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Abstract 

The seminal work by Markowitz in 1959 introduced portfolio theory to the world. 

The prevailing notion since then has been that portfolio risk is non linear i.e. you 

cannot use Linear Programming (LP) to optimize your portfolio. We will in this 

paper show that simple portfolio drawdown constraints are indeed linear and can 

be used to find for example maximum risk adjusted return portfolios. VaR for 

these portfolios can then be estimated directly instead of using computer intensive 

Monte Carlo methods.    
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1  Introduction and Literature Review  

Over the centuries a lot of people have been fascinated by the theory of 
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investment. The main source of motivation has of course been money i.e. how can 

you make more money without taking too much risk. Markowitz (1959) explains 

that an investor needs to maximize his or her expected return while on the same 

time minimize the portfolio variance. Portfolio variance or portfolio risk has 

always been thought of as non-linear i.e. the variance of a diversified portfolio is 

lower than the variance of the individual assets in such a portfolio. We will in this 

paper show however that portfolio risk can successfully be expressed in linear 

terms which make the modeling much easier. Mean-variance optimization and 

value-at-risk (VaR) models represent a foundation in investment science.  Liu 

(2005) argues that major investments banks have increasingly employed VaR 

models to measure the risk from their trading activities. Conditional distributions 

of portfolio returns are used to estimate VaR. The normality assumption is used to 

forecast VaR despite the fact that asset returns exhibits fat tails which leads to that 

that the true value at risk is being underestimated.  

Palaro and Hotta (2006) explain that there are three main ways to estimate 

VaR; historical simulation, the variance-covariance and the Monte Carlo approach. 

The first approach does not assume any distribution assumptions. The last two 

approaches assume a given joint distribution. Copulas theory is essential when it 

comes to model joint multivariate distributions. The benefit of a Copula model is 

that the marginal distributions can be different. The authors further explain that 

conditional copulas can be a very powerful tool to estimate VaR. Berkowitz and 

O’Brien (2002) looked at the performance of VaR forecasts for six commercial 

banks. They concluded that despite the banks effort to present extensive and 

detailed information regarding VaR such risk measure did not outperform the 

forecasts of a simple ARMA/GARCH model of the banks profit/loss.  

Alexandera and Baptistab (2002) explain another drawdown with VaR. If we 

for example have two mean-variance efficient portfolios then the portfolio with 

the highest variance might have a lower VaR. This has to do with the fact that 

VaR is also a function of expected return. The authors explain that a risk adverse 
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investor that switches from using variance to VaR to measure risk might end up 

with a portfolio with larger standard deviation. Regulators should be aware of 

such VaR limitations. Beder (1995) explains that VaR is not a unified defined 

concept. The author investigated VaR calculations by dealers and end-users and 

found that VaR for the same portfolio can differ significantly. VaR is extremely 

dependent on parameters, data, assumptions and methodology. Rockafellar and 

Uryasevb (2002) explain that it is better to use conditional value-at-risk (CVaR) 

than VaR when it comes to measuring risk in financial markets. The reason is that 

CVaR is additive, can identify dangers beyond VaR and can solve larger scale 

portfolios optimization problems by using efficient and robust Linear 

Programming (LP) algorithms.  

Grossman and Zhou (1993) create a model where the investor is exposed to a 

portfolio drawdown constraint. At each point in time the investor is not allowed to 

lose more than a fixed percentage of the maximum value of the portfolio achieved 

up to that point. The author shows that for a constant relative risk aversion utility 

function the investors optimal investment strategy is to invest a fraction of wealth 

that is proportional to the surplus W[t]-v*M[t] where W[t] is the wealth at time t, 

v drawdown parameter between 0 and 1 and M[t] is the maximum value that the 

portfolio was worth. Alexandera and Baptistab (2006) argue that drawdown 

constraints indeed can decrease portfolio variance however drawdown constraint 

can also lead to mean-variance inefficiency. In the presence of a benchmark a 

drawdown constraint can increase the portfolio variance and tracking error 

volatility hence reducing an investment manager’s ability to track a benchmark. 

