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Abstract

A Fermat number is a number of the form Fn = 22
n

+ 1, where n is an
integer ≥ 0. In this paper, we show [via elementary arithmetic congruences]
the following two results (R.) and (R’.). (R.): For every integer n ≥ 3,
Fn−1 ≡ 1mod[j], where j ∈ {3, 5, 17}. (R’.): For every integer n > 0 such
that n ≡ 2mod[6], we have Fn − 1 ≡ 16mod[19]. Result (R.) immediately
implies that for every integer d ≥ 0, there exists at most two primes of the
form 2Fn + 1 + 10d [in particular, for every integer d ≥ 0, the numbers of
the form 2Fn + 1 + 10d (where n ≥ 2) are all composites ]; result (R.) also
implies that there are infinitely many composite numbers of the form 2n+Fn
and for every r ∈ {−2, 16}, there exists only one prime of the form r + Fn.
Result (R’.) immediately implies that there are infinitely many composite
numbers of the form 2 + Fn. That being said, we use the result (R.) and a
special case of a Theorem of Dirichlet on arithmetic progression to explain
why it is natural to conjecture that for every r′ ∈ {0, 2}, there are infinitely
many primes of the form r′ + Fn.

Keywords. Fermat number, Fn, Dirichlet of Theorem On Arithmetic Pro-
gression, Primes Numbers, Modular Arithmetic, Congruences.
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Introduction
A Fermat number is a number of the form Fn = 22

n
+1, where n is an integer

≥ 0. A Fermat composite (see [1] or [2] or [4] or [6] or [7] or [12] or [13] or [14]
or [15] ) is a non prime Fermat number and a Fermat prime is a prime Fermat
number. Fermat composites and Fermat primes are characterized via divisi-
bility in [4] and in [5]. It is known (see [4] ) that for every j ∈ {0, 1, 2, 3, 4},
Fj is a Fermat prime (F0 = 22

0
+ 1 = 3 and 3 is prime, F1 = 22

1
+ 1 = 5 and
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5 is prime, F3 = 22
3

+ 1 = 257 and 257 is prime, and F4 = 22
4

+ 1 = 65537
and 65537 is prime), and it is also known (see [2] or [3]or [8] or [9] or [10]or

[11]) that F5 and F6 are Fermat composites (F5 = 22
5

+ 1 = 641× 6700417,

and since 2013, it is known that F2747497 = 22
2747497

+ 1 is Fermat com-
posite number). Fermat numbers have importance and their application to
other sciences such as cryptography, neural networks, electronic computer,
polygons with straightedge, filtering, autocorrelation, and related areas with
conventional computing have seen clearly. Factorization of Fermat numbers
(specially for big one) is a very hard problem in number theory and cryp-

tography too. The biggest known Fermat prime is F4 = 22
4

+ 1 = 65537,
and this number is used in cryptography because of the fact that this prime
helps the cryptography less vulnerable to the public exponent attack lowly
(as mentioned ”Coppersmith’s short pad attack” in the literature. Practi-
cal and efficient methods are still in need for factorization of such numbers,
even there are many algorithms to factorize some of such composite num-
bers. That being so, in this paper, we show [via elementary arithmetic
congruences] the following two results (R.) and (R’.). (R.): For every
integer n ≥ 3, Fn − 1 ≡ 1mod[j], where j ∈ {3, 5, 17}. (R’.): For every
integer n > 0 such that n ≡ 2mod[6], we have Fn− 1 ≡ 16mod[19]. Result
(R.) immediately implies that for every integer d ≥ 0, there exists at most
two primes of the form 2Fn + 1 + 10d [in particular, for every integer d ≥ 0,
the numbers of the form 2Fn + 1 + 10d (where n ≥ 2) are all composites ];
result (R.) also implies that there are infinitely many composite numbers of
the form 2n + Fn and for every r ∈ {−2, 16}, there exists only one prime of
the form r + Fn. Result (R’.) immediately implies that there are infinitely
many composite numbers of the form 2 + Fn. That being said, we use the
result (R.) and a special case of a Theorem of Dirichlet on arithmetic pro-
gression to explain why it is natural to conjecture that for every r′ ∈ {0, 2},
there are infinitely many primes of the form r′ + Fn.

