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Abstract 
 

Analyses of income data are often based on assumptions concerning theoretical 

distributions. In this study, we apply statistical analyses, but ignore specific 

distribution models. The main income data sets considered in this study are taxable 

income in Finland (2009) and household income in Australia (1967-1968). Our 

intention is to compare statistical analyses performed without assumptions of the 

theoretical models with earlier results based on specific models. We have presented 

the central objects, probability density function, cumulative distribution function, 

the Lorenz curve, the derivative of the Lorenz curve, the Gini index and the Pietra 

index. The trapezium rule, Simpson´s rule, the regression model and the difference 

quotients yield comparable results for the Finnish data, but for the Australian data 

the differences are marked. For the Australian data, the discrepancies are caused by 

limited data. 
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1. Introduction  

Analyses of income data are often based on assumptions concerning theoretical 

distributions. In this study, we apply statistical analyses, but ignore specific models 

concerning the income distributions. The income data sets in this study are taxable 

income in Finland (2009) and household income in Australia (1967-1968). Our 

intention is to compare statistical analyses performed without assumptions 

concerning theoretical income models with earlier results based on specific models. 

The central idea is that assumptions concerning distribution models yield only 

approximate results with inaccuracies comparable to results based on model-free 

statistical estimations. We have presented the central objects, probability density 

function (PDF), cumulative distribution function (CDF), the Lorenz curve, the 

derivative of the Lorenz curve, the Gini index and the Pietra index. The trapezium 

rule, Simpson´s rule, the regression model and the difference quotients yield 

comparable results for the Finnish data, but for the Australian data the differences 

are marked. For the Australian data, the discrepancies are caused by limited data. 

 

2. Methods 

We use the following notations. Let X be the income variable, let ( )F x  be the 

cumulative distribution function (CDF), let ( )f x  be the probability density 

function (PDF), let 

0

( )xf x dx


=                   (1) 

be the mean of X and let px  be the p quantile, that is ( )pF x p= . Then the Lorenz 

curve is  

0

1
( ) ( )

px

L p xf x dx


=  .               (2) 

The Lorenz curve (Figure 1) has the following general properties:  

i. ( )L p  is monotone increasing,  

ii. ( )L p p ,  

iii. ( )L p  is convex,  

iv. (0) 0L =  and (1) 1L =  

 

The Lorenz curve ( )L p  is convex because the income share of the poor is less 

than their proportion of the population. The higher the Lorenz curve the lesser the 

inequality in the income distribution.  
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Figure 1: A sketch of a Lorenz curve ( )L p  [1]. 

 

As explained in [1], the Gini coefficient, G, is defined as the ratio of the area 

between the diagonal and the Lorenz curve and the area of the whole triangle under 

the diagonal. Primary income data yield the most accurate estimates of the Gini 

coefficient. However, the estimation are often based on tables with grouped data or 

on Lorenz curves. Fellman [2] analysed the estimation of Gini coefficients using 

Lorenz curves. In empirical situations, the income distribution ( )F x  is often given 

in grouped tables. If the number of observations and the mean of X or if the total 

incomes in the groups are known, the distribution can be considered as a Lorenz 

curve, but the subintervals are usually not of constant length. This is the case of the 

Australian data considered below.  

We intend to perform statistical analyses without any assumptions about the 

theoretical PDF, CDF and Lorenz distributions and only base the calculations on 

the general statistical formulae.  

There are several different situations and, consequently, alternative analyses of Gini 

coefficients have to be performed. When Lorenz curves are considered, the simplest 
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situation is that they are defined for five quintiles or for 10 deciles. In the first case, 

the most commonly used method is the trapezium rule. The trapezium rule generates 

numerical problems because every trapezium yields a positive bias to the estimated 

area under the Lorenz curve, and since the biases accumulate and no elimination of 

biases can be performed, the estimated Gini coefficient based on the trapezium rule 

always has a negative bias. Simpson´s rule is better fitted to the Lorenz curve, but 

demands an even number of subintervals of the same length. This means, for 

example, that Lorenz curves with 10 deciles are suitable. Consequently, the 

comparison of different rules can be performed for Lorenz curves with deciles. 