 

 

2  Theoretical Modeling  

In order to illustrate the simple nature of drawdown constraints let assume 

that we have one weight vector W, one matrix with random returns R and one 
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drawdown vector DR as seen in Table 1. We now multiply R with W which will 

give us a portfolio return vector called Z which can be seen on the second row in 

Table 1. Now the portfolio return vector is a time series that contains the portfolio 

return from t=1 to t=n. We assume that in each point in time the portfolio return 

has to be larger than the drawdown vector DR.  

 

Table 1 :  Basic DrawDown Constraint 

 

 

 

 

 

 

 

Each element in the drawdown vector is the same and can be chosen by the 

investor. If the investor selects a too high value of dr i.e. +10 then the 

optimization will not find any feasible solution and if the investor selects a too low 

value of dr i.e. -10 then the constraint will not be binding. Due to these difficulties 

we assume that the investor does not directly select a value for dr. The 

optimization will give us an optimal drawdown constraint that will maximize the 

risk adjusted returns (RAR). Note also that if an investor is faced with a column 

dominate return matrix (as in our empirical section) then the least square solution 

to R.W=ER will give the investor the optimal portfolio allocation for any given 

expected return. Such decomposed method tends to be faster than the standard 

QPSolver that works on the square of the residuals. We will start by simulating 

some data. We will then test four optimized investment strategies as seen in Table 
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2. The first one minimizes portfolio variance, the second one maximizes risk 

adjusted returns, the third one maximizes expected return and the last one 

maximizes expected return and minimizes drawdown.    

      

Table 2:  Optimization: Objective Functions and Constraints 

 

 

We can see in Table 2 that the first two investment strategies use Quadratic 

Programming (QP) to find the optimal allocation. This has to do with the fact that 

such optimizations involve the covariance matrix Q which has quadratic terms i.e. 

squared weights. The two last investment strategies can be solved by using Linear 

Programming (LP) since both the objective functions and the constraints are linear. 

The portfolio expected return and the drawdown constraint are both linear. Note 

that a percentage drawdown constraint which refers to the portfolio value in the 

previous period would not work since it is not linear. It should also be said that S 

is simply a vector with 1’s which means that Transpose(W).S=1 -> w[1] + w[2] + 

w[n] = 1. Note that ur is the threshold for the expected return and dr is the 

threshold for drawdown. The higher the value of ur is the larger the portfolio 

expected return will be. The higher the value of dr the less drawdown the 

portfolio will have hence we want to maximize such a value since we want as little 

drawdown as possible.  
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Figure 1:  Simulated Data and Investment Strategies 
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In Figure 1 we can see the performance data [portfolio variance, portfolio 

expected return and portfolio risk adjusted returns] and the optimized equity 

curves for the four strategies. We can also see the efficient frontier and the 

allocations for our strategies. 

We can see that the optimal value for dr was 0.010 and the optimal value for the 

expected return ur was 0.16. We can see that our optimized drawdown strategy 

(LP) actually had a higher risk adjusted return than the traditionally “maximize 

risk adjusted return” strategy but despite such a fact, due to the lower expected 

return, it was located slightly below the “maximize risk adjusted return” strategy 

on the efficient frontier. The interesting thing with our optimized investment 

strategy is that it is flexible. The investor can maximize expected return for a 

given drawdown or minimize the drawdown for a given expected return or both 

simultaneously. The location on the efficient frontier will depend on such 

selection. The efficient frontier was mapped out by using the two-fund separating 

theorem. 

 

Figure 2:    Simulated Data and Risk Adjusted Returns (RAR) 
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We can now compare the two investment strategies; maximize risk adjusted 

returns and the optimized drawdown strategy. We can see in Figure 2 the 

distribution of risk adjusted returns for our two strategies after 50 simulations. For 

each simulation 50 return series where created. We can see that our optimized 

drawdown strategy (LP) has actually a higher expected risk adjusted return than 

the “maximize risk adjusted return” strategy.  