Theorem 1. The following are satisfied.
(R.). For every integer n ≥ 3, Fn − 1 ≡ 1mod[j], where j ∈ {3, 5, 17}.
(R.1). For every fixed integer d ≥ 0, there exists at most two primes of the
form 2Fn + 1 + 10d.
(R.2). For every fixed integer d ≥ 0, the numbers of the form 2Fn + 1 + 10d
(where n ≥ 2) are all composites.
(R.3). There are infinitely many composite numbers of the form 2n + Fn.
(R.4). The only prime of the form −2 + Fn is −2 + F1 = 3 and the only
prime of the form 16 + Fn is 16 + F0 = 19.
(R.5) For every integer n ≥ 2, −2 +Fn is composite; and for every integer
n ≥ 1, 16 + Fn is composite.

Theorem 2. The following are satisfied.
(R’.). For every integer n > 0 such that n ≡ 2mod[6], we have Fn − 1 ≡
16mod[19].
(R’.1). There are infinitely many composite numbers of the form 2 + Fn.
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1. Proof of Theorem 1
To prove Theorem 1, we need the following remarks and Propositions.

Remark 1.0. Let n be an integer ≥ 4. If for every j ∈ {3, 5, 17} we have

22
n−1 ≡ 1mod[j], then for every j ∈ {3, 5, 17}, 22

n−1 × 22
n−1 ≡ 1mod[j].

Proof. Immediate [via elementary arithmetic congruences].

Proposition 1.1. Let n be an integer ≥ 3. Then for every j ∈ {3, 5, 17},
we have 22

n ≡ 1mod[j].
Proof. Otherwise

let n beminimumsuch that there exists j ∈ {3, 5, 17}with 22
n
6≡ 1mod[j] (1 .1 ).

Clearly
n ≥ 4 (1 .2 )

(since 22
3

= 256 and 256 ≡ 1mod[j] where j ∈ {3, 5, 17}). It is immediate
to see that

22
n

= 22
n−1 × 22

n−1
(1 .3 ).

Now using equality (1.3) and inequality (1.2), we easily deduce that (1.1)
clearly implies that

there exists j ∈ {3, 5, 17}with 22
n−1
×22

n−1
6≡ 1mod[j] and 22

n−1
≡ 1mod[j]; (n ≥ 4) (1 .4 ).

(1.4) clearly contradicts Remark 1.0.

Proposition 1.2. Let n be an integer ≥ 3 and let d be a fixed inte-
ger ≥ 0 [d is fixed once and for all, so d does not move anymore]. Then
2Fn + 1 + 10d ≡ 0mod[5] and 2Fn + 1 + 10d is composite.
Proof. (i). 2Fn + 1 ≡ 0mod[5] and 2Fn + 1 is composite. Clearly

2(22
n

+ 1) + 1 ≡ 0mod[5] (1 .5 )

[indeed observe (via Proposition 1.1 and the fact that Fn − 1 = 22
n
) that

Fn−1 ≡ 1mod[5] and use elementary arithmetic congruences]. So 2Fn+1 ≡
0mod[5] and 2Fn + 1 is composite [use congruence (1.5) and observe that
2(22

n
+ 1) + 1 = 2Fn + 1 and 2Fn + 1 > 5 ( note that n ≥ 3)].

(ii). 2Fn + 1 + 10d ≡ 0mod[5] and 2Fn + 1 + 10d is composite. Immediate
(use (i) and observe that 10d ≡ 0mod[5]). Proposition 1.2 immediately
follows [use (i) and (ii)].

Proposition 1.3. Let n be an integer ≥ 3. Then Fn− 2 ≡ 0mod[17] and
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Fn − 2 is composite.
Proof. Clearly

(22
n

+ 1)− 2 ≡ 0mod[17] (1 .6 )

[observe (via Proposition 1.1 and the fact that Fn − 1 = 22
n
) that Fn −

1 ≡ 1mod[17] and use elementary arithmetic congruences]. So Fn − 2 ≡
0mod[17] and Fn − 2 is composite [use congruence (1.6) and observe that
(22

n
+ 1)− 2 = Fn − 2 and Fn − 2 > 17 ( note that n ≥ 3)].Proposition 1.3

immediately follows.

