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Abstract 
 

Different skew models, such as the lognormal and the Pareto functions, have been 

proposed as suitable descriptions of income distribution. Specific distributions are 

usually applied in empirical investigations. It is a common opinion that the Pareto 

curve often provides an adequate description of higher incomes. Recently, double 

Pareto distributions that obey the power law in both the upper and lower tails have 

been suggested to reflect a general distribution of personal income. In this study, 

the literature concerning double Pareto models is presented and the model is applied 

to Finnish income data. 
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1. Introduction  

Different skew models, such as the lognormal and the Pareto functions, have been 

proposed as suitable descriptions of income distribution when empirical 

investigations are performed. It is a common opinion that the Pareto curve often 

provides an adequate description of higher incomes. It is interesting to recall that 

when Pareto (1897) first presented his law, he emphasized its empirical basis, 

whereas the process of reasoning by Gibrat (1931) advanced from theory to 

observations. Already Quensel (1944) stated that the lognormal curve agrees fairly 

well with the actual distribution of the lower incomes, although the Pareto curve 

often provides a more adequate description of the higher incomes (Fellman, 2015). 

Recently, the distribution of personal income has been proposed to be double 

Pareto, a distribution that obeys the power law in both the upper and lower tails 

(Reed (2001); Mitzenmacher (2004); Al-Athari (2011); Toda (2012); Shi-Yong et 

al., (2019)).  

 

2. Methods 

Harrison (1981) noted that a number of observed earning distributions were 

described well by the Pareto distribution defined as 

 

𝐹(𝑦) = {
0

1 − 𝑦−𝛼
 
𝑦 ≤ 1
𝑦 > 1

,            (1) 

 

where 𝛼 > 0 and 𝑦 =
𝑌

𝑌𝐿
, 𝑌𝐿 being the minimum income. For 𝛼 > 1, the mean 

is 𝐸(𝑌) =
𝛼

𝛼−1
. Furthermore, the Lorenz curve is 𝐿(𝑝) = 1 − (1 − 𝑝)

𝛼−1

𝛼  and the 

Gini coefficient is 𝐺 =
1

2𝛼−1
. It is convenient to remark here that for commonly 

occurring values of the parameter 𝛼 a second moment of the Pareto distribution 

does not exist unless 𝛼 > 2.  

A common technique for estimating the Pareto constant 𝛼 , is to linearize the 

survival function by taking logarithms and to then apply ordinary least squares. The 

survival function is  

 

𝑆(𝑦) = 1 − 𝐹(𝑦) = (
𝑌

𝑌𝐿
)
−𝛼

            (2) 

 

After taking natural logarithms, one obtains the linear model  

 

𝑙𝑛(𝑆(𝑦)) = −𝛼 𝑙𝑛( 𝑌) + 𝛼 𝑙𝑛( 𝑌𝐿) = 𝐶 − 𝛼 𝑙𝑛( 𝑌).         (3) 

This model indicates a linear, decreasing association between 𝑙𝑛(𝑆(𝑦))  and 

𝑙𝑛( 𝑌) . A regression analysis gives an estimate of 𝛼  and the coefficient of 

https://www.sciencedirect.com/science/article/pii/S0167268112000923?via%3Dihub#!
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determination, 𝑅2, measures the linearity in the model and the goodness of fit of 

the Pareto model.  

In an earlier study, Fellman (2015) applied this analysis on annual taxable incomes 

in Finland for the year 2009. The data are presented in a grouped table (Table 1). 

He assumed that the Pareto model may start from ca. 𝑌 = 25000€. For values 

equal to or greater than this value he obtained the parameter estimate 𝛼̑ = 2.637 

and a coefficient of determination is 𝑅2 = 0.99241 , indicating good fit. For 

income distribution for incomes greater than 25000 the Gini coefficient was 𝐺 =
1

2𝛼−1
= 0.234.  

