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Boundary values of rr, r∗r , Rr, R∗
r sets

of certain classes of graphs

Padma M.M.1 and M. Jayalakshmi2

Abstract

Let G(V,E) be an undirected, finite, connected and a simple graph
and S = {s1, s2, s3, . . . , sk} be a subset of V . For each u ∈ V , we asso-
ciate a vector Γ(u/S) = (d(u/s1), d(u/s2), d(u/s3), . . . , d(u/sk)), where

d(u/v) =
∑

ui∈N [u] d(ui,v)

deg(u)+1 . The subset S is said to be rational resolving
set if Γ(u/S) 6= Γ(v/S) for all u, v ∈ V − S and is denoted by rr set.
A rational resolving set S with minimum cardinality is called rational
metric basis or an rmb set and its cardinality is called rational metric
dimension, denoted by rmd(G) or lrr(G). The maximum cardinality
of a minimal rr set of graph G is called upper rr number of G and is
denoted by urr(G). A subset S of V (G) is said to be an r∗r set if S is
rr set and S̄ = {V − S} is also an rr set. The minimum and maximum
cardinality of minimal r∗r set of graph G are respectively called lower
and upper r∗r number of G, denoted by lr∗r (G) and ur∗r (G). A subset S

of V (G) is said to be an Rr set if S is an rr set and S̄ = {V − S} is
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not an rr set. The minimum and maximum cardinality of minimal Rr

set of G are called respectively lower and upper Rr number of G and
are denoted by lRr(G) and uRr(G). A subset S of V (G) is said to be
an R∗

r set if both S and S̄ = {V − S} are not rr sets. The minimum
and maximum cardinality of minimal R∗

r set of G are called respectively
lower and upper R∗

r number of G, denoted by lR∗
r
(G) and uR∗

r
(G). In

this paper we are obtaining the lower and upper rr, r∗r , Rr, R∗
r numbers

of certain classes of graphs.

Mathematics Subject Classification: 05C20

Keywords: Closed Neighborhood; rational resoloving set; neighborhood re-

solving sets; rational metric dimension.

1 Introduction

Many networks are represented by a graph, in which vertex play an im-

portant role and it depends on its neighbors. To determine the position of a

vertex in the network, we need to select the landmarks in such a way that the

distance of the vertex from the landmark and the distances of its neighborhood

vertices from the landmark are considered. Here N(u) = {x : ux ∈ E(G)},
called open neighborhood of the vertex u, N [u] = N(u) ∪ u is called closed

neighborhood of the vertex u and d(u, v) is the length of the shortest path

between u and v. A subset S of the vertex set V of a connected graph G is

said to be a resolving set of G if for every pair of vertices u, v ∈ V − S there

exists a vertex w ∈ S such that d(u, w) 6= d(v, w). The minimum cardinality of

a resolving set S of G is called metric dimension of a graph G and is denoted

by β(G). Metric dimension was defined by F. Harary et al. [2] and P.J. Slater

[8].

For the entire survey, we refer the latest survey article by Joseph A. Gallian

[5]. All the graphs considered here are undirected, finite, connected and simple.

Throughout this paper Pn denote a path on n vertices with a vertex set V =

{vi : 1 ≤ i ≤ n} and edge set E = {vivi+1 : 1 ≤ i < n}. Similarly Cn

denote a cycle on n vertices with a vertex set V = {vi : 1 ≤ i ≤ n} and edge
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set E = {vivi+1} ∪ {v1vn}. We use the standard terminology, the terms not

defined here may be found in [1, 3, 4].

