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1. Introduction

As an important invariant of topological conjugacy, the notion of topological
entropy was introduced by Adler, Konheim and McAndrew [1] in 1965 [3].
Topological entropy is a key tool to measure the complexity of a classical dynamical
system, i.e. the exponential growth rate of the number of distinguishable orbits of
the iterates of an endomorphism of a compact metric space. In 1973, Bowen [2]

introduced the topological entropy h[§p (T,Z) for any set Z in a topological

dynamical system X , in a way resembling Hausdorff dimension, where X is a
compact metric space and T:X —>X is a continuous self-map.
Bowen topological entropy plays a key role in topological dynamics and dimension
theory [2]. In 2012, Feng and Huang [6] showed that there is certain variational
relation between Bowen topological entropy and measure-theoretic entropy for

arbitrary non-invariant compact set of a topological dynamical system (X,T).

Following the idea of Brin and Katok [8], they defined the measure-theoretic
entropy for Borel probability measure on X for their results.

In contrast with the autonomous discrete, in contrast with the autonomous discrete
case [12], the properties of the entropies for the nonautonomous dynamical systems
have not been fully investigated. In order to have a good understanding of the
topological entropy of a skew product of dynamical systems (as we know that the
calculation of its topological entropy can be transformed into that of its fibers),
Kolyada and Snoha [4] proposed the concept of topological entropy in 1996 for a
nonautonomous dynamical system determined by a sequence of maps.

A nonautonomous discrete dynamical system (in short: NADDS) is a natural
generalization of classical dynamical systems, its dynamics are determined by a
sequence of continuous self-maps f :X — X where neN, defined on a

compact metric space X .
By a nonautonomous dynamical system (NADDS for short) we understand a pair

(X,{ fn}:zl), where X isacompact metric space endowed with a metric d and

{fn}:;l, is a sequence of continuous maps from X to X. In 2013, Kawan [10]

generalized the classical notion of measure-theoretical entropy established by
Kolomogorov and Sinai to NADSs, and proved that the measure-theoretical entropy
can be estimated from above by its topological entropy. Following the idea of Brin
and Katok [8] and Zhou [7] introduced the measure-theoretical entropy in
nonautonomous case and established a variational principle for the first time. More
results related to entropy for NADSs were developed in [11]. In this paper, We
introduce ideas of Wang [9] to nonautonomous systems to establish new variational
principles for Bowen topological entropy for nonautonomous dynamical systems.
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Give a NADDS (X{ fn};). For each neN", the Bowen metric d, on X is

defined by d,(x,y)= max d(f/(x),f/(y)). For every £>0, we denote by

0<i<n-1

B,(x,¢) the open ball of radius & in the metric d, around x, i.e.,
Bn(x,g)z{yex :dn(x,y)<g}.

We also consider a nonautonomous dynamical system (for short NADS) (X,¢)
Where(X,d) is a compact metric space and ¢:[O,oo)>< X — X is a continuous

map with ¢(0, x):x for xe X . We want to know whether there is certain

variational relation of entropy for nonautonomous dynamical systems. For our study,
we need to define the measure-theoretic entropy for arbitrary Borel probability
measure in nonautonomous case.

Given a NADS (X,¢). For any te[o,oo), the t Bowen metric d/ on X is
defined by

d? (x,y) = max d(g(s.x),4(s.y))
For every £ >0, we denote by B{”(x,g) the open ball of radius ¢ in the metric
d’? around X, i.e.,

Bt‘”(x,g):{ye X :d? (x, y)<g}.
Write ¢'(x)=¢(i,x) fori=12,--- andxe X .
In this case, we take f, (x)=¢"(x), then {¢”}n=l isa NADDS.
Let M (X) denote the set of all Borel probability measureson X, Z< X and
ueM(X),(x.{f,}7,) isaNADDS.
(1) Aset EcZ issaidtobe an (n,& Z)-separated set if x,yeE with x=y
implies d?(x,y)>¢.Let r,(&,2) denote the maximum cardinality of (n,¢,Z)

-separated set.
(2) Aset FcZ issaid to be an (n,g,Z)-spanning set if, for any xe X, there

exists yeF with df(x,y)<e. Let s (&2Z) denote the minimum cardinality
of (n,&,Z)-spanning sets.
(3)Aset FcZ issaidtobea (u,n,&,8)-spanning setif the union | J B, (x,¢)

xeF

has 4 -measure more than or equal tol-&. Let r (x,¢,6) denote the minimum

cardinality of (z,n,¢,d)-spanning sets.
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(4) We introduce a useful set: X, ;= {Z cX:u(Z) 21—5}.

