
Advances in Management & Applied Economics, Vol. 11, No. 6, 2021, 117-138  

ISSN: 1792-7544 (print version), 1792-7552(online) 

https://doi.org/10.47260/amae/1167 

Scientific Press International Limited 

 

 

Evaluating Forecasts from State-Dependent 

Autoregressive Models for US GDP Growth Rate. 

Comparison with Alternative Approaches 
 

Fabio Gobbi1 

 

 

Abstract 
 

The aim of the paper is to compare the forecasting performance of a class of state-

dependent autoregressive (SDAR) models for univariate time series with two 

alternative families of nonlinear models, such as the SETAR and the GARCH 

models. The study is conducted on US GDP growth rate using quarterly data. Two 

methods of forecast comparison are employed. The first method consists in 

evaluation the average performance by using two measures such as the root mean 

square error (RMSE) and the mean absolute error (MAE) over different forecast 

horizons, while the second method make use of one of the most used statistical test 

to compare the accuracy of two forecast methods such as the Diebold-Mariano test. 
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1. Introduction  

In this paper we propose a class of state-dependent autoregressive models (SDAR) 

to study nonlinearities in economic time series as the quarterly US GDP growth rate. 

The aim is to compare the predictive ability of SDAR models with respect to linear 

autoregressive (AR) time series models and two leading classes of nonlinear models 

such as the self-exciting threshold autoregressive (SETAR) model and the 

generalized autoregressive conditional heteroskedasticity (GARCH) model, that 

have already been proposed for US GDP. The problem we address is whether SDAR 

models offer a much improved forecast performance. 

The class of SDAR models is a generalized version of a first-order autoregressive 

process where the autoregressive coefficient depends on the first lagged state 

variable whose equation is: 

 

                 𝑦𝑡 = 𝛼 + 𝜑(𝑦𝑡−1; γ)𝑦𝑡−1 + 𝜀𝑡                        (1.1) 

 

where 𝜑(∙;∙) is a specified function satisfying some assumptions and depending on 

a set of parameters, 𝛾. The error term 𝜀𝑡 is independent of 𝑦𝑡−1 with zero mean 

and volatility 𝜎. SDAR models are closely related to the functional-coefficient 

autoregressive (FAR) models introduced by Chen and Tsay (1993) where p 

autoregressive coefficients are given by measurable functions depending on k<p 

lagged values of 𝑦𝑡. Within this framework, Cai, Fan and Yao (2000) adopt local 

linear regression techniques to estimate functional coefficient regression models for 

times series data while Chen and Liu (2001) study nonparametric estimation and 

hypothesis testing procedures for the same model. In Cherubini and Gobbi (2013) 

SDAR models are derived as a special case of a more general convolution-based 

autoregressive processes in which the error term is not independent of the lagged 

value of the state variable (see also Cherubini, Gobbi and Mulinacci, 2016). More 

recently, Gobbi and Mulinacci (2020) define the class of SDAR models more 

rigorously establishing their main statistical properties, such as stationarity and 

ergodicity, and determine the asymptotic behaviour of the quasi-maximum 

likelihood (QML) estimator of the parameters. In particular, the authors show that 

if |𝜑(𝑦)| ≤ 𝛿 < 1 uniformly in 𝑦, the process in (1.1) is geometrically ergodic 

and strictly stationary. In the same paper, the authors compare the forecast 

performance of two specifications of SDAR models with SETAR models for time 

series of weekly realized volatilities extracted from three different European 

financial indexes, showing that SDAR models ensure a gain in the accuracy for two 

cases on three, at least for short and medium forecast horizons. Furthermore, Gobbi 

(2020) documents, through a Monte Carlo experiment, that nonlinearity in time 

series generated from a SDAR model strictly depends on the functional form of 

persistence function $\psi$ and on the value of parameters. 
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A class of alternative nonlinear models we consider in this paper is the self-exciting 

threshold autoregressive (SETAR) models, which were first proposed and studied 

by Tong (1978, 1986 and 1995) and Tong and Lim (1980). In SETAR models the 

variable 𝑦𝑡  is a linear autoregression within a regime but may move among 

regimes depending on the value taken by a lag of 𝑦𝑡 itself. A number of authors 

have estimated SETAR models of US GDP. Tiao and Tsay (1994) consider a two 

regime SETAR model, Potter (1995) estimates a SETAR(2,5,5) but with the third 

and fourth regimes restricted to zero in both regimes. Both papers use time series 

from 1947 to 1990. A key feature of SETAR models for US GDP over this period 

is a large and negative coefficient on the second lag in the lower regime, indicating 

that US economy moves rapidly out of recession periods. Moreover, Tiao and Tsay 

(1994) find that the forecast performance of the SETAR model relative to a linear 

AR model is improved when the comparison is made when the economy is in 

recession (i.e., the lower regime is activated). Clements and Smith (1997) 

implement a Monte Carlo simulation to show that there is an significant effect of 

the regimes on the forecast accuracy. In particular, the authors find that the gain in 

the lower regime need to be sufficiently large for the SETAR to perform well on 

average. 

The second alternative class of nonlinear models we use is represented by the 

generalized autoregressive conditional heteroscedasticity (GARCH) models 

developed by Bollerslev (1986) as an extension of ARCH models introduced by 

Engle (1982). GARCH models are nonlinear in variance since their crucial feature 

is the heteroskadasticity which assumes that volatility is not constant over time. 