2 Boundary values of rr, r∗r , Rr, R∗
r sets of cer-

tain classes of Graphs

Rational metric dimension of graphs were originally proposed by A. Raghaven-

dra, B. Sooryanarayana, C. Hegde [11] . Consider a graph G(V, E). For

u ∈ V , associate a vector Γ(u/S) = (d(u/s1), d(u/s2)..., d(u/sk)) with respect

to S = {s1, s2, ..., sk} of V , where d(u/v) =
∑

ui∈N [u] d(ui,v)

deg(u)+1
. Then subset S is

said to be a rational resolving set if Γ(x/S) 6= Γ(y/S) for all x, y ∈ V − S

and is denoted by rr set. The minimum cardinality of a rational resolving

set S is called rational metric dimension and is denoted by rmd(G) or lrr(G).

A rational resolving set S with minimum cardinality is called rational metric

basis or an rmb set. An rr set of G is said to be minimal if no subset of it

is a rr set. Clearly minimum cardinality of a minimal rr set is lrr(G), called

lower rr number of G. Now we define the following. The maximum cardi-

nality of a minimal rr set of graph G is called upper rr number of G and is

denoted by urr(G). A subset S of V (G) is said to be an r∗r set if S is rr set and

S̄ = {V − S} is also an rr set. The minimum cardinality of an r∗r set of graph

G is called lower r∗r number of G and is denoted by lr∗r (G) and the maximum

cardinality of a minimal r∗r set of graph G is called upper r∗r number of G and

is denoted by ur∗r (G). A subset S of V (G) is said to be an Rr set if S an rr set

and S̄ = {V − S} is not an rr set. The minimum and maximum cardinality

of minimal Rr sets of G are called respectively lower and upper Rr number

of G and are denoted by lRr(G) and uRr(G). A subset S of V (G) is said to

be an R∗
r set if both S and S̄ = {V − S} are not rr sets. The minimum and

maximum cardinality of minimal R∗
r sets of G are called respectively lower and

upper R∗
r number of G and are denoted by lR∗

r
(G) and uR∗

r
(G). (Suppose p

and q represent some graph theoretical properties like domination, resolving,

rmd etc, then a subset S of V (G) is said to be pq set if S is both p set and q

set. If S is an arbitrary set, need not be minimal having the property p then

minimum and maximum cardinality of S is denoted by l̂p(G) and ûp(G).)
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Remark 2.1. For a path Pn,

d(vj/vi) =


1
2

if i = j = 1 or i = j = n
2
3

if i = j 6= 1 or i = j 6= n

| j − i | if i 6= j and (j 6= 1 or j 6= n)
2|j−i|−1

2
if i 6= j and (j = 1 or j = n).

Lemma 2.2. For a Path Pn, a singleton set {vi} is an rmb set if and only

if either vi is an end vertex or a support vertex in Pn.

Proof. From Ragavendra et al [11], rmd(Pn) = 1, {v1}, {vn} are rmb sets.

Now {v2} is an rmb set, because from the Remark 2.1,

d(vj/v2) =


1
2

if j = 1

j − 2 if 3 ≤ i ≤ n− 1
2n−3

2
if j = n.

Thus Γ(vi/{v2}) 6= Γ(vj/{v2}) for every i 6= j. Similarly by symmetry {vn−1}
is also an rmb set. But for a vertex vi which is not an end vertex or a support

vertex in Pn, singleton set {vi} is not an rmb set, because d(vi−1/vi) = 1 =

d(vi+1/vi) which imply Γ(vi−1/{vi}) = Γ(vi+1/{vi})

Theorem 2.3. For a Path Pn, a subset S = {vi, vj}, ∀ i, j with 3 ≤ i <

j ≤ n− 2 of V (Pn) is a minimal rr set.

Proof. Let S = {vi, vj}, 3 ≤ i < j ≤ n − 2 be a subset of V (Pn). Let x, y be

any two vertices of Pn.

Since 3 < i < n − 2, from Lemma 2.2, {vi} is not an rr set, which imply

d(x/vi) = d(y/vi), for some x, y of V (Pn). Let d(x/vi) = d(y/vi) for x = vl

and y = vm for some l,m with 1 ≤ l,m ≤ n. Without loss of generality,

consider l < m. Consider the following cases.

Case 1: l = 1.