Proposition 1.4. Let n be an integer ≥ 3. Then Fn + 16 ≡ 0mod[3] and
Fn + 16 is composite.
Proof. Clearly

(22
n

+ 1) + 16 ≡ 0mod[3] (1 .7 )

[observe (via Proposition 1.1 and the fact that Fn − 1 = 22
n
) that Fn −

1 ≡ 1mod[3] and use elementary arithmetic congruences]. So Fn + 16 ≡
0mod[3] and Fn + 16 is composite [use congruence (1.7) and observe that
(22

n
+ 1) + 16 = Fn + 16 and Fn + 16 > 3 ( note that n ≥ 3)].Proposition

1.4 immediately follows.

Remark 1.5. Let n be an integer ≥ 4. If 2 × 2n−1 ≡ 0mod [3], then
2n−1 ≡ 0mod [3].
Proof. Immediate [via elementary arithmetic congruences and the fact that
2 ≡ 2mod [3] ].

Proposition 1.6. Let n be an integer ≥ 3; then 2n 6≡ 0mod[3].
Proof. Otherwise

let n beminimumsuch that 2n ≡ 0mod[3] (1 .8 ).

Clearly
n ≥ 4 (1 .9 )

(since 24 = 16 and 16 6≡ 0mod[3]). It is immediate to see that

2× 2n−1 = 2n (1 .10 ).

Now using equality (1.10) and inequality (1.9), we easily deduce that (1.8)
clearly implies that

2× 2n−1 ≡ 0mod[3], where 2n−1 6≡ 0mod[3]; n ≥ 4 (1 .11 ).
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(1.11) clearly contradicts Remark 1.5.

Proposition 1.7. Let n be an integer ≥ 3 and let Bn = 2n + Fn; then
there exists j ∈ {0, 1} such that Bn+j is composite.
Proof. (i’). If 2n ≡ 2mod[3], then the number Bn+j is composite, where
j = 1. Indeed if 2n ≡ 2mod[3], clearly

2× 2n ≡ 1mod[3] (1 .12 )

[use elementary arithmetic congruences] and so

2n+1 ≡ 1mod[3] (1 .13 )

[use (1.12) and observe that 2× 2n = 2n+1]. Observe (via Proposition 1.1)
that

22
n+1 ≡ 1mod[3] (1 .14 ),

and so
22

n+1
+ 1 ≡ 2mod[3] (1 .15 )

[use (1.14) and elementary arithmetic congruences]. Clearly

2n+1 + (22
n+1

+ 1) ≡ 0 mod [3] (1 .16 )

[use (1.13) and (1.15) and elementay arithmetic congruences]. Clearly

2n+j + Fn+j ≡ 0mod[3]where j = 1 (1 .17 )

[use (1.16) and observe that 2n+1 + (22
n+1

+ 1) = 2n+j +Fn+j , where j = 1]
and so Bn+j is composite, where j = 1 [use (1.17) and observe that Bn+1 =
2n+1 + Fn+1 and Bn+1 > 3 since n ≥ 3].
(ii’). If 2n 6≡ 2mod[3], then the number Bn+j is composite, where j = 0.
Indeed if 2n 6≡ 2mod[3], then

2n ≡ 1mod[3] (1 .18 )

[use Proposition 1.6, by observing that 2n ≡ kmod[3] if and only if k ∈
{0, 1, 2}]. Now observe (by Proposition 1.1) that

22
n ≡ 1mod[3] (1 .19 ),

and so
22

n
+ 1 ≡ 2mod[3] (1 .20 )
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[use (1.19) and elementary arithmetic congruences]. Clearly

2n + (22
n

+ 1) ≡ 0 mod [3] (1 .21 )

[use (1.18) and (1.20) and elementay arithmetic congruences]. Clearly

2n+j + Fn+j ≡ 0mod[3]where j = 0 (1 .22 )

[use (1.21) and observe that 2n + (22
n

+ 1) = 2n+j +Fn+j , where j = 0] and
so Bn+j is composite, where j = 0 [use (1.22) and observe that Bn = 2n+Fn

and Bn > 3 since n ≥ 3]. Proposition 1.7 immediately follows [use (i’) and
(ii’)].

Remark 1.8. There are infinitely many composite numbers of the form
2n + Fn or there are infinitely many prime numbers of the form 2n + Fn.
Proof. Immediate.

Having made the previous Remarks and Propositions, then Theorem 1
becomes immediate to prove.

Proof of Theorem 1.
(R.). Immediate [use Proposition 1.1 and observe that 22

n
= Fn − 1].