Since the US GDP growth rate involves long-run phenomena, structural changes in 

volatility can occur with high probability. Kim and Nelson (1999), McConnel and 

Perez-Quiros (2000), Blanchard and Simon (2001) among others document a 

structural change in volatility of US GDP growth rate. 

Hamori (2000) presents evidence that GARCH(1,1) structure is reasonable for US 

GDP. However, Bollerslev, Chou and Kroner (1992) notice that while GARCH 

effect is highly significant with daily and weekly financial data, it tends to be much 

milder in less frequently sample time series such as quarterly US GDP growth rate. 

In this paper, we estimate an AR-GARCH model in which the GARCH structure in 

the variance equation is combined with an autoregressive structure of the mean 

equation. 

Our aim is to measure the forecasting accuracy for the US GDP growth rate of four 

different classes of nonlinear models mentioned above, SDAR, SETAR and AR-

GARCH, using the linear AR as a benchmark. The evaluation of the forecast 

accuracy of different models adopted is conducted according to two different 

criteria. We first evaluate the average performance using the root mean square error 

(RMSE) and the mean absolute error (MAE) over different forecast horizons, from 

1 to 8 quarters ahead. The second criteria is provided by the Diebold-Mariano test 

(DM), introduced and implemented by Diebold and Mariano (1995), to compare the 

forecast accuracy of two forecast methods. We use a modified version of the test 

proposed by Harvey, Leybourne and Newbold (1997) particularly adapted for small 
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samples. We will show that whereas the first criteria highlights a higher 

performance of SDAR models with respect to the alternatives analyzed, the same 

conclusion is not completely confirmed by the second criteria. 

The paper is organized as follows. Section 2 describes the data set used in the 

empirical analysis. Section 3 briefly introduces the models adopted. Section 4 

reports and discusses the estimation results. In section 5 we present the forecast 

accuracy comparison among the models. Section 6 concludes. 

 

2. Preliminary Data Analysis 

The empirical data analysis has been carried out on the quarterly US GDP growth 

rate. The observation period goes from 1950.Q2 until 2017.Q3 (270 observations) 

and is depicted in figure 1. The series appears mean-stationary while the variance 

features the volatility clustering phenomenon with periods with high volatility 

followed by periods of low volatility. Furthermore, volatility is higher in the first 

part of the time series (indicatively until the 1980s). 

Figure 1: Quarterly US GDP growth rate 
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2.1 Descriptive Statistics of the US GDP Growth Rate 

Table 1 reports the summary of the descriptive statistics of the US GDP growth rate. 

The series is characterized by excess kurtosis and positive asymmetry. The 

asymmetry characterized by positive skewness means that in the sample period a 

greater probability exists of large increases in GDP growth than larger decreases 

while the kurtosis exhibits leptokurticity with fat tails highlighting that extreme 

changes can occur more frequently. The Jarque-Bera test (Jarque and Bera, 1980 

and 1987) strongly rejects the normality hypothesis. Furthermore, the Ljung-Box 

test (Ljung and Box, 1978) indicates autocorrelation (up to 20 lags) in the time series. 

The McLeod-Li test (McLeod and Li, 1983) suggests a time-varying variance 

structure leading to the rejection of the null of no ARCH components up to 20 lags. 

 

Table 1: Descriptive statistics for US GDP growth rate 

N. of obs. 270 

Mean 0.00802 

Median 0.00768 

Maximum 0.05866 

Minimum -0.02630 

Std. dev. 0.00969 

Skewness 0.33119 

Kurtosis 3.43276 

Jarque-Bera (p-value) 0.00000 

Ljung-Box (p-value) 0.00005 

McLeod-Li (p-value) 0.00485 

 

2.2 Linearity Tests 

Table 2 reports the p-values of four different linearity tests performed on the full 

sample and on the last ten years of observations.  For each test we consider 

different lag structures (lag=1,2,3). We employ four different linearity tests 

intensively used in the literature: the TNN test, the WNN test, the Tlrt test and the 

Tsay test. In the Terasvirta Neural Network test (TNN test), introduced in Terasvirta, 

Lin and Granger, (1993), and in the White Neural Network test (WNN test), 

discussed in Lee, White and Granger (1993), the null is the hypotheses of linearity 

in mean. The Tlrt test carry out the likelihood ratio test for threshold nonlinearity 

and was implemented by Chan (1990). The null hypothesis is that the fitted model 

to the time series is an AR model with a specified lag structure and the alternative 

is that the fitted model is a threshold autoregressive model with the same lag 

structure for each regime. Finally, the Tsay test, which was introduced and 

implemented in Tsay (1986) is a test for quadratic nonlinearity in a time series in 

which the null hypothesis is a normal AR process. 

The results show that there is no strong evidence of nonlinearity in the full series, 

since in a number of cases tests lead to the acceptance of linearity. However, for at 
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least one lag all tests reject the null. In particular, the TNN test highlights low p-

values (less than 10\%) regardless of the lag structure assumed. On the other hand, 

the Tlrt test and the Tsay test reject the null of linearity only for a lag structure equal 

to 3, reflecting a weakness of the hypothesis of quadratic and threshold 

autoregressive nonlinearities. 

