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Abstract 
 

The human circulatory system is one of the admirable rhythms of nature. The heart 

and the vasculature are constitutive structures. The vasculature consists of arterial 

and venous appurtenances which are arranged in an idealized network capable of 

enhancing circulation. The crux of this study is the representation of the 

cardiovascular system as a network in which electrical constraints apply. As a 

network, the system is amenable to graph analytic treatment; as edge-nodal 

parameters ensue, topological constraints apply. In virtue of cardiac auto-

rhythmicity, electrical impulses are driven through the vessels to the body cells. As 

a rule, the vessels must elicit a modicum of resistance. This work weaponized the 

elements of graph theory and electrical properties of the heart in elucidating the 

flow mechanism associated with the cardio-vascular system. The voltage drop 

across the connecting vessels (idealized as wires) was carefully depicted and 

analyzed by the method of matrices. When the cardiac function is within 

physiological definition a vascular compartment may be a liability in the event of 

poor circulation. Therefore the knowledge of vascular resistive capacities, which 

this work portrayed, is a sine-qua-non to the assessment of flow integrity of the 

system under consideration.    
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1. Introduction  

The cardiovascular system (CVS) or circulatory system transports nutrients, 

metabolic products, and respiratory gases all through living cells, allowing vivacity 

among the various tissues. Circulation involves the intake the transmission of 

metabolic materials all through the organism, and the delivery of harmful by-

products to the environment. The heart (pump) and a network of blood vessels are 

the appurtenances of circulation. The circulatory system is divided into two parts: 

the pulmonary and systemic circulations. The pulmonary circulation system defines 

the network of blood vessels from the right heart to the lungs and back to the left 

heart. It is known as the small circulation as it is only between the heart and the 

lungs. The large (systemic) circulation takes oxygenated blood from the left 

ventricle through the aorta to the different organs through the arterial system and 

eventually takes it back to the right atrium through the venous system and the vena 

cava. At a peak pressure of about 4kPa blood is pumped from the right ventricle 

through the pulmonary artery to the lungs. Venous blood which enters the 

pulmonary system becomes oxygenated and returns to the left heart atrium. The 

blood vessels (vasculature) consist of five categories: arteries and arterioles (making 

up the arterial system), veins and venules (the venous system), and capillaries (the 

smallest blood vessels, connecting arterioles and venules through networks within 

organs and tissues). Arteries are defined as ‘bifurcating’ vessels. A typical case is 

an aorta that branches off into smaller arteries and arterioles. On the other hand, 

veins are defined as ‘converging’ vessels, for example, venules and veins connect 

to return blood to the heart through the major veins (such as the superior and inferior 

venae cavae), Jarvis [1]. Capillaries are in close communication with the tissues, 

supplying nutrients and eliminating wastes through their reedy walls at a cellular 

level. Details of the circulatory system may be found in physiology pieces of 

literature such as Matthews et al [2] Jarvis and Saman [3], and Jarvis [1]. 
In recent times, mathematical models and numerical analysis have made remarkable 

progress in the explanation of circulatory system functionality. Several treatments 

on this functionality are compartmental. Smith et al. [4] propose a model of blood 

circulation in the coronary network. They treated major vessels as a connected one-

dimensional network, and arterioles, capillaries, and venules, are treated as lumped 

components that are connected to the network of vessels. Ruan et al. [5] studied 

blood circulation in the brain and Johannes et al. [6] showed that cerebral blood 

flow may well be modelled as fluid flow driven through a network of resistors by 

pressure gradients. In their contribution, Ketan and Bhathawala [7] developed a 

model of the human cardiovascular system using lumped parameter method. By 

relying on the assertion that every closed fluid system has a similitude of an 

electrical circuit, they modelled the cardiovascular system as analogous to the 

electrical circuits. The lumped parameter model approach had been a choice method 

in detailing various parts of the cardiovascular systems Rideout and Katra [8], 

Rideout and Dick [9], Snyder and Rideout [10], Liang et al. [11], Formaggia et al. 