From Remark 2.1, d(vl/vj) = 2|j−l|−1
2

and d(vm/vj) =| j −m | as l < m.

Therefor d(vl/vj) 6= d(vm/vj) as d(vm/vj) is an integer whereas d(vl/vj)

is not an integer. Hence Γ(x/S) 6= Γ(y/S)
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Case 2: l 6= 1

From Remark 2.1, d(vl/vj) =| j − l | and d(vm/vj) =| j − m | as l 6= 1

⇒ m 6= 1.

Suppose d(vl/vj) = d(vm/vj), then | j − m |=| j − l | which imply

j−m = −(j− l), because j−m 6= j− l as l 6= m. But j−m = −(j− l)

⇒ 2j = m + l. Similarly we have d(vl/vi) = d(vm/vi) ⇒ 2i = m + l.

Combining we have 2j = m + l and 2i = m + l imply i = j which is not

possible. Therefore d(vl/vi) 6= d(vm/vi) and hence Γ(x/S) 6= Γ(y/S).

Other cases follow by symmetry.

Therefore ∀ i, j with 3 ≤ i < j ≤ n − 2, {Vi}, {Vj} are not rr sets, but

S = {vi, vj} of V (Pn) is an rr set which imply S = {vi, vj} is a minimal rr

set.

Corollary 2.4. For a Path Pn, n ≥ 2, any k-element subset S of V (Pn)

for k ≥ 2 is an rr set,but not minimal, because either S contain end vertices

or support vertices or a subset {vi, vj} with 3 ≤ i < j ≤ n− 2.

Corollary 2.5. For a Path Pn, n ≥ 6, a subset {vi, vj} of V (Pn) with

3 ≤ i < j ≤ n−2 is a minimal rr set with maximum cardinality from Corollary

2.4.

Theorem 2.6. For a Path Pn, lrr(Pn) = 1 for n ≥ 1 and

urr(Pn) =

{
1 if n ≤ 5

2 if n ≥ 6

Proof. {v1} is one of the rr set with minimum cardinality. Therefore lrr(Pn) =

1.

To find urr(Pn), consider the following cases.

Case 1: n ≤ 4.

From Lemma 2.2, every singleton subset of V (Pn) is a minimal rr set

which imply urr(Pn) = 1.

Case 2: n = 5.

From Lemma 2.2, every singleton subset of V (P5) except {v3} is a min-

imal rr set and hence no 2-element subset of V (P5) is an rr set which

imply urr(P5) = 1
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Case 3: n ≥ 6.

From Corollary 2.5, a subset {vi, vj} with 3 ≤ i < j ≤ n−2 is a minimal

rr set with maximum cardinality Therefore urr(Pn) = 2.

Theorem 2.7. For a Path Pn, lr∗r (Pn) = 1 for n > 1 and

ur∗r (Pn) =

{
1 if n ≤ 5

2 if n ≥ 6

Proof. S = {v1} is an rr set and S̄ = V − S = {v2, v3, ..., vn, } is also an rr set

as it contain the end vertex vn. Hence S is r∗r set with minimum cardinality.

Therefor lr∗r (Pn) = 1.

To find ur∗r (Pn), consider the following cases.

Case 1: n ≤ 5.

From Lemma 2.2, a singleton subset S = {v1} or {v2} or {vn−1} or {vn}
is an rr set and for any S, S̄ = V − S is also an rr set and no k-element

subset for k ≥ 2 of V (Pn) is an rr set which imply S is a minimal r∗r set

with maximum cardinality. Therefore ur∗r (Pn) = 1.

Case 2: n ≥ 6.

From Corollary 2.5, a subset S = {vi, vj} with 3 ≤ i < j ≤ n − 2 of

V (Pn) and S̄ = V − S are rr sets and no k-element subset for k ≥ 3 of

V (Pn) is an rr set which imply S is an minimal r∗r set with maximum

cardinality. Therefore ur∗r (Pn) = 2.