In order to realize whether the nonlinearity structure strengthens or not in more 

recent period, we conduct the same linearity tests in a portion of the sample 

corresponding to the last 10 years of observations. Unfortunately, table 2 shows a 

weakening of the nonlinearity to the point that only in one case (TNN test with lag 

= 3) the hypothesis is rejected. It is possible that this result can have consequences 

from the point of view of the forecasting evaluation as argued in Granger and 

Terasvirta (1993) and in Terasvirta and Anderson (1992). Indeed, in that papers the 

authors suggest that the superior in-sample performance of nonlinear models will 

only be matched out-of-sample if the nonlinear features also characterize the later 

period of observation. Furthermore, even Ljung-Box and McLeod-Li tests provide 

p-values significantly high (0,8672 and 0.9917) indicating that this last portion of 

the time series is free from autocorrelation and heteroskedasticity. 

 

Table 2: Linearity tests. p-values for different lag structures and different portions 

of the observed time series.  

US GDP: full sample 1950.Q2-2017.Q3 

 lag=1 lag=2  lag=3 

TNN test 0.0534 0.0762 0.0029 

WNN test 0.0512 0.4591 0.4793 

Tlrt test 0.3312 0.3112 0.0507 

Tsay test 0.1005 0.2152 0.0003 

US GDP: last 10 years 2008.Q1-2017.Q3 

 lag=1 lag=2  lag=3 

TNN test 0.4152 0.1143 0.0001 

WNN test 0.4161 0.3836 0.3826 

Tlrt test 0.2191 0.3304 0.1046 

Tsay test 0.2633 0.6185 0.3397 

Note: The cases highlighted in bold lead to the rejection of the null 

 

3. The Models 

With regard to introducing the models just proposed in the introduction, we briefly 

present their representation referring for more details to the cited literature. 

The benchmark model is the standard linear autoregressive model of order p (AR(p)) 

which has the following equation: 
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              {
𝑦𝑡 = 𝛼 + ∑ 𝜃𝑖𝑦𝑡−𝑖

𝑝
𝑖=1 + 𝜀𝑡,   t ≥ 2  

𝜀𝑡 ~ 𝐼𝐼𝐷 𝑁(0, 𝜎)
                       (3.2) 

 

where 𝜀𝑡  is independent of the lagged variables 𝑦𝑡−1, … . , 𝑦𝑡−𝑝 . The vector of 

parameters is 𝜗 = (𝛼, 𝜃1, … , 𝜃𝑝, 𝜎). The reader interested to linear autoregressive 

models can consult among others Hamilton (1994) and Brockwell and Davis (1991). 

To compare forecasting accuracy of US GDP growth rate we will specify and 

estimate five alternative nonlinear models within three different classes of models: 

SETAR, GARCH and SDAR. Below we briefly outline their representation. 

 

• Self-exciting threshold autoregressive (SETAR) models were first proposed in 

Tong (1978, 1983), Tong and Lim (1980) and discussed in detail in Tong (1995). 

SETAR models considered in this paper assume that a variable 𝑦𝑡 is a linear 

autoregression within a regime, but may move between regimes depending on 

the value assumed by the first lag 𝑦𝑡−1. We estimate two SETAR models, the 

first with two regimes and the second with three regimes. We denote SETAR(2, 

𝑝1, 𝑝2) the model with two regimes whose specification is 

 

        {
𝑦𝑡 = 𝛼1 + ∑ 𝜃1,𝑖𝑦𝑡−𝑖

𝑝1
𝑖=1 + 𝜀1,𝑡,    𝑦𝑡−1 ≤  𝑣 

𝑦𝑡 = 𝛼2 + ∑ 𝜃2,𝑖𝑦𝑡−𝑖
𝑝2
𝑖=1 + 𝜀2,𝑡,    𝑦𝑡−1 ≥ 𝑣

            (3.3) 

 

where 𝑣  is the threshold variable, 𝑝1  and 𝑝2  are the orders of the linear AR 

within each regime, 𝜀𝑗,𝑡 ~ 𝐼𝐼𝐷 𝑁(0, 𝜎𝑗), j=1,2.  

Furthermore 𝜀1,𝑡 and 𝜀2,𝑡are independent for all t.  

The vector of parameters is 𝜗 = (𝛼1, 𝛼2, 𝜃1,1, … , 𝜃1,𝑝1
, 𝜃2,1, … , 𝜃2,𝑝2

, 𝜎1, 𝜎2). 

SETAR models with three regimes, denoted by SETAR(3, 𝑝1, 𝑝2, 𝑝3) are defined 

as: 

 

                         {

𝑦𝑡 = 𝛼1 + ∑ 𝜃1,𝑖𝑦𝑡−𝑖
𝑝1
𝑖=1 + 𝜀1,𝑡,    𝑦𝑡−1 ≤ 𝑣1 

𝑦𝑡 = 𝛼2 + ∑ 𝜃2,𝑖𝑦𝑡−𝑖
𝑝2
𝑖=1 + 𝜀2,𝑡,    𝑣1 < 𝑦𝑡−1 ≤ 𝑣2

𝑦𝑡 = 𝛼3 + ∑ 𝜃3,𝑖𝑦𝑡−𝑖
𝑝3
𝑖=1 + 𝜀3,𝑡,    𝑦𝑡−1 > 𝑣2

            (3.4) 

 

where 𝑣1 and 𝑣2  are two threshold variables, 𝑝1, 𝑝2, 𝑝3 are the orders of the 

linear AR within each regime 𝜀𝑗,𝑡 ~ 𝐼𝐼𝐷 𝑁(0, 𝜎𝑗), j=1,2,3. The vector of parameters 

is 𝜗 = (𝛼1, 𝛼2, 𝛼2, 𝜃1,1, … , 𝜃1,𝑝1
, 𝜃2,1, … , 𝜃2,𝑝2

, 𝜃3,1, … , 𝜃3,𝑝3
, 𝜎1 , 𝜎2, 𝜎3). 