[12]. In every case, the fluid and structure synergy must adhere to acceptable 

https://www.merriam-webster.com/dictionary/integration
https://www.merriam-webster.com/dictionary/conveyance
https://www.merriam-webster.com/dictionary/environment
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compatibility conditions along some characteristics as may be seen later as well as 

conditions of mass conservation, all of which are boundary conditions Blanco and 

Feij ́oo [13], and Alastruey et al. [14]. 

This work considered flow through some organs of the human body, to wit the heart, 

lungs, digestive tract, liver, kidney, trunks and legs, head and arms. It afforded a 

novel approach to describing the human circulatory system utilizing a graph-

theoretic network. The network was treated as a hypothetical electrical analogue 

with topological constraints. This was done on the basis that the cardiac cells are 

electrical current sources Nzerem and Ugorji [15]. Topological constraints arising 

from the, now electrical, network configuration were depicted and the resistance of 

the vasculature provoked by flow was analyzed. 

 

2. The Circulatory system 

The CVS network is a directed graph (digraph). In this section, the matrices that 

describe the network of the CVS are constructed. 

 

2.1 Some elementary network lexica              

Let (V, E) be a pair of non-void sets consisting of V, the set of vertices (nodes) on a 

network, and E, the set of edges (arcs) between pairs of the nodes on the network. 

The relation G = (V, E) represents the graph of the network. A given finite directed 

graph (digraph), G, consists of a set of nodes, V (G) such that, 

 

       V(G) = vk     k = 1, 2,…, n                                   (1) 

                 

alongside an edge set, ( ) (G) (G)G V V   . If vl and vm are connected by an arc (vl,vm), 

then vl and vm are end vertices of the edge (vl,vm). The arcs (vl,vm) and (vm, vl) are in 

opposite directions of a digraph. Since (vl,vm) is directed, vm is a direct successor of 

vl and vl is a direct predecessor of vm. A network may consist of indegree d-(vl) nodes 

and outdegree nodes d+(vl). A source in a network is such that d-(vl) = 0 and a sink 

is such that d+(vl) = 0. A network may be a circuit, which is a closed path. A path is 

called a trial if any vertex is visited at most once except possibly the initial and 

terminal vertices when they are the same. 
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In the diagrams below Figure 1 is the CVS network and Figure 2 is the prototype of 

Figure 1 used for the node-edge analysis of the CVS. 

 

 

 
Figure 1: The cardiovascular system (CVS),“Blood Flow Through the Heart” 
By OpenStax College / CC BY 3.0                                                         

http://cnx.org/content/col 

 

 

 
 

Figure 2: Node-edge schematic of the CVS 

https://creativecommons.org/licenses/by/3.0
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In Figure 2 the arcs and the vertices are represented by ei (i = 1, 2, …,12) and vi (i 

= 1, 2 ,…, 8) respectively. The heart consists of two vertices denoted v1 (LV) and 

v2 (RV); the lungs is denoted v3; the upper body is denoted v4; the liver is denoted 

v5; the stomach/intestines is denoted v6, kidneys denoted v7 and lower body denoted 

v8. Since the CVS is a directed flow, arrowheads were used to indicate flow 

direction, as shown. The aorta (indicated by the downward pointing arrow) is the 

major arc through which subsidiary arcs connect node v1 to their respective organs. 

 

2.2 The CVS matrix                               

It is assumed that all edges connecting the nodes are rectifiable. Let Aij be the 

adjacency matrix of the given system.  The required matrix satisfies the equation: 

 

Aij = number of direct predecessors issuing from vertex vi into vertex vj.       (2)  

 

The adjacency matrix of the CVS is constructed below using Figure 2 and equation 

(2) above.                  