 
Table 1: Taxable income receivers in Finland 2009 (Fellman, 2015) 

Classes of annual income (€) Number of income recipients 

- 1000 182281 

1000 - 2000 96836 

2000 - 3000 80056 

3000 - 4000 65800 

4000 - 5000 59595 

5000 - 6000 62171 

6000 - 7000 107558 

7000 - 8000 146526 

8000 - 9000 114602 

9000 - 10000 121555 

10000 - 12500 319042 

12500 - 15000 329083 

15000 - 17500 259979 

17500 - 20000 243284 

20000 - 25000 481753 

25000 - 30000 487376 

30000 - 35000 385672 

35000 - 40000 266075 

40000 - 50000 307810 

50000 - 60000 152714 

60000 - 80000 120327 

80000 - 88488 

All 4478583 
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We illustrate his result in Figure 1. 

 

Figure 1: Graphical illustration of the distribution of taxable income in 

Finland (2009) and a Pareto model for annual incomes greater than 𝒀 =
𝟐𝟓𝟎𝟎𝟎€ (Fellman, 2015). 

Recently, the distribution of personal income has been proposed to be double 

Pareto, a distribution that obeys the power law in both the upper and lower tails. 

Toda (2012) proposed a model of income dynamics with a stationary distribution 

consistent with this law. 

 

3. Results 

In this study, we apply the double Pareto model to the income data from Finland 

(2009) and use the value 25000 € to demarcate the boundary between low and high 

incomes. The income distribution for Finland (2009) is presented in Figure 2. This 

figure is a modified version of the original figure in Fellman (2019).  
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Figure 2: Distribution of income in Finland (2009). In this figure, we have 

indicated the boundary (25000 €) between low and high incomes and slightly 

modified the figure presented earlier (Fellman, 2019) 

If one applies the double Pareto model on the Finland (2009) data, the power law in 

the lower tail results in a bad fit. For the low incomes, we introduce the logarithmic 

model  

 

𝑙𝑛(𝑓(𝑥)) = 𝐶 + 𝛼 𝑙𝑛( 𝑥) for 𝑥 < 25000,                    (4) 

 

where 𝑥 is the income level and 𝑓(𝑥) is the number of individuals receiving the 

amount x. We obtain the estimated results 

 

𝑙𝑛(𝑓(𝑥)) = 8.861067 + 0.346812 𝑙𝑛( 𝑥),                    (5) 

 

where 𝑅̄2 = 0.240 and the low 𝑅̄2 value indicates a rather poor fit.  

For the upper part of the incomes, we apply the model 

 

𝑙𝑛(𝑓(𝑥)) = 𝐶 − 𝛽 𝑙𝑛( 𝑥) for 𝑥 > 25000,                    (6) 

 

where x is the income level and 𝑓(𝑥) is the number of individuals r0eceiving the 

amount x. We obtain the estimated results  

 

𝑙𝑛(𝑓(𝑥)) = 28.0283 − 1.46125 𝑙𝑛( 𝑥)                 (7) 
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and 𝑅̄2 = 0.943 The high 𝑅̄2 value indicates a good fit and strong agreement 

with the results in (Fellman, 2015). In Table 2, we present the estimated models of 

the low and high income data and the corresponding test results for Finland (2009).  

 
Table 2: Estimate results for Finland (2009) 

 Low incomes High incomes 

 Estimate SE Estimate SE 

Intercept 8.861067 1.304 28.0283 1.566 

Slope 0.346812 0.149 −1.46125 0.145 

𝑅̄2 0.240 0.581 0.943 0.151 

F 5.427 0.037 101.044 <0.001 

 

The statistical results are presented in Figure 3.  

 

 

Figure 3: Estimated results of low and high income data for Finland (2009). 