Then it is clear that
r(ue6)=inf r (&2)

ZEXﬂﬁ

An open cover of X is a family of open subsets of X , whose union is X . For
two covers U and V we say that U is arefinement of V if foreach UeU

there is V eV with U eV. ForneN and open coversU,,, U, ,---, U /of X
we denote

VU =[ANAN-NAACUAE, AU}

Note that \,U, is also an open cover of X . We denote by N (U) the minimal
i=1
cardinality of all subcovers chosen from U .
Set
f’=id,, f" = fi+(n—l) o f,

i+(n-2

) fi+1° fi' fi_n :(fin)_l

Forall i,neN, where id, isthe identity mapon X.

Let
log N (i_/lfl“UiJ
® IET i=0
o ({]..-0) = limsup——

The topological entropy is defined by
Nep (X{ fn}?:l) = {hmp ({ fb U): U is an open cover of X} .

It was proved in \cite{ AKM} that for every NADS, we have

e (X, {1}, ) = tim Iirrjfpw _limlimsup 2% (&:X) r”r(]g’ X)

£—0 n—oo

Following the idea of Katok \cite{ AKM},we give the following.
Let 2 M (X ). The NADDS Katok measure-theoretical lower and upper entropies

of u are defined respectively by
oo T |
hK({fn}n1):I|mI|mI|m|nfHlogrn(y,g,é)

—u 65050 noow
K

h., ({ fn};) — lim lim Iimsup%log r(we,5)

650650
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In this paper, we introduce many quantities for Borel probability measure
pueM(X), respectively denoted by eﬂ({fn}:;l), e ({ fn}:_l),e#({ f.} ) :

—u n=1

e ({ fn}::l), and so on.

o

According to the relations of the several types of NADS topological entropies, it is
natural to consider relationship of some new quantities and Katok measure-
theoretical lower and upper entropies. Therefore, we have the first main result.

2. Main Results
Theorem 2.1 Let (X, {f,}, |beaNADDS, ueM(X).

Then following statements hold.

o0

(1) Forany Z c X ,htﬁp({fn}n:l,z)s ng’p({fn};,z).

@ h((6),)= (i)

@ 0 ({)=e (1))

@ e, ({fhr)se ({hh)<es({th)

©) & ({1 <5 ({1 = imtim inf ,({1,17,.2.¢).

where the definitions of these notions will be given in Section 3.

Theorem 2.2 Let (X,{fn};) be a NADDS. If K< X is a non-empty and

compact, then

hgp ({ fn};o_l,K)zsup{eﬂ({ fn}?:l);ﬂe M (X)"U(K)zl}'

Theorem 2.3 Let (X,¢) be a NADS, peM(X). Then following statements
hold.

(1) Forany Zc< X ,hg (4.Z2)<hg (¢.2).

@ e, (#)<e (H)<es(p).

(3) e,(4)<e;(¢)=limlim inf hey (4,2, €).

e—>006->0Z
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Theorem 2.4 Let (X,¢) be a NADS. If K < X isnon-empty and compact, then
he, (4, K)=supfe, (4): xeM (X), u(K)=1}.

3. Preliminary Notes
3.1  NADDS

In this subsection, let (X{ fn}::l) be a NADDS, next we introduced NADDS's

entropies. Following, we give some definitions of several NADDS topological
entropies of subsets.

Definition3.1Let Z< X, s>0, NeN and &>0, define

M;lg({ fn};,Z)z inf > exp(-sn,),
where the infimum is taken over all finite or countable families {Bni (xi,g)} such
that x, € X, >N and [ JB, (x,£)=Z. The quantity M;yg({ fn}::l,z)

does not decrease as N increase and & decreases, hence the following limits

exist:
Mj({fn};,z): mm;,g({ h2),
M*({f),.Z) =timMm:({T,}7,.Z)).

Bowen's topological entropy htﬁp ({ fn};,z) is defined as a critical value of the

parameters s, where MS({ fn};,z) jumps from oo to 0, i.e.

] 0 ,s>n§p({fn}f:l,z)
M ({ fn}n:1'2)=

o s<h,({f,)7,.2)
Definition 3.2Let Z< X .For s>0, NeN and ¢£>0, define

P, ({ fb Z) =sup > exp(-sn,),

where the supremum is taken over all finite or countable pairwise disjoint families
{Bni (xi,g)} suchthatx, e Z, n, >N foralli,
where
B, (x.&)={yeX:d,(xy)<e}.
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The quantity Pﬁ,g({fn};,z) does not decrease as N ,¢ decrease.
Hence the following limit exists:

() 1 2)

N —w

Define
o ((ngr2) =it See ()7, 2): Uz 22
There exists a critical value of the parameters s, which we will denote by
hﬁp({fn}::l,z,g),where Pj({ fn}::l,z) jumps from o to 0, i.e.
0 \s>hG ({11, 2.9)
o s<h({f.),.2.¢)
Note that h[f)’p({ fn}w ,Z,g) increases when & decreases.

n=1
We call

W ({h 2 )= timis ({1, 2.2)
the topological packing entropy of Z .