          

 

   

                                                             

(3)                                                           

    

 

In the above matrix, each vi on the row describes the initial vertex of an arc ej while 

each vj on the column describes the terminal vertex of the arc. Node v1 represents 

the left side of the heart, which includes the left ventricle (LV), while v2 represents 

the right side of the heart, which includes the right ventricle (RV). Observe that 

 

      d−(v1,2)=1 and d+(v1,2)=1                                      (4) 

 

However, by the law of conservation, each of them serves as a source and a sink. 
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2.3 Construction of incidence matrix 

The flow arrangement of the CVS is developed using the incident matrix. Given an 

all-vertex incidence matrix, B = (bij), then the matrix elements are determined by 

otherwise 

              

1 if  is the beggining vertex of 

 = -1 if  is the end vertex of 

0      otherwise.

i j

i jj

v e

b v ei







                 (5)                                                                        

 

From the foregoing one finds  
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 −
 

− 
 

− 

                 (6) 

 

2.4 Pulmonary and systemic circuit (cut) matrix 

Essentially the CVS is a closed system. An age-old study was conducted on open 

systems in biology by Von [16]. It was perceived that the LV circulation model 

assumes that the circulation is a closed system of vessels wherein the pressure 

gradient between the aorta and the right atrium regulates the flow and where, in a 

steady-state condition, the outputs of the left and right hearts are closely matched in 

keeping with the law of conservation of energy and matter Branko [17]. Circuit 

matrices could be produced each for the pulmonary flow from the heart-lungs and 

heart-main-body intermodal pathways, as shown in Figure 3a and Figure 3b 

respectively below. 

 
               Figure 3a                        Figure 3b 

Figure 3: Schematics for cut matrices of the CVS 
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Give each of the circuits D1 and D2 an arbitrary orientation so as to define the circuit 

matrix. The circuit matrix is D = (dij), where, 

 

  

 
j

 

 

1 whenever e is in D and they are in the same direction
i

-1 whenever e is  in D and they are  in the reverse direction
j i

        

 

0       else

 

=i jd











               (7)                                          

The matrix is shown below 

 

              

31 2 4

1
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0 01 1

0 0 1 1
ij

ee e e

D
d

D
=
 
 

− − 
   .                          (8) 

 

2.5 Central point of CVS  

The CVS is the interplay of the heart and the vasculature to maintain the integrity 

of blood flow. The vascular structures are conduits through which blood and its 

contents are delivered to parts of the body, including the heart. The heart serves as 

a pump. This role makes it an active part of the system. The flow orientation of 

blood is controlled by the heart through special valves. At the entrance are the mitral 

valve (left) and the tricuspid valve (right), and at the exit of the ventricles are the 

aortic valve (left) and the pulmonic valve (right). In a proper working condition, the 

cardiac valves safeguard a one-way system of blood flow. Pressure situations in the 

ventricles as a result of the contraction of the heart muscles influence the valves. 

An increase in pressure has the effect of closing the inlet valve and opening the 

outlet valve. The pressure created by the left heart is approximately three times 

higher (≈13 kPa) than that created by the right heart (≈4 kPa), Nithiarasu [18]. This 

is so because the left ventricle requires much higher pressure to prosecute systemic 

circulation. Work done by pressure, P, on the surface area of the heart chamber is  

 

            1 1 b

a

V

V
W FAdr FdV PdV

A A
 = = =                                 (9) 

Thus, each heart compression induces the pumping of Vb – Va = ∆V volume of blood. 

Typically, pressure rises from diastolic component Pd gradually up to systolic 

component Ps and falls back to diastolic pressure when the heart muscle relaxes. 

Now the work takes the form 
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1

1
( ).( )

1
     . ( ).

2

b

a

V

d d
V

d s d

W P Ps P V V dV
V

P V P P V

 
 = + − − 

 

  + − 


                           (10) 

The mean ventricular blood pressure is
2

s d
d

P P
P P

−
+  . 