Note the poor fit for low incomes and the good fit for high incomes. Estimated 

regression models are included in the figure 
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4. Discussion 

Many empirical distributions encountered in economics and other realms of inquiry exhibit 

power-law behaviour in the upper tail. Reed (2001) presented a simple explanation for 

this. In economics, he also noted lower-tail power-law behaviour, which is verified 

empirically for income and city size data as well as for standardized price returns on 

individual stocks or stock indices. This widespread observed regularity has been 

explained in many ways. It continues to fascinate both natural scientists, who have 

recently proposed explanations based on such current ideas as self-organized criticality 

and highly optimized tolerance (Newman, 2000), and economists, as recent papers by 

Gabaix (1999) and Brakman et al. (1999) testify. While it seems unlikely that there is 

a single general theory that could explain all instances of power-law behaviour, there is, 

as Reed (2001) claimed, a simple, plausible explanation that has apparently been 

overlooked and can explain many examples in economics (including the Pareto and Zipf 

laws) and other areas. The temporal evolution of many phenomena exhibiting power-law 

behaviour is often considered to involve a varying, but size-independent proportional 

growth rate, which mathematically can be modelled by geometric Brownian motion 

(GBM). 

Allowing for variation in initial sizes will modify this somewhat, but one would still 

expect power-law behaviour in the upper tail. Thus, provided all income earners had the 

same starting income, the current distribution of incomes should be that of a GBM 

observed after an exponentially distributed time T. This distribution is what Reed (2001) 

called a double Pareto distribution. He provided a simple explanation for this and also 

predicted lower-tail power-law behaviour, which was verified empirically for income and 

city size data. For example, if new stock issues occurred in a Poisson process and 

individual stock prices evolved following GBM, one might expect that the distribution 

of the ratio of current price to issue price over all such stocks would follow a power law 

in each tail. Reed (2001) stressed that phenomena frequently modelled by GBM include 

the evolution of stock prices, firm sizes, city sizes and individual incomes. It is well known 

that the state of a GBM after a fixed time T follows a lognormal distribution, which 

does not exhibit power-law behaviour. Why then should power-law behaviour occur 

for phenomena evolving as GBM? Reed (2001) claimed that the solution lies in the 

fact that the time of observation, T, should itself be regarded as a random variable, often 

with a distribution close to an exponential distribution. He considered, for instance, 

a census or sample survey of incomes. Even though each individual income may follow 

GBM, the time during which it has been so evolving will vary from individual to 

individual. If recruitment to the workforce has been growing at a more or less constant 

rate, the distribution of time in the workforce of any individual will follow an exponential 

distribution. Thus, provided all income earners had the same starting income, the current 

distribution of incomes should be that of a GBM observed after an exponentially 

distributed time T. This distribution, the double Pareto distribution, has a density 

proportional to 𝑥−𝛼−1 for 𝑥 > 1 and proportional to 𝑥𝛽−1 for 𝑥 < 1. Thus, not 

only does this simple model offer a plausible explanation of the Pareto Law of Incomes 

(upper tail), it also predicts power-law behaviour in the lower tail. In fact, lower-tail 
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power-law behaviour has been identified before (Champernowne, 1953). 

Furthermore, Reed (2001) gave other examples, outside of economics, for which a similar 

explanation might hold such as the body-size distribution of animal species (May, 1988). 

Here it would be assumed that the body mass of any individual species evolved through 

natural selection following GBM, while speciations occurred in a Yule process. Power-

law behaviour in the lower tail of particle-size distributions and in the upper tail of forest-

fire size distributions could also be explained in a similar way. In the former case, 

repeated random fractures indicate a form of random geometric decay, while in the 

latter case the area burnt might follow random proportional growth through time until 

stopped at random (e.g. by the onset of suitably heavy rainfall). 

Later Reed & Jorgensen (2004) introduced a family of probability densities, 

and stressed that it has proved useful in modelling the size distributions of various 

phenomena, including incomes and earnings, human settlement sizes, oil-field 

volumes and particle sizes. The distribution, named the double Pareto-lognormal 

(dPLN) distribution, arises similarly to the state of a GBM, with a lognormally 

distributed initial state, after an exponentially distributed length of time (Reed, 

2001). Reed & Jorgensen (2004)  stressed that a number of phenomena can be 

viewed as resulting from such a process (e.g. incomes, settlement sizes), which 

explains the good fit. Furthermore, they derived properties of the distribution and 

discussed the estimation methods. They found that the distribution exhibits Paretian 

(power-law) behaviour in both tails, and when plotted on logarithmic axes, its 

density shows hyperbolic-type behaviour (Reed & Jorgensen, 2004). 