(R.1). Immediate [observe that 2F0 +1+10d = 7+10d and 2F1 +1+10d =
11+10d and 2F2+1+10d = 35+10d (notice that 2F2+1+10d is composite),
and use Proposition 1.2].
(R.2). Immediate [ notice that 2F2 + 1 + 10d = 35 (so 2Fn + 1 + 10d is
composite) and use Proposition 1.2].
(R3). Immediate [ use Proposition 1.7 and Remark 1.8].
(R.4). Immediate [ indeed let r ∈ {−2, 16}. If r = −2, clearly −2 + F0 = 1
and −2 + F1 = 3 and −2 + F2 = 15 (observe that the only prime is
−2+F1 = 3), and use Proposition 1.3; now if r = 16, clearly 16+F0 = 19 and
16+F1 = 21 and 16+F2 = 33 (observe that the only prime is 16+F0 = 19),
and use Proposition 1.4].
(R.5). Immediate [indeed property (R.5) is only an immediate consequence
of property (R.4)].

2. Proof of Theorem 2
To prove Theorem 2, we need the following remarks and Propositions.

Remark 2.0. Let n be an integer > 2 such that n ≡ 2mod[6]. If
22

n−6 ≡ 16mod[19], then (22
n−6

)2
6 ≡ 16mod[19].

Proof. Indeed observe that (22
n−6

)2
6

= (22
n−6

)64 and

(22
n−6

)64 ≡ (−3)64mod[19] (2 .1 )

6                                                                                                    Annouk and OZER



(since 22
n−6 ≡ 16mod[19] and 16 ≡ −3mod[19]). Observing that

(−3)64 = (81)16 and 81 ≡ 5mod[19] (2 .2 )

and using (2.2), then it becomes immediate to deduce that congruence (2.1)
clearly says that

(22
n−6

)64 ≡ (5)16mod[19] (2 .3 ).

Noticing that

(5)16 = (625)4 and 625 ≡ 17mod[19] and 17 ≡ −2mod[19] (2 .4 )

and using (2.4), then it becomes immediate to deduce that congruence (2.3)
clearly says that

(22
n−6

)64 ≡ (−2)4mod[19] (2 .5 ).

So
(22

n−6
)64 ≡ 16mod[19] (2 .6 )

[use congruence (2.5) and observe that (−2)4 = 16] and clearly (22
n−6

)2
6 ≡

16mod[19] [use congruence (2.6) and observe that (22n−6)26 = (22n−6)64].

Proposition 2.1. Let n be an integer > 0 such that n ≡ 2 mod [6];
then 22

n ≡ 16mod[19].
Proof. Otherwise

let n beminimumsuch that 22
n
6≡ 16mod[19] (n ≡ 2mod[6] andn > 0) (2 .7 ).

Clearly
n ≥ 8 (2 .8 )

(since 22
2

= 16 and 16 ≡ 16mod[19] ). It is immediate to see that

22
n

= (22
n−6

)2
6

(2 .9 ).

Now using equality (2.9) and inequality (2.8), we easily deduce that (2.7)
clearly implies that

(22
n−6

)2
6
6≡ 16mod[13]; 22

n−6
≡ 16mod[19] (n ≡ 2mod[6]; n > 2) (2 .10 ).

(2.10) clearly contradicts Remark 2.0.

Proposition 2.2. Let n be an integer > 2 such that n ≡ 2mod[6].
Then 2 + Fn ≡ 0mod[19] and 2 + Fn is composite.
Proof. Clearly

2 + (22
n

+ 1) ≡ 0mod[19] (2 .11 )
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[ observe (via Proposition 2.1) that 22
n ≡ 16mod[19] and use elementary

arithmetic congruences]. So 2+Fn ≡ 0mod[19] and 2+Fn is composite [use
congruence (2.11) and observe that 2 + (22

n
+ 1) = 2 + Fn and 2 + Fn > 19

( note that n > 2)]. Proposition 2.2 immediately follows.

Remark 2.2. There are infinitely many composite numbers of the form
2 + Fn or there are infinitely many prime numbers of the form 2 + Fn.

Proof. Immediate).
Having made the previous Remarks and Propositions, then Theorem 2

becomes immediate to prove.

Proof of Theorem 2 .
(R’.). Immediate [use Proposition 2.1 and observe that 22

n
= Fn − 1].

