1549975595E+01 | 0.1549976798E+01

Table 10: Errors in test problem 5 by using the methods of order p=5, 7 and 9.

It shows that better results were obtained with increasing order

X- Errorsin Errorsin Errorsin
value (k=3,p=b) (k=4,p=7 (k=5, p=9)
0.1 2.09452E-08 1.93182E-08 1.93148E-08
0.2 6.81064E-07 5.61699E-07 5.60825E-07
0.3 4.11737E-06 3.77772E-06 3.75510E-06
0.4 1.41437E-05 1.34474E-05 1.34028E-05
0.5 3.38988E-05 3.26773E-05 3.25906E-05
0.6 6.04186E-05 5.82875E-05 5.81649E-05
0.7 7.57029E-05 7.16807E-05 7.15239E-05
0.8 3.43336E-05 2.57657E-05 2.56483E-05
0.9 1.51354E-05 1.71002E-04 1.70915E-04
1.0 6.25753E-04 6.71370E-04 6.70643E-04
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5 Conclusion

In this study, we have developed a family of implicit linear multistep methods

for the numerical solution of general third order ordinary differential equations.

Analysis of the basic properties showed that the methods are consistent, zero-

stable, convergent and absolutely stable. The results displayed in tables 1-10

shows that there is a remarkable improvement in accuracy if the order is increased.

The results obtained compared favourably with some existing methods in terms of

accuracy and efficiency.
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