Mitzenmacher (2004) started from the double Pareto distributions recently 

suggested to describe income distributions and other power-law phenomena (Reed 

& Jorgensen, 2004). As he shows, such distributions have a lognormal body and a 

Pareto tail, which matches some previous studies of empirical data for file sizes. He 

believed that such distributions may be useful for modelling other power-law 

phenomena in computer systems, and that his generative model might prove useful 

for other applications. Mitzenmacher provided a detailed analysis of his Recursive 

Forest File model which is interesting in its own right. In particular, he found several 

connections to the theory of random graphs that he expected would provide a useful 

framework for future work. Furthermore, he showed how to cope with the effects 

of correlation that are implicit in a file system model where new files are derived 

from existing files, using a martingale analysis. 

Reed and Wu (2008) introduced two parametric models for income distributions. 

The models fitted to log(income) are the 4-parameter normal-Laplace (NL) and the 

5-parameter generalized normal-Laplace (GNL) distributions. The NL model for 

log(income) is equivalent to the double Pareto-lognormal (dPLN) distribution 

applied to income itself. Definitions and properties are presented along with 

methods for maximum likelihood estimation of parameters. Both models along with 

4- and 5-parameter beta distributions were fitted to nine empirical distributions of 

family income. In all cases, the 4-parameter NL distribution fits better than the 5-

parameter generalized beta distribution. The 5-parameter GNL distribution provides 

an even better fit. They found that fitting of the GNL is numerically slow since there 
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are no closed-form expressions for its density or cumulative distribution functions. 

They found that 5-parameter beta distribution is the best fitting, and the results 

suggest that the NL should be seriously considered as a parametric model for 

income distributions. 

Al-Athari (2011) stressed that the double Pareto distribution appears most often as 

a model for a variety of fields, including archaeology, biology, economics, 

environmental science, finance and physics. Furthermore, the family of double 

Pareto distributions has recently been proposed for modelling growth rates such as 

annual gross domestic product, stock prices, foreign currency exchange rates and 

company sizes.  

Todorova and Vogta (2011) stated that power-law distributions are very common 

in studies of natural sciences. They analysed high-frequency financial data using 

maximum likelihood estimation and the Kolmogorov–Smirnov statistic to test 

whether the power-law hypothesis holds also for these data. They found that the 

universality and scale invariance properties of the power law are violated. 

Furthermore, the returns of some shares traded simultaneously on both exchanges 

follow a power law at one exchange, but not at the other. These results raise some 

questions about the no-arbitrage condition. Finally, they found that an exponential 

function provides a better fit for the tails of the sample distributions than a power-

law function. They did not associate the power law with the double Pareto 

distribution. 

Fellman (2012) analysed classes of theoretical Lorenz curves with varying Gini 

coefficients. Especially he compared Gini estimates for the Pareto distributions. If 

one defines the Pareto distribution as 𝐹(𝑥) = 1 − 𝑥−𝛼, where 𝑥 ≥ 1 and 𝛼 > 1, 

then the frequency function is 𝑓(𝑥) = 𝛼𝑥−𝛼, the mean is 𝜇 =
𝛼

𝛼−1
, the quantiles 

are 𝑥𝑝 = (
1

1−𝑝
)

𝛼−1

𝛼
, the Lorenz curve is 𝐿(𝑝) = 1 − (1 − 𝑝)

𝛼−1

𝛼  and the Gini 

coefficient is 𝐺 =
1

2𝛼−1
. Fellman considered 1.5 ≤ 𝛼 ≤ 5.0; the Gini coefficient 

then satisfies the inequalities 0.111 ≤ 𝐺 ≤ 0.500. This G interval corresponds to 

the most common Gini coefficients. He noted that Simpson´s and Golden´s (2011) 

rules yield similar accuracy, but the trapezium rule shows the largest errors for all 

levels of Gini coefficients. This theoretical study indicated that Golden´s rule is not 

uniformly better than the trapezium rule in performing comparisons between the 

estimated and theoretical Gini coefficients. 