 

• GARCH models were proposed in Bollerslev (1986) as a generalization of 

ARCH model introduced in Engle (1982). In this paper we consider an AR(p) 

component in place of a constant mean for the equation of the variable 𝑦𝑡 in 

light of the preliminary analysis carried out in the previous section on the time 

series of US GDP growth rate.  
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Therefore, our specification of the model is the following: 

 

      {

𝑦𝑡 = 𝛼 + ∑ 𝜃𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡,    𝑡 ≥ 1 

𝜀𝑡|𝐹𝑡−1 ~ 𝐼𝐼𝐷 𝑁(0, ℎ𝑡)

ℎ𝑡
2 = 𝜔0 + 𝜔1𝑦𝑡−1

2 + 𝜔2ℎ𝑡−1
2

                         (3.5) 

 

where 𝐹𝑡−1is the information set which includes the lagged values of the variable 

𝑦𝑡−1, 𝑦𝑡−2, …. and the conditional variance has a GARCH(1,1) specification. The 

vector of parameters is 𝜗 = (𝛼, 𝜃1, … , 𝜃𝑝,, 𝜔0, 𝜔1, 𝜔2). 

 

• State-dependent autoregressive (SDAR) models have recently been discussed 

in Gobbi and Mulinacci (2020) where two specifications of them have been 

proposed. The models are characterized by an autoregressive coefficient which 

is a function of the first lagged variable 𝑦𝑡−1 and their equation is of the form 

(1.1). The persistence function 𝜑(𝑦𝑡−1; γ) depends on a set of parameters γ 

and must satisfy a number of assumptions in order to guarantee that the resulting 

process (𝑦𝑡)𝑡≥1 is stationary and ergodic, as shown in Gobbi and Mulinacci 

(2020). The choice of the function $\psi$ completely determines the SDAR 

model. In this paper we consider two specifications of the model, denoted by 

SDAR1 and SDAR2. Both satisfy the required assumptions as shown in Gobbi 

and Mulinacci (2020). The first SDAR1 model is defined as 

 

       {
𝑦𝑡 = 𝛼 + 𝑒−(𝛾0+𝛾1𝑦𝑡−1

2𝑟 )𝑦𝑡−1 + 𝜀𝑡,   t ≥ 2  
𝜀𝑡 ~ 𝐼𝐼𝐷 𝑁(0, 𝜎)

                  (3.6) 

 

Where 𝛾0, 𝛾1 > 0. The error term 𝜀𝑡is independent of 𝑦𝑡−1 for all t. The vector 

of parameters is 𝛾 = (𝛼, 𝛾0, 𝛾1, 𝑟, 𝜎) . Remark that this specification is a 

generalization of EXPAR models introduced by Haggan and Ozaki (1981). Some 

insights about the persistence function 𝑒−(𝛾0+𝛾1𝑦𝑡−1
2𝑟 )  are needed. We can notice 

that it is decreasing with 𝑦𝑡−1 and always within (0,1). Moreover, once fixed 𝛾0 

and 𝛾1, its maximum is 𝑒−𝛾0 assumed for 𝑦𝑡−1 = 0. From the point of view of 

economic interpretation, this means that the persistence induced by the 

autoregressive coefficient tends to be higher when the (quarterly) GDP growth rate 

is low, whereas it decreases when the rates are bigger both positive (strong 

expansion) or negative (recession). Since the SDAR model accounts only the first 

lag of the variable, we have chosen a function that cannot assume negative values 

for negative levels of 𝑦𝑡−1, which would not be adequate in the event of recessions 

because they would represent an excessive reactivity of the GDP growth rate which 

is not verified in the data. The second SADR2 model is: 

 

                {
𝑦𝑡 = 𝛼 +

1

𝛾0+𝛾1𝑦𝑡−1
2𝑟 𝑦𝑡−1 + 𝜀𝑡,   t ≥ 2  

𝜀𝑡 ~ 𝐼𝐼𝐷 𝑁(0, 𝜎)
                  (3.7) 
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where 𝛾0 > 1 and 𝛾1 > 0, whereas the statistical properties of 𝜀𝑡 and the vector 

of parameters are the same of the SDAR1 model. For this specification the same 

considerations about the persistence function apply. We can only observe that the 

maximum is 
1

𝛾0
. 

         

4. Estimation 

The empirical results relative to the parameter estimates of the models presented 

above are reported in tables 7-11 in the appendix. We use in-sample observations 

(𝒚𝟏, … , 𝒚𝒏) from 1950.Q2 to 2017.Q3. 

Within each class of models (AR, SETAR, AR-GARCH and SDAR) we select the 

best one following the AIC criterion. The AR lag order p is selected by fixing a 

maximum lag length. As reported in table 7 the AR(2) is the optimal linear model. 

The same procedure is used for SETAR models once the number of regimes is fixed. 