Definition 3.3 LetZ < X .Fors>0,NeN and ¢>0, define

R;‘g({ fn}::l,z) =inf > exp(-sN)
where the infimum is taken over all finite or countable families {BN (xi,g)} such
that x e X ,and | JB (x.£)2Z.

Let
R ({f.)7,.2z)=timinf Ry, ({f,} .2},
R. ({ fn};,z) = limsup RS, ({ fn}::l,z)
and
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The lower and upper capacity topological entropies of {fn}:l1 restrictedto Z are
defined respectively by

ch ({tu1,)=timen, ({1,),,.2).
Chz(fn ) =timene ({1, :1,,9).

Definition 3.4 Let xeM(X), 20, NeN, >0 and 0<65<1, define
Mﬁ,g({ fn}:zl,u,é):ianexp(—sni),

where the infimum is taken over all finite or countable families {B, (x, )} such
thatx, € X ,n. >N and,u(UBnl (xi,g)jzl—é.

The quantity M, | ({ fn};,y,é) does not decrease as N increase, hence the
following limit exist:

M® ({ fn}:;l,,u,&) = lim M, ({ fn};,ﬂ,(s)
Using standard method, we have following is well- defined:
ey({ fn}L,g,c‘)‘): inf {s: Mj({ fn}il,yﬁ) =0} =sup{s: M: ({ fn}:_l,y,5)=+oo}
Defined

e, (1.}, )=timlime, ({,}",2,6).

50 £—>0

Definition 3.5 Let £eM(X), s>0 , NeN, ¢>0 and 0<¢6<1, put

RS, ({ fn}::l,y,é) =inf Zexp(—sN ).

where the infimum is taken over all finite or countable families {BN (xi,g)} such

that x, € X , and ﬂ(U By (xi,g)jzl—é.
Let
R ({1,708 ) = liminf Ry, ({1}, 11.6),

—E
S

ﬁg({f Vo 5)_I|msupR ({fn}::l,u,é).

N—o0
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Using standard method, we have following is well- defined:
e ({ fn}:;l,gﬁ):inf {s:RS ({fn};,y,&) O}:sup{s:Rf ({fn}?_l,y,5):+oo}

e:({ f,},166)=inf {s : RZ ({f)r, 6)= o} - sup{s R ({f)7, 00)= +oo}

Define

e ({f.)r,)=limlime ({1,}",.2.9).

—u 50 ¢—0 —u

e ({fulr,)=timlime, ({1}, ,2.0).

50 &0

Definition 3.6 Let #eM(X), s>0, NeN, &>0 and 0<& <1, put
ps ({ ) ,,u,§)= inf {i P ({ fn}:zl,Zi):y(OZij 21—5} ,
i=1 i=1
where P’ ({ fn}:;l : Zi) is defined in Definition 2.2. There exists a critical value of
s such that
e;({ fn}:_l,gﬁ):{s P ({ fn}:_l,y,é)zo} =sup{s s ({ f} o, 5):+oo}.
Define

e, ({f.}, ) =timtime; ({f,}", ,2,6).

0—0 £—>0

32 NADS
In this subsection, let (X,¢) be a NADS, next we introduced NADS's entropies.

Definition 3.7 LetZ<= X, s>0, NeN and ¢£>0,
define

My, (¢,Z)=inf > exp(-st,),
where the infimum is taken over all finite or countable families {B{i”(xi,g)} such
thatx e X, t >N and | JB/(x.,£)=2Z . The quantity Mg, (¢4,Z) does not

decrease as N increase and ¢ decreases.

Hence the following limits exist:
M:(4,2)=im M3, (4.2),
MS(¢,Z):LiggMj(¢,Z).
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Bowen's topological entropy h; (4,Z) is defined as a critical value of the

parameters s, where M*®(¢,Z) jumpsfrom o« to 0, i.e.

i |0 .s>hg(4.2)
M (¢’Z){oo ,s<h® (4,2)

Other topological entropy definitions are similar to the discrete case definition.