Theorem 2.8. For a Path Pn,

lRr(Pn) = uRr(Pn) =

{
0 if 1 < n ≤ 4

n− 1 if n ≥ 5

Proof. To find lRr(Pn), consider the following cases.
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Case 1: 1 < n ≤ 4.

From Lemma 2.2, every singleton subset of V (Pn) is an rr set which

imply for any k with 1 ≤ k ≤ 3, a k-element subset S of V (Pn) is an rr

set and for any S, S̄ = V − S is also an rr set which imply S is not an

Rr set and therefore lRr(Pn) = uRr(Pn) = 0.

Case 2: n ≥ 5.

From Lemma 2.2, every k-element subset of V (Pn) for k ≥ 2 is an rr

set and every singleton subset {vi}, 3 ≤ i ≤ n− 2 of V (Pn) is not an rr

set, which imply a subset S of V (Pn) is an Rr set, only if S̄ = V − S is

a singleton subset {vi}, 3 ≤ i ≤ n − 2 of V (Pn). Therefore lRr(Pn) =

uRr(Pn) = n− 1.

Theorem 2.9. For a Path Pn, n > 1, lR∗
r
(Pn) = uR∗

r
(Pn) = 0

Proof. For any k-element subset S of V (Pn) with 1 ≤ k < n − 1, either S

or V − S contain atleast one end vertex which imply either S or V − S is

always an rr set. Therefore there exists no R∗
r set for Pn and hence lR∗

r
(Pn) =

uR∗
r
(Pn) = 0.

Theorem 2.10. For a complete graph Kn, n > 2, (when n = 2, Kn = Pn)

(i) lrr(Kn) = urr(Kn) = n− 1

(ii) lr∗r (Kn) = ur∗r (Kn) = 0

(iii) lRr(Kn) = uRr(Kn) = n− 1

(iv) lR∗
r
(Kn) = uR∗

r
(Kn) = 2

Proof. From Ragavendra et al [11], rmd(Kn) = n−1 and any (n−1)-element

subset S of V (Kn) is a minimal rr set.

(i) rmd(Kn) = n− 1 ⇒ lrr(Kn) = n− 1 and there exists no minimal rr set

with cardinality greater than n− 1 which imply urr(Kn) = n− 1.
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(ii) Since from (i), any rr set contain minimum n−1 elements, for any subset

S of V (Kn), both S and S̄ = V − S cannot contain minimum n − 1

elements. Hence there exist no r∗r set for Kn and therefore lr∗r (Kn) =

ur∗r (Kn) = 0.

(iii) Since from (i), any minimal rr set S contain minimum n − 1 elements,

imply S̄ = V − S contain exactly one element and hence S̄ is not an

rr set. Therefore S is a minimal Rr set with minimum and maximum

cardinality which imply lRr(Kn) = uRr(Kn) = n− 1.

(iv) Since from (i), any subset of V (Kn) containing n − 1 elements is an rr

set, if S is a singleton subset of V (Kn), then S̄ = V − S contain n − 1

elements which imply S is a non rr set and S̄ = V −S is an rr set so that

S is not an R∗
r set. But if S is 2-element subset of V (Kn), then S̄ = V −S

contain n−2 elements which imply both S and S̄ = V −S are non rr sets

so that S is an R∗
r set and is minimal. Therefore lR∗

r
(Kn) = uR∗

r
(Kn) = 2.

Theorem 2.11. For a star graph K1,n, n > 2, (when n = 2, K1,n = Pn+1)

(i) lrr(K1,n) = urr(K1,n) = n− 1

(ii) lr∗r (K1,n) = ur∗r (K1,n) = 0

(iii) lRr(K1,n) = uRr(K1,n) = n− 1

(iv) lR∗
r
(K1,n) = uR∗

r
(K1,n) = 2

Proof. From Ragavendra et al [11], rmd(K1,n) = n−1 and any (n−1)-element

subset S of V (K1,n) containing only pendent vertices is a minimal rr set.