 

3. Governing network equations            

In the network of elastic tubes physiological assumption of 1D blood flow model is 

the viscous incompressible fluid flow. In general, the hydrodynamic part of the 

model representing the fluid is obtained by the 3D Navier-Stokes equations and the 

elastic part of the model representing the cardio-vascular structures is described by 

deformable solid mechanics. The two parts are coupled, and therefore simulations 

of local flows in complicated regions (carotid arteries, large systemic arteries, etc.) 

is a coupled fluid-structure interaction (FSI) problem. Formaggia et al. [19], and 

Cani ́c and Kim [20] derived 1D flow equations from averaging the 3D equations 

in a single vessel. In the hemodynamic model of global circulation 1D flow 

equations in distinct vessels with coupled boundary conditions at junction points 

between the vessels and at the heart are employed. A model of viscous 

incompressible fluid flow through an elastic tube is used in describing the 1D flow 

in a separate vessel.  

Encode by A(t, x) a vessel’s cross-section area, by u(t, x) the linear mean velocity 

over the cross-section. The governing equation of mass conservation is of the form, 

                      

                
( )

,A
A Au

h
t x

 
+ =

 
                                  (11) 

and the equation of momentum in the sense of Bernoulli is 

 

                
( )2 2

u

u p
A

h
t x

 +


+ = 
 

                            (12) 

 

In equation (11) hA encodes the mass source or sink situated at some point within a 

considered region. In the absence of a source, hA is zero. In the momentum equation 

(12), p is the blood transmural pressure, ρ is the blood density; the left-hand side 

terms embody inertia forces, while the right-hand side terms are an ensemble of 

forces which include traction and body forces and gravity, as the case may be. In 

this study, each of the organs is considered a blood source and/or sink with intensity. 

Thus, one may replace hA with δA, where δ is the source or sink intensity. In 

accommodating gravitational impact on the systemic circulation, Buxton and Clarke 

[21] used source term in equation (12) in the form sing
u kh g =  where g is the 

gravity constant and θ is the angle between the vessel and the gravity field. 

Formaggia et al. [12] and Larrabidea et al. [22] supplied an alternative formulation 
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of mass and momentum balance in (A, Q, p) variables in which viscous flow 

resistance per unit length of the vessel was considered. Besides the compatibility 

conditions required along the characteristics of equations (11)-(12), the 1D blood 

flow models are required at junction consisting of N vessel must admit mass 

conservation on the vessel network. It is of note that the boundary conditions have 

to take account of compatibility conditions along characteristics of equations (11)-

(12). It was observed (Sherwin et al. [23], van de Vosse and Stergiopulos [24], 

Bessonov et al. [25] that there exists an incoming and outgoing characteristic for 

every vessel endpoint. At the junction of N vessels, the conventional boundary 

condition caters for mass conservation  

Suppose a junction contains N vessels. The boundary condition admits the mass 

conservation 

 

          

1, 2 ,...,

0

N

r r r

r r r r

A u

=

=                               (13) 

where ( , ),     ( , )r r r r r rA A t x u u t x= = , and {r1,...,rN } enlist the incident vessels;  

 

          
1             for inward bound vessels,

1          for outward bound vessels,
r


= 

−
                          (14) 

 

and 

          
0           for inward bound vessels

         for outward bound vessels.
r

r

x
J


= 


                        (15) 

The total pressure continuity conditions using Bernoulli integral conservation is 

such that 

          

2 ( )

2

kr r ru p A
P


+ =                                        (16)    

where kP  encodes the aggregate pressure at the junction with index k.        

 

Now we give the network expression for blood mass and flow. Every edge in the 

CVS describes a blood vessel. In the network structure it is assumed that the organs, 

vi earlier specified are sources and sinks. The edges (arcs) ei enhance the delivery of 

the essential mass (blood with nutrients). A general mass (M)- flow(f) linear 

relationship reads, 

          
( ) ( )x y x y

j kj k j k
v vv v v v

M R f=                                      (17) 

In equation (17) the left-hand side encodes the mass being transported across the 

edge joining nodes vj and vk of the network with a source located at node x and a 

sink located at node y. With many sources and sinks, more upper indexes may be 

added to the equation. The right-hand side of equation (17) is the product of the 
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resistance 
j kv vR of the edge and the mass flow