Compared with the trapezium rule, Simpson´s rule gives more accurate 

approximations. As stressed above, Simpson´s rule demands two restrictions; the 

number of subintervals must be even and the subintervals of equal length. In order 

to apply Simpson´s rule, the subintervals must be grouped two by two. Each doubled 

subinterval has three values. The area under this part of the Lorenz curve is 

estimated such that a parabola obtaining the same values approximates the Lorenz 

curve. Simpson´s rule obviously yields exact results for quadratic curves, but, in 

fact, exactness also holds for cubic curves.  

Fellman [3] presented a new attempt proposing that the approximating function of 

( )L p  is a regression polynomial consisting of non-negative integer powers of the 

argument p, fitted to the values of the Lorenz curve. The Lorenz curves are 

increasing and convex functions of p and the powers of p are also increasing and 

convex, and hence, such polynomials are suitable approximations of ( )L p . In 

general, the optimal polynomial comes close to the Lorenz curve, but obtains at no 

point exactly the same value. Furthermore, the points of the Lorenz curves do not 

need to be equidistantly distributed. Let the obtained optimal regression model be 

  
2 3

1 2 3( ) ... n

nL p p p p p    = + + + + + .           (3) 

 

When one integrates the regression model over the interval (0,1) , the area under 

the regression model is the formula 
1

1 2 3

0

1 1 1 1
( ) ...

2 3 4 1
nL p dp

n
    = + + + + +

+ ,          (4) 

and consequently,  
1

1 2 3

0

1 1 1 1
1 2 ( ) 1 2 ...

2 3 4 1
nG L p dp

n
    
 

 − = − + + + + + 
+ 

 .       (5) 

The obtained regression model can also be used when one wants to estimate the 

derivative of the Lorenz curve ( )L p . The derivative of the regression model is  

 
2 1

1 2 3( ) 2 3 ... n

nL p p p n p    − = + + + + .           (6) 
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If the Lorenz curve is differentiable, the derivatives have the following properties. 

Consider 
1

( ) ( )

px

x

L p xf x dx


=  , ( )pF x p=  and the frequency function ( )f x . 

When we differentiate the equation ( )pF x p=  we obtain
( )

1
pdF x

dp
=  and 

( ) 1
p

p

dx
f x

dp
= .  

Consequently,  

( ) 1
p

p

dx
f x

dp
=   

and  

1

( )

p

p

dx

dp f x
= .  

If we differentiate  

0

( )
( ) 1 1

( )

px

p

p

p

d xf x dx
dxdL p

L p x
dp dx dp 

 = = =


, 

then 

( )
px

L p


 =                  (7) 

and the mean   is 

( )

px

L p
 =


.                 (8) 

 

The Methods section is based on results obtained from our empirical data. Figure 2 

presents the Lorenz curve for the Finnish data. In Figure 3, we apply (8) and present 

the mean income μ and px  as a function of p. The derivative ( )L p  is presented 

in Figure 4 and is based on (7) and (8). Hence, the numerical data in Figures 2 to 4 

are based on the Finnish data set. 



40                                           Johan Fellman   

 
Figure 2: Lorenz curve for the Finnish data 

 

 

Figure 3: Estimated μ and px as functions of p for the Finnish data 
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Figure 4: Derivates estimated by the difference quotients and by the 

regression models are included. The comparison between the findings is 

acceptable 

 

The difference between the diagonal and the Lorenz curve has the properties 

( )D p L p= − ,                 (9) 

1 ( ) 1
pxdD

L p
dp 

= − = − , 

2

2

1 1
( ) 0

( )

pdxd D
L p

dp dp f x 
= − = − = −  . 

The maximum of D implies 1 0
px


− = , that is, px = . 

For px = , ( ) 1L p = , and at the point ( )p F = , the tangent is parallel to the 

line of perfect equality. This is also the point at which the vertical distance between 

the Lorenz curve and the egalitarian line attains its maximum 

max ( )P D p L p = = − . This maximum is defined as the Pietra index [4]. 