For two regimes, d=2, the lag orders 𝒑𝟏and 𝒑𝟐 may assume values from 1 to 5 

and the selected model is that for which the pair (𝒑𝟏, 𝒑𝟐) minimizes the AIC. A 

SETAR(2,1,1) is the selected model with two regimes (table 8). For three regimes, 

d=3, we have three autoregressive equations for each regime and the lag orders 

𝒑𝟏, 𝒑𝟐 and 𝒑𝟑 vary from 1 to 5. The selected model is that for which the vector 

(𝒑𝟏, 𝒑𝟐, 𝒑𝟑) minimizes the AIC. A SETAR(3,3,3,1) is the selected model with 

three regimes (table 9). We note that both autoregressive coefficients in the 

SETAR(2,1,1) model are positive but the persistence in more high in the upper 

regime than in the lower. On the other hand, in the SETAR(3,3,3,1) model the third 

autoregressive coefficient in the lower regime is negative denoting that economy 

reacts to recession rather quickly. 

As for AR-GARCH models, in line with the number of lags estimated in the linear 

model, we select an AR(2)-GARCH(1,1) model after checking that a higher order 

in the AR component or in the conditional variance structure produced a lower AIC. 

The parameter estimates of this model are reported in table 10. Finally table 11 

shows the results of estimating SDAR models for both specifications adopted, 

SDAR1 and SDAR2, depending of the chosen persistence function $\psi$. The 

estimation technique is the quasi-maximum likelihood (QML). In Gobbi and 

Mulinacci (2020) asymptotic properties of the QML estimator 𝛝̂ = (𝛂̂, 𝛄̂𝟎, 𝛄̂𝟏, 𝐫̂, 𝛔̂) 

of the vector of parameters𝛝are established. As the table clearly indicated, all 

parameters are highly significant. The nonlinear term, 𝜸𝟏, is widely higher than 1 

for both specifications, indicating that the nonlinearity in time series is detected by 

both models. Some considerations about the estimated persistence functions 

𝛗̂𝟏(𝐲𝐭−𝟏; 𝛂̂, 𝛄̂𝟎, 𝛄̂𝟏, 𝐫̂) = 𝐞−(𝛄̂𝟎+𝛄̂𝟏𝐲𝐭−𝟏
𝟐𝐫̂ ) and  𝛗̂𝟐(𝐲𝐭−𝟏; 𝛂̂, 𝛄̂𝟎, 𝛄̂𝟏, 𝐫̂) =

𝟏

𝛄̂𝟎+𝛄̂𝟏𝐲𝐭−𝟏
𝟐𝐫̂ are 

needed. Figures 2 and 3 depict the dynamics of the US growth rate overlapped to 

the dynamics of estimated persistence functions 𝛗̂𝟏 (figure 2) and 𝛗̂𝟐 (figure 3).  
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Figure 2: SDAR1 model. US GDP growth rate (line, left vertical axis) and 

estimated persistence function 𝒆−(𝜸̂𝟎+𝜸̂𝟏𝒚𝒕−𝟏
𝟐𝒓̂ ) (points, right vertical axis) 

 

 

Figure 3: SDAR2 model. US GDP growth rate (line, left vertical axis) and 

estimated persistence function 
𝟏

𝜸̂𝟎+𝜸̂𝟏𝒚𝒕−𝟏
𝟐𝒓̂  (points, right vertical axis) 
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We note that 𝜑̂1 assumes on average lower values than 𝜑̂2 which takes on a much 

narrower range of values. This means that the persistence estimated by the SDAR1 

model is lower than estimated by the SDAR2 model. Indeed, the average value of 

𝜑̂1on the whole sample is 0.3311 whereas for the SDAR2 model the average value 

of 𝜑̂2 is 0.4214. Furthermore, both functions are slightly increasing, in the sense 

that, on average, the persistence appears higher in the last period of the observed 

time series. This is confirmed for the SDAR1 model if we consider the average 

values of 𝜑̂1and 𝜑̂2 over time. In the first half of the sample (until the mid 80's) 

the average is 0.3252 while in the second half the average is 0.3368. On the other 

hand, for the SDRA2 model the dynamics is more volatile in the first half of the 

sample than in the second half where the value of the time-varying autoregressive 

coefficient rarely drops below 0.42. This behaviour appears negatively correlated 

with the dynamics of the conditional volatility estimated by the AR(2)-GARCH(1,1) 

model as reported in figure 4. It is clear that the volatility of the US GDP growth 

rate is significant higher in the first period of the sample with respect to the second 

period. 

Figure 4: Estimated conditional volatility from the AR(2)-GARCH(1,1) 

model 
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To evaluate if the proposed models are well specified we consider the residuals 

diagnostics in table 3, which reports p-values associated to Ljung-Box and McLeod-

Li tests, both up to 20 lags. The results reflect a good specification for all models 

under considerations since the hypothesis of absence serial autocorrelation of 

residuals and of squared residuals can be accepted. A separate consideration 

deserves SDAR models proposed in this paper. As expected, they seem more 

suitable for modeling the autocorrelation characterizing the time series of US GDP 

growth rate rather than the heteroskedasticity. Indeed, whereas the Ljung-Box test 

provides a strong evidence in favor of the absent of serial autocorrelation in the 

residuals, the p-value of the McLeod-Li test is rather low both for SDAR1 and 

SDAR2. In particular, in the case of the SDAR2 model an explanation can be found 

in the fact the estimated  persistence function 𝝋̂𝟐 takes values in a much narrower 

range than 𝝋̂𝟏 highlighting a less adjustment to the time series dynamics. However, 

this seems to depend mainly on the nature of the data itself, since in the case of 

realized volatility the ML test result was more strong (Gobbi and Mulinacci, 2020). 