( )x y

j kv v
f . About the present 

consideration take, for instance, the flow of blood from node v1 (the left ventricle, 

to v4 (the upper body) [note that the left ventricle is the pump for the systemic circuit, 

which delivers the blood to the tissue cells of the body]. The quantity (mass) of 

blood M is transported through the aorta to e3 (aortic branch). Within this tract, v1 

is the source of supply to v4 (the sink), and from outside the track, v3 (the lungs) is 

the source of supply to v1. Thus, along the given trajectory, equation (16) takes the 

form 

 

          
1 4 1 4

1 41 4 1 4

( ) ( )v v v v
v vv v v v

M R f=                                    (18)   

     

where the under arrows indicate the edge connecting the nodes v1 and v4. When 

conservative flow is assumed, as it is essential here, the net flow at any node vi other 

than the source and the sink nodes in the network is zero (i.e. ( )

1

0
j k

N
xy

v v

k

f

=

 
 =
  
 

 ). As the source 

and sink are likened to a dipole, the net flows are represented by I and –I 

respectively. Now the net flow at node vj is 

 

           
( ) ( ) ( )

1 1

( ) ( )
j kj k

N N
xy xy xy

v x v y jk j kv v

k k

f I V V 

= =

= − =  −                         (19) 

where ( )xy
jV  is the potential at node vj to some  x-y pair, /jk jk jkA R =  encodes the 

matrix representation of the network structure. Here Ajk is the adjacency matrix 

entries (see equation (3)).  

It is of note that every node has an accompanying blood pressure value and the 

pressure difference between abutting nodes drive the flow through the connecting 

vessels. The conductance Gei of such a vessel reads: 

           

2

8ie
A

G
L





=                                           (20) 

where, L is the length of the vessel, μ and ρ are the dynamic viscosity and blood 

density respectively. For a Hagen-Poiseuille flow through a perfect cylindrical 

vessel λ=1 in equation (20), which however amounts to a geometrical idealization.  

The effective conductance between two adjacent nodes connected by more than one 

edge is the sum of the individual vessel conductance. The mass flow rate M through 

a vessel is the product of its conductance and the pressure difference Δp across its 

length. Thus,  

 

          
2

8ie
A

M G p p
L





=  =                                       (21) 

https://api.seer.cancer.gov/rest/glossary/latest/id/55097ed2e4b0c48f31d89a03
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3.1 CVS resistance 

The right-hand side of equation (17) comprises the resistance to flow R, a 

proportionality factor that depends on the structure of the edge and the unidentified 

flow f which the edge accommodates for a given site of the supply-demand nodes. 

This resistance to flow f may be determined by  

 

         
/

P mmHg
R

f l s

  
=  

 
                                         (22) 

Determination of R presupposes the knowledge of f. The CVS is stocked with mini 

aortic bifurcations (see Figure 4) by which daughter arcs (vessels) supply blood to 

the organs.  

 
Figure 4: CVS resistive network showing resistors Ri and bifurcation points bi 

                            

With brief attention to arrangement, there are both series and parallel settings. 

Resistances in each case are governed by elementary circuit law, whereby for two 

given resistors Ra and Rb, say, the series arrangement yields 

 

           a bR R R= +                                           (23a) 

  

 and the parallel arrangement of the vessels such that 

 

           
.1 1 1

  or a b

a b a b

R R
R

R R R R R
= + =

+
                              (23b) 
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The series arrangement is seen to hold from arterial compartments to the venous 

compartments, with minor exceptions. At the venous compartment, the daughter 

vessels are tributaries that return oxygen-depleted blood to the right atrium of the 

heart. Whichever vessel arrangement applies to any section of the system, the edge 

capacity ( )

j k

xy

v v
C which any supply-demand network must attain to escape over-loads 

is such that     

 

        
( ) ( )

j k j k

xy xy

v v v v
M C                                        (24) 

In a physiological state, the edge capacity ( )

j k

xy

v v
C is independent of the demand-

supply site within the network (in effect, ( )

j kj k

xy
v vv v

C C= ). It is a function of the 

equivalent resistance of the edge and it is proportional to the total mass of blood 

that is pumped by the right ventricle per unit of time. (A good work on pressure-

flow models in pulmonary and systemic circulation may be found in Ketan and 

Bhathawala [7]). 