According to this definition, 0 1P p   . The lower bound is obtained when 

there is a total income equality, that is, the Lorenz curve coincides with the diagonal. 

The upper bound can be obtained when the curve converges towards the lower right 

corner. The Pietra index can be interpreted as the income of the rich ( p p ) that 

should be redistributed to the poor ( p p ) in order to obtain total income equality. 
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Therefore, the index is sometimes named the Robin Hood index.  

An alternative definition of the Pietra index has also been given. It can be defined 

as twice the area of the largest triangle inscribed in the area between the Lorenz 

curve and the diagonal line [4]. In Figure 5, one observes that the triangle obtains 

its maximum when the corner lies on the Lorenz curve where the tangent is parallel 

to the diagonal. The height of the triangle is 
2

P
h = , and the base is the diagonal 

2b = . The double of the area is 

2 2 2
2 2

2 2 2

h P
area P= = = .  

 
Figure 5: The Lorenz curve and the geometric interpretations of the Pietra 

index [1]. 
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In comparison, the P index is twice the area of the inscribed triangle and the Gini 

coefficient is twice the whole area between the diagonal and the Lorenz curve, and 

hence, G P .  

Compare two income variables X and Y. If X YP P , then the distribution ( )XF x  

measured by the Pietra index has lower inequality than the distribution ( )YF y , and 

we say that ( )XF x  Pietra dominates ( )YF y . We denote this relation 

( ) ( )X Y
P

F x F y . For the Lorenz curves in Figure 1.1.3 in [1], 1 0.2500P =  and 

2 0.2940P = . According to the relation between the two Pietra indices, 1( )L p  is 

more unequal than 2( )L p  [5] 

3. Materials  
Table 1: Taxable income receivers in Finland in 2009 

Annual income (€) Income recipients (n) 

-1000 182281 

1000 - 2000 96836 

2000 - 3000 80056 

3000 - 4000 65800 

4000 - 5000 59595 

5000 - 6000 62171 

6000 - 7000 107558 

7000 - 8000 146526 

8000 - 9000 114602 

9000 - 10000 121555 

10000 - 12500 319042 

12500 - 15000 329083 

15000 - 17500 259979 

17500 - 20000 243284 

20000 - 25000 481753 

25000 - 30000 487376 

30000 - 35000 385672 

35000 - 40000 266075 

40000 - 50000 307810 

50000 - 60000 152714 

60000 - 80000 120327 

80000 - 88488 

All 4478583 
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Our data consist of the income distribution reported for Finland (2009) given in 

Table 1 and the Australian data given in Table 2 [6]. Our intentions are to consider 

the estimations of the central concepts based on empirical data. Our main difficulty 

is that our data for Finland do not contain exact information on individual incomes. 

We have only grouped data according to the incomes of the income receivers. For 

such an interval, we only know the number of the receivers and the minimum and 

the maximum of income individuals of the group. Consider group number i. Let the 

number of observations be in , the lower limit be ia  and the upper limit be ib . The 

total income is restricted to the interval ( ),i i i in a n b  . The total income is 

i in y , where i i ia y b  . The iy  values are unknown, but plausible estimates 

of total incomes are one of the alternatives 
i in a , 

1
( )

2
i i in a b+  or 

i in b . 

We perform our statistical analyses based on the assumption that i iy b= . This 

assumption indicates that no income is underestimated. 

Table 2: Australian household income data for 1967-1968 

Income Number Mean 

Below $1000 310 674.39 

$1000 - $2000 552 1426.1 

$2000 - $3000 1007 2545.79 

$3000 - $4000 1193 3469.35 

$4000 - $5000 884 4470.33 

$5000 - $6000 608 5446.6 

$6000 - $7000 314 6460.93 

$7000 - $8000 222 7459.14 

$8000 - $9000 128 8456.66 

$9000 - $11000 112 9788.38 

$11000 and over 110 15617.69 

 

4. Results 

In Figure 6, we present the distribution of the income for Finland (2009). In this 

figure, we assume that within every income interval the income is equal to the upper 

limit. In Figure 7, the cumulative income distribution is presented. 
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Figure 6: Distribution of the income for Finland (2009) 

 

 
Figure 7: Cumulative income distribution of the income for Finland (2009) 

 

 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12
5

0
0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

6
0

0
0

0

1
0

0
0

0
0

f(x) for income distribution in Finland (2009)

0.0

0.2

0.4

0.6

0.8

1.0

0 20000 40000 60000 80000 100000

F(x) for income distribution in Finand (2009)



46                                           Johan Fellman   

We used already our empirical data when we described the theory in the Methods 

section. Especially we presented the Lorenz curve for the Finnish data in Figure 2.  