(i) rmd(K1,n) = n − 1 ⇒ lrr(K1,n) = n − 1 and there exists no minimal rr

set with cardinality greater than n− 1 which imply urr(K1,n) = n− 1.

(ii) Since any rr set must contain minimum n − 1 elements, both S and

S̄ = V − S cannot contain minimum n− 1 elements. Hence there exists

no r∗r set for K1,n and therefore lr∗r (K1,n) = ur∗r (K1,n) = 0.
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(iii) Any rr set S contain minimum n− 1 elements, imply S̄ = V −S contain

maximum 2 elements and hence S̄ is not an rr set. Also any rr set of

V (K1,n) with greater cardinality cannot be minimal. Therefore any rr

set with n−1 elements is a minimal Rr set with minimum and maximum

cardinality which imply lRr(K1,n) = uRr(K1,n) = n− 1.

(iv) Since for R∗
r set, both S and S̄ should not contain n−1 pendent vertices,

any 2-element subset of V (K1,n) containing only pendent vertices is a

minimal R∗
r set with minimum and maximum cardinality. Therefore

lR∗
r
(K1,n) = uR∗

r
(K1,n) = 2.

Theorem 2.12. For a cycle Cn, n > 3, (when n = 3, Cn = Kn)

(i) lrr(Cn) = urr(Cn) = 2

(ii) lr∗r (Cn) = ur∗r (Cn) = 2

(iii)

lRr(Cn) = uRr(Cn) =

{
n− 1 if n is odd or n = 4

n− 2 if n is even and n 6= 4

(iv)

lR∗
r
(Cn) = uR∗

r
(Cn) =

{
2 if n = 4

0 if n > 4

Proof. From Ragavendra et al [11], rmd(Cn) = 2. Any 2-element subset S of

V (Cn) (non diagonal elements when n is even ) is a minimal rr set.

(i) rmd(Cn) = 2 ⇒ lrr(Cn) = 2. Also any k-element subset of V (Cn) for

k ≥ 3 contain 2-element subset which is an rr set, which imply any 2-

element subset of V (Cn) is a minimal rr set with maximum cardinality.

Hence urr(Cn) = 2

(ii) Since an rr set of Cn must contain minimum 2 elements, any S of V (Cn)

with both S and S̄ = V−S containing minimum 2 elements (non diagonal

elements when n is even ) is an r∗r set, out of which exactly 2-element

subset S is a minimal r∗r set with minimum and maximum cardinality.

Hence lr∗r (Cn) = ur∗r (Cn) = 2
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(iii) Consider the following cases.

Case i When n is odd or n = 4

Every k-element subset of V (Cn) for k ≥ 2 is an rr set and every

singleton subset {vi} of V (Cn) is not an rr set, which imply a subset

S of V (Cn) is an Rr set, only if S̄ = V − S is a singleton subset,

that is S contain minimum n − 1 elements. Therefore lRr(Cn) =

uRr(Cn) = n− 1.

Case ii When n is even and n 6= 4

Since any two diagonally opposite vertices of V (Cn) is a non rr

set, choose S of V (Cn) such that S̄ = V −S contain two diagonally

opposite vertices of V (Cn). Then S is minimal Rr set with minimum

and maximum cardinality n − 2. Therefore lRr(Cn) = uRr(Cn) =

n− 2.

(iv) Consider the following cases.

Case i When n = 4

S = {v1, v3} and S̄ = V − S = {v2, v4} are not rr sets which imply

S is an R∗
r set and hence lR∗

r
(Cn) = uR∗

r
(Cn) = 2.

Case ii When n > 4

For any subset S of V (Cn), either S or V − S contain atleast two

elements (non diagonal elements when n is even ) which imply either

S or V − S is always an rr set. Therefore there exists no R∗
r set for

Cn and hence lR∗
r
(Cn) = uR∗

r
(Cn) = 0.
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