           

3.2 Wave propagation at a bifurcation  

Many (daughter vessels) branch from the aorta to the organs of the body (see Figure 

4). Although the aortic bifurcation is the point at which the abdominal aorta 

bifurcates into the left and right common iliac arteries, we consider each of the 

branch points of the daughter- vessels as a mini bifurcation point. At points of 

bifurcation, the pressure wave is to some extent transmitted downstream into the 

daughter-vessels and eventually partially reflected backward. Consequently, 

bifurcation induces incident wave I, moving downward, the reflected wave (ref.) 

propagating upward together with two transmitted waves (w1 and w2) downward. 

As earlier stated, the daughter vessels return oxygen-depleted blood to the right 

atrium of the heart at venous compartment. 

If pressure is assumed to take the same values independent of the vessels, then the 

continuity of pressure may be expressed at the junction in the form 

 

          
1 2W w wp p p= =                                          (25) 

 

where PW encodes the incident and the reflected waves. The conservation of mass 

that relates to discharges is in the form, 

         

2

.

1

iI ref w

i

M M M

=

− =                                       (26) 
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When the pressure-discharge relationship is put in the form 

         
A

M p
c

=                                               (27) 

and relating the discharge M to the vessel’s characteristics, Z (known as the 

impedance) one finds that 

         ,     .
p c

M Z
Z A


= =                                        (28a) 

Substituting equation (28a) in equation (26), this and equation (25) give the system  

         

1

2

1 2

0 1 2

W

W

W

w

w

w w

p p

p p

p p p

Z Z Z




= 



= 


= +







                                        (28b) 

where the subscript 0 represents the parent vessel and the quantities 1 and 2 

represent the two daughters. From the foregoing, the incident and reflected waves 

relate by 

 

                     . . .

0 1 2

I I Iref ref refp p p p p p

Z Z Z

− + +
= + . 

The ratio pr/pi = RZ is the reflection coefficient given by  

 

          ZR Z Z =                                         (29a) 

where 

 

       
20 1

1 1 1

Z

Z
Z Z

 = − −  and 
20 1

1 1 1

Z

Z
Z Z

 = + +                           (29b) 

                                                                                                               

The aortic bifurcation into the left and right common iliac arteries is an exemplary 

site for effectively reflected waves. Since real bifurcation furnishes a non-zero small 

reflection, each of the mini bifurcation points considered here is expected to induce 

a negligible reflection under physiological pressure conditions. 

 

4. Electrical analogy 

First, consider the network as analogous to an electric circuit. The CVS network 

may be characterized by a set of network constraints. They are the branch (edge) or 

element-based constraints, and the non-element-based topological constraints, 

emanating from Kirchhoff’s Current Law (KCL) and Voltage Law (KVL). In the 

circulatory network, each of the edges is an analog of an electric wire with some 

specific resistance. Thus, Ohm’s law applies to the network. Accordingly, the 

voltage drop V between the ends of each wire obeys the equation V=IR, where I is 

the current in the wire and R its resistance. In a node where branch currents x1, . . . ,xn 
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enter, Kirchhoff’s current law (KCL) states that the sum of all branch current 

entering a node equals zero. Accordingly, 

 

           
1

0

n

i

i=

=x                                               (30) 

 

Correspondingly, by Kirchhoff’s voltage law (KVL), 

 

           
1

0

n

i

i

u

=

=                                               (31) 

where ui encodes voltage drop in the circuit. Equations for the network shall be 

derived, and KCL and KVL are to be applied together with Ohm’s law.  