The Gini index based on the trapezium method is 0.4056G = . The regression 

method yields the slightly higher value 0.4081 [3]. This is in good agreement with 

the theoretical result that the trapezium rule always yields too low results.  

The derivative of ( )L p  is estimated by approximations based on the difference 

quotients and on the regression models. The derivative of ( )L p  as a function of p 

is given in Figure 4. A good agreement can be observed. 

In Figure 3, we used (7) and (8) and presented μ and px  as functions of p.  

In Figure 8, the Lorenz curve and the difference ( )p L p−  are presented. The 

maximum of the difference ( )p L p−  yields 0.596198p = , ( ) 0.306249L p =  

and ( ) 0.28995p L p− = . Hence, the Robin Hood index is 0.28995P = . Note that 

0.4081G =  is larger than 0.28995P = . 

 
Figure 8: The Lorenz curve and the difference ( )D p L p= −  as functions of 

p. The maximum 0.28995D =  is obtained for 0.596198p =  
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Australia. In general, we analyse the Australian data following the same steps as 

the analyses of the Finnish data. The Australia results are given in the figures below. 

  

 
Figure 9: Distribution of the income in Australia (1967-1968) 

 

 
Figure 10: Cumulative income of the income in Australia (1967-1968) 
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Figure 11: The Lorenz curve ( )L p  in Australia (1967-1968) 

 
Figure 12: The Lorenz curve ( )L p and ( )D p L p= −  as functions of p in 

Australia (1967-1968). The maximum of 0.2214D =  is obtained for 

0.5629p = . 
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Figure 13: Mean μ and quantile px  as functions of p 

 

 
Figure 14: Derivates of the Lorenz curve estimated by the difference 

quotients and the regression models are included. The correspondence 

between the findings is poor. The derivatives estimated by the difference 

quotients and the regression model show marked discrepancies mainly 

caused by limited data  
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5. Discussion 

Various attempts have been made to produce mostly exact Gini index estimates. 

Gastwirth [7] introduced interval estimates of the Gini coefficient in order to 

measure the accuracy of the estimates. Needleman [8] starts from the trapezium 

estimate of the Gini coefficient LG . He then introduces an improved upper estimate 

UG  His final estimate follows the “two-thirds rule”, that is, 
2

3 3

L UG G
G = + .  

He considered the Γ density and applied Monte Carlo methods.  

An obviously better alternative is to approximate the Lorenz curve with Lagrange´s 

interpolation [9]. Lagrange polynomials of the second degree can be considered as 

a generalization of Simpson´s rule and do not demand subintervals of equal length, 

but the number of subintervals should still be even. The polynomials obtained have 

to be integrated in order to yield approximate areas and Gini coefficients. If the 

subintervals are of the same length, the Lagrange polynomial method is identical to 

Simpson´s rule. 

Golden [10] showed how a quick approximation of the Gini coefficient can be 

calculated empirically using numerical data in cumulative income quintiles. 

Fellman [2] compared different methods. He applied Simpson´s rule and considered 

Lorenz curves with deciles. In addition, Fellman used Lagrange polynomials and 

generalizations of Golden´s method. 

The comparison between different estimation methods is in general difficult to 

perform. These difficulties are mainly caused by the fact that the true Gini 

coefficient is unknown, but sometimes when more detailed studies have already 

resulted in very accurate estimates, the comparisons are possible. Some authors ([7], 

[11]-[14]) have introduced interval estimates, but these are often rather broad, and 

it is still difficult to identify the best method. Gastwirth [7] presents interval 

estimations of the Gini coefficient. The exact Gini estimate on Current Population 

Surveys (CPS) income data for 1968 was computed by Tepping, his result being 

0.4014. Gastwirth´s Table 2 shows Tepping´s data grouped into a 10-subgroup 

Lorenz curve. He compares his Gini interval estimates with Tepping´s finding. 