Definition 3.8 Let #eM(X), s>0, NeN, £>0 and 0<&<1,
define

M lfl,g (¢’ M, 5) =inf zexp(—sti ),
where the infimum is taken over all finite or countable families {B;f(xi,g)} such

that x e X ,t >N and ﬂ(U Btf‘(xi,g))zl—ﬁ . The quantity My, (¢, ,6)

does not decrease as N increase, hence the following limit exist:
M; (4 468) = lim M3, (42,6
Using standard method, we have following is well- defined:
e,(g.£,0)=inf{s:M:(4,1,5) =0} =sup{s:M; (¢, 1,5)=+o},
defined
e,(¢)=limlime, (¢4,,5).

50 £—>0

4. Proof of Theorem
4.1 Proof of Theorem 2.1

Proposition 4.1 Let 0<5<1, peM(X), {Z} , be a family of Borel subsets
of X with ,u(UZile—& Forany &>0,

i ({1 m0)= EM ({12

Poof Forany £>0,N, i € N ,thereexists N, >N such that

M ({2 ) <ms(§ fn}fl,zi)+§.$$
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0

Hence, there exists a countable family {Bni_ (X'Jé‘)} such thatn; > N;, X e X,
i j=1

['e]

{Bn‘j (Xij,g)}_ D7,

j=1

iexp(—sn})<Mj({fn}wl,zi)+£i.
e "~ 2
Since y(UZj 1-&, we have ﬂ(UUB (xi, e))kl—&.Hence

i>1 j>1

Mj({f s )_ZZexp( sn}) < iMj({fn}?_l,Zi).

i>1 j>1 i=1

Proof (1) Let Z < X and assume be 0<s<hg ({ fn};,z). Forany neN and

>0, let R=R, ({ fn};,z,g) be the largest number so that there is a disjoint

R

family {Bn (X, g)} with x €Z.Then it is easy to see that forany § >0,

i=1

LRJEn X,26+8)DZ,

which implies that

M;M( ,z) —ns) <P’ ({fn}‘::l,z)
forany s>0, and hence M;gﬂs({ ) ({fn}:ll,z),we have
Mjgw({f }::l,Z)SPj({fn}: ,Z) Slnce0<s<hmp({ o Z),wehave

MS({ fb Z) oo and thus MZSM({f }::1,2)21 when ¢ and & are small

enough. Hence Pj({ fn}:;1 )>1and hep ( )25 when ¢ is small.
Therefore hY, ({ 0 z): limh?, ({ 0 z,g)

This implies that h%, ({,}",.Z)<h?, ({1,}",.2).
(2) Denote

K

h. ({fn};, 5)_ I|msup—logr (u,€,0)

n—oo
K _ K

then h,, ({f }n=1) =limlimh,, ({ fn}:zl,g,é).
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We first prove that

eu{{t) )< ({11, 0)

for any 0<o6<1 and &>0, using like-Huasdorff dimension method. For any
_ K

s> h,,({fn}::l,g,ﬁ) and ZeX,,, let F isa (n,& Z)-spanning set, then

R,fvg({ nl,y, ) > exp(-sn)=#F -exp(—sn)}

xeF

which follows that
R:,g({fn}?ﬂ,uﬁ)éexp(—sn) |nf r( &2).

ZeX
Hence

s o —n[s—ilogrn(,u,g,&)]
RM({ fn}n:l,yﬁ)Sexp(—sn)-rn (1,6,6)= " .
_K w 1
Since h, ({ fol ,5,5) = Iimsupﬁlog r(u,e6)<s,we have

n—oo

limsupR? ({ fn}:;l,,u,é) =0.
_K _s

For s> hy({fn}:ﬂ,g,d) we get Rg({fn};,yﬁ)zo andgﬂ({fn}w

,8,5)£s.
Hence E#({ f.} e )sh; ({ fn}L,g,é).

_ K

o
Next we prove eﬂ({fn}?:l,gﬁ)zﬁy({fn}::1,5,5) for any 0<&<1 and

_K _
>0 by showing h,,({fn}::l,a,é)SS whenever s> e#({fn}::l,gﬁ). For

such a s, we have Rg({fn};,yﬁ)zo. Then there exists N eN such that

Rns,g({ fn}:zl,y,5)<1 forany n>N . Fix n>N, we can find a finite family
{B,(x.,¢)}_ suchthat x eX,

[UB x,,gj>1—5 and #l-e" <1
iel

_K

So 1,(ue6)<e™ foranyn=N . Hence hﬂ({fn};,gﬁ)SS.
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(3) The proof of (3) is similar to (2).
(4) The proof of (4) is a consequence of definition.