(R’.1). Immediate [use Proposition 2.2 and Remark 2.3].

3.Epilogue
In this section, we explain why is natural and not surprising to conjec-

ture that for every r′ ∈ {0, 2}, there are infinitely many primes of the form
r′ + Fn, by using result (R.) [use Theorem 1] and a special case of a The-
orem of Dirichlet on arithmetic progression [observe that for every n ∈ {0, 1, 2, 4},
2 + Fn is prime and 2 + F3 is not prime; and remark that for every n ∈ {0, 1, 2, 3, 4}, Fn is prime

]. We recall:

Theorem 3. (Theorem of Dirichlet on arithmetic progression). For any
two positive coprime integers a and d, there are infinitely many primes of
the form a+nd, where n is also a positive integer (In other words, there are
infinitely many primes that are congruent to a modulo d) .

Observation. It is natural to conjecture that there are infinitely many
primes of the form Fn and there are infinitely many primes of the form
2 + Fn .

Explanation. Indeed from Result (R.) of Theorem 1, we have

Fn − 1 ≡ 1mod[3] andFn − 1 ≡ 1mod[5] andFn − 1 ≡ 1mod[17] (n is an integer ≥ 3) (1 .12 ),

clearly
Fn ≡ 2mod[j] ( j ∈ {3, 5, 17}), for every integer n ≥ 3 (1 .13 )

[use (1.12) and elementary arithmetic congruences] and

2 + Fn ≡ 4mod[j′] (j′ ∈ {5, 17}) and 2 + Fn ≡ 1mod[3]; for every integer n ≥ 3 (1 .14 )

[use (1.12) and elementary arithmetic congruences].
Now letA2.j = {e; e is prime and e ≡ 2mod [j]} where j ∈ {3, 5, 17}, B4.j′ = {e; e is prime and e ≡

4mod [j′]} where j′ ∈ {5, 17} and B1.3 = {e; e is prime and e ≡ 1mod [3]}. Since it is immediate
that

for every j ∈ {3, 5, 17}wehave (2, j) = 1 (1 .15 )

and
for every j′ ∈ {5, 17}wehave (4, j′) = 1, and (1, 3) = 1 (1 .16 ),

then using ((1.15),(1.16)) coupled with a special case of a Theorem of Dirichlet on arithmetic
progression (use Theorem 3), it follows that

for every j ∈ {3, 5, 17} card(A2.j) is infinite (1 .17 )
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[use (1.15) and a special case of a Theorem of Dirichlet on arithmetic progression (use Theorem
3)], and

for every j′ ∈ {5, 17} card(B4.j′ ) is infinite, and card(B1.3) is infinite (1 .18 )

[use (1.16) and a special case of a Theorem of Dirichlet on arithmetic progression (use Theorem

3)].

Now using (1.13) and (1.17) and the fact that for every n ∈ {0, 1, 2, 3, 4} Fn is prime, then

it becomes naturel to conjecture the following.

Conjecture 1.Union of the sets A2.3, A2.5, and A2.17 (denoted by A2.3
⋃

A2.5
⋃

A2.17

contains infinitely many numbers of the form Fn (A2.3 and A2.5 and A2.17

are defined via the Observation placed just above).
Note. It is trivial to see that the previous conjecture immediately implies

that there are infinitely many Fermat primes.
That being said, using (1.14) and (1.18) and the fact that for every n ∈ {0, 1, 2, 4}, 2 + Fn

is prime, then it becomes naturel to conjecture the following.

Conjecture 2. Union of the sets B4.5, B4.17, and B1.3 (denoted by B4.5
⋃

B4.17
⋃

B1.3)
contains infinitely many numbers of the form 2 + Fn (B4.5 and B4.17 and
B1.3 are defined via the Observation placed just above).

Note. It is also trivial to see that Conjecture 2 immediately implies that
there are infinitely many primes of the form 2 + Fn

Conjecture 1 and Conjecture 2 immediately imply that there are in-
finitely many Fermat primes and there are infinitely many primes of the
form 2 + Fn.

Conclusion. In this work, we consider Fermat numbers and obtain useful
new results on them. Basic results are obtained on Fermat primes and Fer-
mat composites related with infinity. These results are new in the literature
and will be useful for other sciences mentioned as above with mathematics
too. The paper will be provide advantages for next works.
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