 

4.1 Arcs and resistances 

Suppose there is a voltage source r0, together with the resistances R1, …,R12. The 

measurement of voltage drop, ui, through the resistances is taken concerning the 

equivalent arcs, ei. From the topology under consideration one finds the following:  

 

1 2 3 5 1 5 9 1 7

2 3 1 6 5 2 10 7 2

3 1 4 7 1 6 11 1 8

4 4 2 8 6 5 12 8 2

                                     

                       

                      

                  

 

u v v u v v u v v

u v v u v v u v v

u v v u v v u v v

u v v u v v u v v

= − = − = −

= − = − = −

= − = − = −

= − = − = −

                    

                  

                        (32) 

The vector arrangement yields,   
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Ground one node v2, say. That is, take v2 as the reference node. (Note that the choice 

is arbitrary). From equation (33) above one finds that      
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                       (34)                                                                                     

 

In vector form equation (34) gives  

 

        u=Cv                                                  (35) 

                                                                                                              

where the matrix C denotes network connectivity. Ohm’s Law, “I = V/R”, connects 

the voltage drop across each resistor to the current. In line with the resistors, Ohm’s 

Law reads,   

                                                                                                

                1,2,...,8
j

j
j

u
x j

R
= =                                   (36)                 

                                                              

The matrix-vector arrangement reads: 
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The above matrix equation is of the form, 

 

 

                 =x Mu                                        (38)   

                                                                                                                                         

where M denotes the dynamics of the network. The KCL admits the product: 
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                            (39)                                          

 

 

The equation (39) is of the form 

 

             CTx=0                                                     (40)  

 

Introduce (x = Mu) for x into equation (40) to get 

 

              CTMu=0                                                   (41) 

 

The network’s equilibrium condition must be attained at a constant voltage source, 

r0. Therefore, 

 

              u=r–Cv                                                   (42)                                                           

Then 

             CTMu = CTM(r – Cv)                                 (43) 

Thus, 

              CTKCv = H                                                   (44)                                                                               

 

where H = CTMr. H encodes the vector of current sources which represents the 

network's stimuli. 
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4.2 Characteristic equations for vi 

The individual node potential of the system may be calculated. First, compute CTM: 
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Compute the matrix (CTM)C: 
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          (46)                                

 

 

When the inverse of the symmetric matrix (CTM)C is applied to H, the vector of 

potentials vi are obtained, assuming Ri are known. 

 

Next, evaluate the vector H, 
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Finally, 
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The values of v1, v3,…, v6 may be easily determined if the values of R1, R2,…, R7 are 

known. 

 

5. Conclusion 

The CVS, which supplies the human organs with blood, comprises the heart and a 

network of tubes. It has two modes of action: pulmonary circulation and, systemic 

circulation. Pulmonary circulation, known as the small circulation, is evident only 

between the heart and the lungs. The large (systemic) circulation takes oxygenated 

blood from the left ventricle through the aorta to the different organs through the 

arterial system. 

In this work, some elements of graph theory together with electrical analogy were 

used in analyzing CVS network. Electrical flow is a directed flow. Therefore the 

representative graph is a directed graph (digragh). Away from here, the cardiac 

conduction system describing the cardiac electrical system was treated; the 

conduction mechanism drives blood flow. The parameters of great interest in this 

study are those of the nodes and the arcs if valvular and ventricular normality is 

presupposed. Some relevant questions are: (i) What are the likely causes of 

insufficient supplies to an organ? (ii) What may cause general poor circulation? (iii) 

Are such problems tractable? Recourse to the mass-flow linear relationship may 

provide some clue to the posers above. The mass flow rate, M, through a vessel, is 

the product of its conductance and the pressure difference Δp across its length. The 

flow rate may be niggardly at a relatively low physiological pressure difference.  

The resistivity of each arc affects the flow rate. It is pertinent to determine the 

resistivity of each arc of the network in a bid to stage their possible pathogenesis 

and, by extension, those of their dependent organs.   

This work did not detail microcirculation in which arterioles, venules, and 

capillaries play a dominant role. However, it is a prototype of the general case 

treated here in which the major organs were exemplified. 
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