(5) We first show that eﬂ({ fn}:o:l)ge;({fn}::l) . Lets<eﬂ({ fn};) , 0<o<1

and {Z,}" be a family of Borel subsets of X with ﬂ(UZij21—5- For any
i=1
iineN and £>0, let Ry =R(Z,¢) be the largest number such that there is a
_ R |
disjoint family {Bn(x},g)} with X, eZ; . Then we can verify that for any

=t

0>0,
(B, (x.26+0) 27,

n,2e+60

It following that M ({ fn}:’:l,zi)s R e <P, ({ fn};,zi)

andM;_, ({ f.} .z ) <P® ({ f.} .z ) Therefore, by the Proposition4.1,

we have M;gw({ fn}:;l,,uﬁ)gpj({ fn}:;l,y,&). Ass<ey({fn}::l), we can get

s<eﬂ({ fl ,25+9,5) when ¢,60,5 are small enough. This implies that
n=1

Mjﬁg({fn}il,y,é):oo and thus P;({fn}?:l,y,é'):oo. Therefore, it can be

deduced that e, ({ fn}::l) >s . So the desired inequality holds.

0

Now we proved thate;, ({ fn}?:l) =limlim inf ho ({ f.)

060 ZeX,, ;

2,5).

n=1"’

Let e;({ fn}::1)>s, then there exists & ,5 >0 such that e;({ fl

for any ge(o,g’) and 5e(0,5').Thust({fn};,yﬁ):oo.

For any ZeX,, and any {Z}

Ho i>1

with UZi o>Z , we have ’U(Uzi]Zl_é"

i=1 i=1

it follows from P ({f,}”,4,8)=c that 3" P ({f)r,2)=c.
i=1
SoP ({ fb Z) = o0, which gives thath}, ({ fn};,z,g) >s.

On the other hand, let s<Ilimlim inf htip({fn}::l,z,g). Then there exist &',

e06>0ZeX, s
o0
n=

& >0 such that hf,’p({fn}fl,z,g)>s for any £€(0,) , 5¢(0,6) and
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Z e X, 5. Thus, we have p;({ fn}?:l,Z):oo. Fix {Z;}_, with ,u[ozijzl—é

i=1

and write Z =CJZi , thenZ e X ;. So ZPS({ fn}“’l,zi)mo, which yields that

i=1 i=1

Pgs({fn}:zl,y,é)zoo . Furthermore, we can get e;({fn}:zl,g,ﬁ)Zs and
e;({fn}:zl)ZS.

4.2 Proof of Theorem 2.2
Proposition 4.2 For e M (X)), it holds that

n ({6 ({1, )<int {nzp({fn}:_l,K):y(K)=1}.
Proof The second inequality is a direct consequence of the definition and we only
deduce the first one. For s>0 with h ({ fn}:il) >S . By a standard procedure,
.y -

there exist Ac X with #(A)>0 and N eN such that
u(B,(x¢))<e™ vxe An=N

Picks €(0, u(A)).  Let {Bni (X'gj} be a countable family such thatn, > N ,
iel
X, € X and N(U B, (‘éDZH} that intersects A, if taking
iel

y, €B, (xi,gjﬂ A, then one has B, (xi,gj < B, (y;,&) and thus

ofmy (18] 2 utor e e

Zen = Zule, = Zu{a (5504
ol sgJon)-sns

Then we have

iel

Hence Mj({f M )> M* ( M §)>,u( A). By Bowen's definition,
: 4 4
o

we can derive that e ({f b g j>s and moreover h ({fn};)sey({fn}w )

—u n=1
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Definition 4.3 Let xeM(X). The NADS (X,$) measure-theoretical lower
entropies of 4« isdefined by

b (@9)=[n (8x)du(x)

L
where

h (¢,x):Iimliminf—}log,u(Bf’(x,g)).

] >0 tow t

Lemma 4.4 ([5theoreml1.4]) Let (X,{fn}:zl) be a NADDS. If KcX
is non-empty and compact, then

G ({7, K)=sup{h ({117, ):reM (X).aa(K) =1},

—Hu

Proof By the Proposition, we have

Sup{hﬂ({fn}:_l):,ue M (X),,u(K):l}ssup{e#({fn}:_l):ye M (X),,LI(K)Zl}
sinf{nﬁp({fn}:_l, K):uem (X),,LI(K)Zl}

Combining with lemma,

hﬁp({fn}f_l,K)zsup{h ({fn}‘;):ue M (X),/J(K)Zl}

—H
the conclusion can be proved.

Using the same proof method of Theorem 2.1 and, Theorem 2.2, we have result of
Theorem 2.3 and Theorem 2.4.
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