Toda (2012) found double power law behaviour in income distributions. 

Conditional on education and experience, the distribution of personal labour income 

appears to be double Pareto. This “double power law” is not rejected by goodness-

of-fit tests. He compared two diffusion processes (one mean-reverting, the other 

unit root) with a stationary double Pareto distribution as a model of income 

dynamics. The data favour the mean-reverting process over the unit root process for 

modelling income dynamics. 

Al-Athari and Jaber (2013) derived a Bayesian estimator for this distribution with 

multi-parameter Jeffreys´ prior. The theoretical part of the fore mentioned study 

http://www.sciencedirect.com/science/article/pii/S0378437111005826#implicit0
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reveals that Bayesian estimator for the scale parameter does not exist. The 

simulation part reveals that Bayesian and maximum likelihood estimators are 

equally better than the method of moments estimator when the sample size is larger 

than or equal to 14, otherwise the method of moments and the maximum likelihood 

estimators are equally good. 

Yu et al. (2019) stated that although societal scale and mode of production from 

foraging to farming correlate with increases in economic inequality there is no 

consensus regarding the relative importance of those factors or the role of institutions 

in the variance of inequality across time and space. Furthermore, they specified that 

to better understand the dynamics of economic inequality it is necessary to expand 

the analytical horizon beyond the present into the deeper past. However, an 

analytical protocol especially oriented towards the systematic study of economic 

inequality with archaeological data is lacking. They proposed the utility of grave 

size as a reliable proxy for estimating  prehistoric social  inequality and  provided  a  

methodological framework for analysing this type of data. Their case studies using 

grave-size data from two Neolithic settlements in North and East China suggested 

that the asymmetric double Pareto distribution can be used as an alternative model to 

fit the size distribution of grave wealth, which is usually skewed and long-tailed. 

Based on the analytical connection between the probability density function and the 

Lorenz curve, they derived a parsimonious algebraic expression of the Gini 

coefficient. Furthermore, Yu et al (2019) stated that this analytical protocol also can 

serve as a convenient tool for quantifying economic inequality in prehistoric 

societies using other types of archaeological data such as land and house areas. 

 

5. Conclusions 

Different skew models, such as the lognormal and the Pareto functions, have been 

proposed as suitable descriptions of income distribution. It is a common opinion 

that the Pareto curve often provides an adequate description of higher incomes 

(Harrison, 1981; Fellman 2015). Recently, double Pareto distributions that obey the 

power law in both the upper and lower tails have been proposed to reflect a general 

distribution of personal income (Toda, 2012). The double Pareto distribution 

appears often as a model for a variety of fields, including archaeology, biology, 

economics, environmental science, finance and physics (Al-Athari, 2011). The 

distribution exhibits Paretian power-law behaviour in both tails. Many empirical 

distributions encountered in economics and other realms of inquiry exhibit power-law 

behaviour in the upper tail. The symmetric double Pareto distribution is frequently 

used to fit data on income, growth rates, finance and physical and biological 

problems. The temporal evolution of many phenomena exhibiting power-law behaviour is 

often considered to involve a varying, but size-independent proportional growth rate, 

which mathematically can be modelled by GBM (Reed, 2001). No doubt there are many 

other examples fitting within this paradigm, whose essential elements are random 

proportional (geometric) change and random stopping or observation. Phenomena 

evolving according to Gibrat’s law, which are observed after an exponentially distributed 
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period of time, should be expected to exhibit distributions with power-law tail behaviour 

(Reed, 2001). 
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