 

3  Empirical Modeling  

We can now test our four investment strategies on some empirical data as 

seen in Figures 3 and 4. The dataset consists of monthly data (in total 73 return 

observations for each stock) for approximately 469 SP500 stocks for the period 

2003-2009. In Figure 3 we simply ran the optimization over the entire sample 

period to produce the optimized equity curve. In exhibit-6 we split the dataset into 

two. The return for all stocks from t=1 to t=34 was used to optimized the portfolio 

while the return from t=35 to t=73 was used for forward testing. Both exhibits 

contain two figures each. In the first figure the “Maximize Expected Return” 

strategy is included and in the second figure it is excluded. This has to do with the 

fact that such strategy masks a lot of the volatility in the other strategies due to its 

high return. After each optimization we then used the optimal weight to evaluate Z 

which contains the portfolio returns to get the portfolio return time series. The 

expected portfolio variance and the portfolio expected return was simply found by 

evaluating W’.Q.W  and W’.ER  with the optimal portfolio weights and the 

expected risk adjusted return was simply found by dividing the previous two with 

each other.  

We can see that our optimized drawdown strategy had lower risk adjusted 

returns that then “Maximize Risk Adjusted Return” investment strategy for the 

forward testing. This had to do with the fact that the expected return for our  
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Figure 3:  Optimized Equity Curve Empirical Data 
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Figure 4:  Forward Testing Empirical Data 
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strategy was 6 times as high as the expected return for the “Maximize Risk 

Adjusted Return” which resulted in that the return volatility increased as well. We 

can also see that none of the strategies did exceptional well during the forward 

testing. The only strategy that performed reasonable was the “Maximize Expected 

Returns” strategy. Both the “Minimize Portfolio Variance” and the “Maximize 

Risk Adjusted Returns” strategies had similar performance during the forward 

testing period. Note that we have not included any short positions in our 

investment benchmarks. Introducing short positions will generally lead to lower 

portfolio return variance.  

 

 

4  Conclusions  

     We have in this paper discussed portfolio drawdown constraints and its 

relationship to traditional portfolio optimization. We have shown that simple 

drawdown constraints are indeed linear which means that portfolio risk can be 

model with linear optimization tools such as Linear Programming (LP). We have 

used both simulated and empirical data to compare the performance of such 

investment model with the performance of the traditionally Quadratic 

Programming (QP) investment models. The conclusion was that the performance 

was on par with the traditional portfolio optimization framework. Once the 

optimal allocation is found VaR for these portfolios can then be estimated directly 

instead of using computer intensive Monte Carlo methods. The maximize 

expected return and minimize portfolio drawdown investment strategy proposed in 

this paper is also very flexible. An investor can augment such strategy by for 

example maximize expected return for a given portfolio drawdown or minimize 

portfolio drawdown for a given expected return or do both which is the investment 

strategy proposed in this paper. All of these optimizations are solved with Linear 

Programming (LP) which has been proved to be very fast and stable.  

Another thing to note is that drawdown constraints that are defined as the 
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percentage change between the portfolio value in this period and the portfolio 

value in the previous period are not linear hence LP cannot be used. Instead the 

investor has to start with an initial portfolio value of let say 10 000 USD and then 

specify how much capital he is willing to risk on each trading day i.e. if  a 

portfolio value of 9500 after the first trading day is acceptable then his drawdown 

constraint is -500. Now over time the percentage loss will not be constant. During 

the first trading day his potential percentage loss will be (9500-10000)/10000 = 

-5%. During the second trading day his potential percentage loss will be 

(9000-9500)/9500 = -5.26%. During the third trading day his potential percentage 

loss will be (8500-9000)/9000 = - 5.5%. This is not a very attractive feature.      
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