 

Table 3: Model diagnostics.  

 AR(2) SETAR(2,1,1) SETAR(3,3,3,1) AR(2)-GARCH(1,1) SDAR1 SDAR2 

Res. autocorr. 0.8948 0.8238 0.9386 0.3815 0.4493 0.2039 
Sq. Res. autocorr. 0.4138 0.6331 0.9792 0.9890 0.1294 0.0657 

Note: Res. autocorr. and Sq. Res. autocorr. reports p-values of Ljung-Box and McLeod-Li 

tests of serial autocorrelation of fitted residuals and squared fitted residuals 

 

5. Forecasting 

We assess the forecast performance of each estimated model relative to linear AR(2) 

by means of Monte Carlo simulation. For SETAR models, Clements and Smith 

(1997) compare a number of alternative methods of obtaining multi-period forecasts 

and conclude that Monte Carlo method perform reasonably well. Forecasts from 

AR-GARCH model are obtained recursively from the variance equation. SDAR 

models generate forecasts by Monte Carlo simulation as proposed in Gobbi and 

Mulinacci (2020). 

We use 8 values out-of-sample of US GDP growth rate from 2017.Q4 to 2019.Q3, 

denoted by (𝒚𝒏+𝒉)𝒉=𝟏,…,𝑯where n is the last in-sample observation and H=1,...,8 is 

the forecast horizon. Let  (𝒚̃𝒏+𝒉)𝒉=𝟏,…,𝑯be the forecast values of the state variable 

generated from the models under consideration. Therefore, the forecast errors are 

given by𝒆𝒏+𝒉 = 𝒚𝒏+𝒉 − 𝒚̃𝒏+𝒉, with h=1,...,H. To compare the average accuracy of 

the forecasts we use two measures: the root mean square error (RMSE) and the 
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mean absolute error (MAE). The RMSE is defined as √
𝟏

𝑯
∑ 𝒆𝒏+𝒉

𝟐𝑯
𝒉=𝟏 whereas the 

MAE is given by 
𝟏

 𝑯
∑ |𝒆𝒏+𝒉|𝑯

𝒉=𝟏 . Tables 4 and 5 and figures 5 and 6 summarize the 

results in terms of relative efficiencies for a forecast horizon from 1 to 8 quarters 

ahead. The relative efficiency (RE) is obtained as the ratio of the RMSE (or MAE) 

of the model under consideration and the RMSE (MAE) of the model used as 

benchmark, i.e., the linear AR(2). A value of RE greater or equal than unity 

indicates that the benchmark model provides more accurate forecast than the 

alternative nonlinear model. Form table 4 and figure 5 we deduce that, if the RE is 

measured in terms of the RMSE, only SDAR models offer a better performance 

than the linear AR(2) at least for the first 4 quarters. After this horizon the accuracy 

seems to be equivalent even if the linear AR(2) is slightly higher. On the other hand, 

the remaining alternative models tend to be worse but the SETAR(3,3,3,1) model is 

the only one to improve significantly over time until it become superior than the 

linear AR(2) for the last two forecast horizons. As regards SETAR models, Tiao 

and Tsay (1994) find that the forecasts obtained with this class of models are 

markedly superior than those obtained with the linear AR models if we only 

consider forecasts which are made when the economy is in the lower regime 

reflecting the ability of the SETAR models to capture the movements out of 

recession. In our observed time series the percentage of data belonging to the lower 

regime is of 36%, and this partly explains why on average the forecasts obtained by 

the SETAR model are lower.   

The same considerations are strengthened if we consider the RE in terms of the 

MAD, as in table 5 and figure 6. In this case, both SDAR models provide a 

prediction with an accuracy higher than the benchmark for each forecast horizon 

and in the first four quarters (basically over the course of a year) the gain in the 

accuracy is considerable. Based on this measure we can conclude that there is an 

evidence that SDAR models has superior predictive ability compared to alternative 

models analyzed in this paper. These findings are not surprising if we consider the 

preliminary results on the sample. As shown in table 2, the evidence of nonlinearity 

is not strong, and in particular, this is confirmed and strengthened in the last ten 

years. The Tlrt test seems to exclude the presence of a threshold autoregressive 

structure in the last portion of the sample regardless of the lag considered. This can 

explain the relatively worse performance of SETAR models than the alternatives. 

SDAR models appear less conditioned by the kind and strength of the nonlinearity 

in the data.  
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Table 4: Relative efficiency of the forecasting accuracy measure RMSE with AR(2) 

model as benchmark.  

Number of quarters 

ahead 

        

H 1 2 3 4 5 6 7 8 

SETAR(2,1,1) 2.7701 2.1335 2.4871 2.4472 1.2505 1.2512 1.2012 1.1271 

SETAR(3,3,3,1) 2.0609 1.4182 2.1243 2.2162 1.0267 1.0716 0.9568 0.8736 

AR(2)-GARCH(1,1) 1.0055 1.1190 1.0387 1.0954 1.0916 1.0971 1.1167 1.1297 

SDAR1 0.4418 0.9250 0.8955 0.9125 1.0091 1.0071 1.0156 1.0041 

SDAR2 0.6304 0.9509 0.9161 0.9671 1.0277 0.9973 1.0138 1.0313 

Note: A value of the ratio lesser than 1 indicates that the nonlinear model ensures more 

accuracy than the AR(2) model 
 

Table 5: Relative efficiency of the forecasting accuracy measure MAE with AR(2) 

model as benchmark.  