Gastwirth [7] considers a minimum of restrictive conditions, obtaining the interval 

0.3883 0.4083G  . Mehran [11] suggests an alternative estimation method, 

obtaining the interval estimate 0.3883 0.4087G  . The grouping limits are not 

equidistant and one cannot apply Simpson´s rule. Applying the trapezium rule 

yields 0.3883, and the negative bias is apparent. The Lagrange rule yields 0.4033, 

and the modification of the Golden rule yields the rather inaccurate estimate 0.3740. 

Such comparison problems are eliminated if the numerical estimations are applied 

to theoretical distributions with known theoretical indices [5].  

Needleman [8] stated that, as the Lorenz curve is convex, the trapezium 

approximation is always greater than the actual area under the curve, so that the 

estimate of G based on this approximation is always less than the actual value of 

the coefficient. Furthermore, he noted that most authors using the trapezium 

approximation indicate that they are aware of the bias involved, but either assume 
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the error so small as to be insignificant or else use a large number of intervals in the 

belief, usually justified, that the bias will then be negligible.  

In order to perform comparisons between the estimated and theoretical Gini 

coefficients, Fellman [2] analysed classes of theoretical Lorenz curves with varying 

Gini coefficients. As an alternative to income distributions, some scientists have 

built models for the Lorenz curve. Among these, we list the following studies: [5], 

[15]-[24].  

The theoretical step from Lorenz curve to distribution function is more difficult than 

that from distribution function to Lorenz curve. Fellman [5] noted that with respect 

to the numbers of the parameters there is a difference between advanced and simple 

Lorenz models. Advanced Lorenz models yield a better fit to data, but are difficult 

to exactly connect to income distributions. Simple one-parameter models can more 

easily be associated with the corresponding income distribution, but when statistical 

analyses are performed the goodness of fit is often poor.  

Kakwani and Podder [16] applied their Lorenz model to the Australian data, 

comparing four alternatives, all of which resulted in accurate estimates. The 

estimates varied between 0.3195 and 0.3208, when the actual value was 0.3196. 

Rao and Tam [20] applied the Kakwani-Podder, the generalized Pareto, the Rao-

Tam model, the Gupta and the simplified Rao-Tam models to the same data. Their 

comparison of the models indicates that the Kakwani-Podder, the generalized 

Pareto and the Rao-Tam model yielded the best estimates. The Gupta and the 

simplified Rao-Tam model resulted in estimates with the largest errors. For the 

Gupta model, the estimate was too high (0.3691), and for the simplified Rao-Tam 

model it was too low (0.2508). These findings support the criticism of the estimation 

based on simple one-parameter Lorenz models. In this study, the trapezium model 

yields 0.3134 and our regression model yields 0.3188, which is close to the correct 

value of 0.3196. Dedduwakumara and Prendergast [6] estimated the Gini index for 

the Australian data. They used linear interpolation and obtained 0.319 and using 

Generalized Lambda distribution they obtained the estimate 0.329. Consequently, 

the agreement between the results presented in different studies is adequate.  

Fellman [1] applied the Pareto model on the high incomes of the Finnish data. He 

assumed that the Pareto model may start from 25000Y =  €. For values equal to 

or greater than that, he obtained the estimate 2.637 = , and in addition, the 

coefficient of determination was 2 0.99241R = . For the income distribution for 

incomes greater than 25000 € the Gini coefficient was 0.234G = t goes here. 

6. Conclusions 

The composition of the empirical data may vary from study to study. The proposed 

studies may vary and no general optimal rules are available. Consequently, the 

attempt proposed in this study cannot be suggested to be a universally applicable 

strategy. Hence, our study must be considered as an alternative for ongoing 

discussions, and new alternatives and suggestions are appreciated.  
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