Number of 

quarters ahead 

        

H 1 2 3 4 5 6 7 8 

SETAR(2,1,1) 2.7701 2.0271 2.4872 2.1588 1.4820 1.4833 1.3718 1.2552 

SETAR(3,3,3,1) 2.0609 1.1984 1.8001 2.0992 1.2228 1.4214 1.1549 0.9791 

AR(2)-

GARCH(1,1) 

1.0055 1.1044 0.9929 1.0945 1.0925 1.1457 1.1561 1.1614 

SDAR1 0.4418 0.8623 0.8587 0.8365 0.9523 0.9630 0.9789 0.9924 

SDAR2 0.6304 0.8938 0.8636 0.9346 0.9946 0.9719 0.9987 1.0166 

Note: A value of the ratio lesser than 1 indicates that the nonlinear model ensures more 

accuracy than the AR(2) model 
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Figure 5: Relative RMSEs for each nonlinear model expressed in terms of 

that for AR(2). Legend: "star" for SETAR(2,1,1), "circle" for 

SETAR(3,3,3,1), "square" for AR(2)-GARCH(1,1), "point" for SDAR1 and 

"x" for SDAR2 

 

Figure 6: Relative MAEs for each nonlinear model expressed in terms of that 

for AR(2). Legend: "star" for SETAR(2,1,1), "circle" for SETAR(3,3,3,1), 

"square" for AR(2)-GARCH(1,1), "point" for SDAR1 and "x" for SDAR2 
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To further investigate the problem of forecasting accuracy of the models under 

study, we use the Diebold-Mariano (DM) test proposed by Diebold and Mariano 

(1995) and modified by Harvey, Leybourne and Newbold (1997) that corrects for 

the tendency of the test statistics to be over-sized. The null hypothesis of equal 

forecast accuracy between two methods is tested using a loss function 𝒈(𝒆𝒏+𝒉
𝒊 ), 

where 𝒆𝒏+𝒉
𝒊  is the h-step ahead forecast error generated from model i, with 

h=1,...,H, and 𝒈(𝒙) = 𝒙𝟐. The loss differential for competitor forecasts i and k is 

defined as  𝒅𝒏+𝒉 = 𝒈(𝒆𝒏+𝒉
𝒊 )- 𝒈(𝒆𝒏+𝒉

𝒌 ) , so that equal forecast accuracy entails 

𝑬[𝒅𝒏+𝒉] = 𝟎. Diebold and Mariano (1995) derive the asymptotic distribution of the 

sample mean loss differential 𝒅̅. We perform the DM test considering the forecasts 

generated by the linear AR(2) model as the reference method (method 1) and the 

forecasts obtained from one of the alternative nonlinear model under study as the 

method 2. Then, the null is the hypothesis that method 1 and method 2 provide equal 

accuracy. The alternative can be specified in three different ways: "two-sided", 

method 1 and method 2 have different levels of accuracy, "greater", method 2 is 

more accurate than method 1, "less", method 2 is less accurate than method 1. With 

this construction in mind, we can evaluate the p-values of the test reported in table 

6 for the first 4 forecast horizons. Differently than the case of relative efficiencies, 

the DM test does not provide a clear indication in favor of SDAR models. More in 

general, there is no evidence in favor of any nonlinear model under study. Indeed, 

all p-values are sufficiently high to induce to accept the null regardless of the 

alternative. This suggests that for the DM test both SDAR models are equivalent to 

the linear AR(2) as methods of forecasting. The same consideration holds for both 

SETAR models, whereas for the AR(2)-GARCH(1,1) model in two cases we reject 

the null when the alternative is of type "less", denoting that method 1 provided by 

the benchmark is preferred to method 2 provided by the AR(2)-GARCH(1,1). 

In conclusion, we can assert that there is no tendency for SDAR models to be more 

accurate than the linear AR(2) model, even if it is the case to remark that the small 

number of observations available may influence the results of the test. On the other 

hand, Diebold (2015) argues that DM test is not intended for comparing models but 

is intended for comparing forecasts. 
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Table 6: p-values of the modified version of the Diebold-Mariano test proposed by 

Harvey, Leybourne and Newbold (1997) 

Number of 

quarters ahead 

 H=1 H=2 H=3 H=4 

 Alternative     

SETAR(2,1,1) 

 

“two-sided” 

“greater” 

“lesser” 

0.5342 

0.7329 

0.2671 

0.6184 

0.6908 

0.3092 

0.6954 

0.6523 

0.3477 

0.7530 

0.6248 

0.3752 

SETAR(3,3,3,1) 

 

“two-sided” 

“greater” 

“lesser” 

0.6808 

0.3404 

0.6596 

0.6661 

0.3333 

0.6667 

0.6859 

0.3429 

0.6572 

0.8202 

0.4101 

0.5899 

AR(2)-

GARCH(1,1) 

 

“two-sided” 

“greater” 

“lesser” 

0.0527 

0.9737 

0.0262 

0.0726 

0.9635 

0.0364 

0.1337 

0.9331 

0.0668 

0.2911 

0.8541 

0.1458 

SDAR1 

 

“two-sided” 

“greater” 

“lesser” 

0.8862 

0.5816 

0.4181 

0.7810 

0.6075 

0.3905 

0.8691 

0.5647 

0.4316 

0.9056 

0.5472 

0.4528 

SDAR2 

 

“two-sided” 

“greater” 

“lesser” 

0.2788 

0.8606 

0.1394 

0.2161 

0.8919 

0.1081 

0.3206 

0.8397 

0.1641 

0.5275 

0.7363 

0.2637 

The null hypothesis is that the two methods of forecasting (method 1 and method 2) 

have the same forecast accuracy. Method 1 is the AR(2) model whereas method 2 

is the contender nonlinear model. The $p$-values listed in column refers to three 

different alternatives: "two.sided", the alternative hypothesis is that AR(2) and 

method 2 have different levels of accuracy, "greater", the alternative hypothesis is 

that method 2 is more accurate than AR(2), "less", the alternative hypothesis is that 

method 2 is less accurate than AR(2) 

 

6. Concluding Remarks and Future Investigations 

With regard to measuring the forecast accuracy for the quarterly US GDP growth 

rate, we consider a state-dependent autoregressive (SDAR) model in which the 

autoregressive coefficient is a specified (nonlinear) function of the first lagged 

variable 𝒚𝒕−𝟏. The study is motivated by the conjecture that the model can yield a 

gain in forecasting accuracy at least for short or medium horizons as proved in 

Gobbi and Mulinacci (2020) for time series of weekly realized volatilities. The 

comparison is made with two different family of nonlinear models such as SETAR 

models (with 2 or 3 regimes) and AR-GARCH models. The forecast results are 

compared each other using a linear AR(2) model as benchmark. The evaluation of 
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the results depends partly on the measure of forecasting accuracy adopted. Indeed, 

the relative RMSEs and MAEs provide a consistent evidence in favour of SDAR 

models compared with the competitors considered. The same evidence is not 

strongly confirmed by the Diebold-Mariano test, which shows results without a 

clear direction. In conclusion, the results encourage further investigations in order 

to explore the potentialities of this family of models. Three possible directions 

immediately come to mind. The first concerns different specifications of the 

persistence function in order to make more flexible the dynamics of the functional 

coefficient allowing to explore negative values. The second regards the lag order of 

SDAR models: classes of SDAR(p) models can be considered in which p 

persistence functions depend on the first p lags of the variable. The third direction 

is that to address the problem of alternative (asymmetric?) distributions of the error 

term. 
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Appendix: Estimation Results 

In this appendix we report the parameter estimates and relative standard errors for 

each model we have considered.  

 

Table 7: AR(2) model 

 AR(2)  

Parameter Estimate SE 

𝜶 -0.0001744 0.000545596 

𝜽𝟏 0.2424 0.05967707*** 

𝜽𝟐 0.1438 0.05912069*** 

Residuals variance 0.00008006  

AIC -1765.6  

 

Table 8: SETAR(2,1,1) model 

 SETAR(2,1,1)  

Parameter Estimate SE 

𝜶𝟏 0.00385287 0.00099631*** 

𝜽𝟏,𝟏 0.16463935 0.08071829*** 

𝜶𝟐 0.00643961 0.00102267*** 

𝜽𝟐,𝟏 0.33423222 0.08150986*** 

Residuals variance 0.00007705  

AIC -2547  

 

Table 9: SETAR(3,3,3,1) model 

 SETAR(3,3,3,1)  

Parameter Estimate SE 

𝜶𝟏 0.00543833 0.00192818*** 

𝜽𝟏,𝟏 0.22227239 0.13149926** 

𝜽𝟏,𝟐 0.04383025 0.20883351 

𝜽𝟏,𝟑 -0.24087024 0.13134799** 

𝜶𝟐 -0.00015534 0.00428223 

𝜽𝟐,𝟏 0.06276289 0.11205026 

𝜽𝟐,𝟐 0.25931445 1.03329799 

𝜽𝟐,𝟑 0.37828874 0.12097545*** 

𝜶𝟑 0.00644022 0.00101855*** 

𝜽𝟑,𝟏 0.33414492 0.08318353*** 

Residuals variance 0.00007303  

AIC -2548  
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Table 10: AR(2)-GARCH(1,1) model 

 AR(2)-GARCH(1,1)  

Parameter Estimate SE 

𝜶 0.003830 0.000736*** 

𝜽𝟏 0.27930 0.06937*** 

𝜽𝟐 0.26041 0.06320*** 

𝝎𝟎 0.00000 0.000000* 

𝝎𝟏 0.35453 0.09174*** 

𝝎𝟐 0.64672 0.08248*** 

Residuals variance 0.00008112  

AIC -6.745015  

 

Table 11: SDAR models 

 

 

 

 

 

 SDAR1  SDAR2  

Parameter Estimate SE Estimate SE 

𝜶 0.00501 0.00063*** 0.00457 0.00055*** 

𝜸𝟎 0.66578 0.02678*** 2.36048 0.01604*** 

𝜸𝟏 1.73221 0.01381*** 2.69493 0.07033*** 

𝒓 0.19363 0.00791*** 0.58967 0.00117*** 

𝝈 0.01017 0.00154*** 0.00965 0.00165*** 

Residuals variance 0.00008461  0.00008603  

AIC -1747.372  -1746.778  


