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Abstract

In this paper, we introduce some new iteration methods based on the

hybrid method in mathematical programming, the descent-like iterative

method and the Halpern’s method for finding a common fixed point of

two nonexpansive mappings and nonexpansive semigroups on two closed

and convex subsets in Hilbert spaces.
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1 Introduction

LetH be a real Hilbert space with the scalar product and the norm denoted

by the symbols 〈., .〉 and ‖.‖, respectively, and let C be a nonempty, closed
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and convex subset of H. Denote by PCx the metric projection from x ∈ H

onto C. Let T be a nonexpansive mapping on C, i.e., T : C → C and

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We use F (T ) to denote the set of fixed

points of T , i.e., F (T ) = {x ∈ C : x = Tx}. We know that F (T ) is nonempty,

if C is bounded, for more details see [1].

Let {T (t) : t > 0} be a nonexpansive semigroup on C, that is,

(1) for each t > 0, T (t) is a nonexpansive mapping on C;

(2) T (0)x = x for all x ∈ C;

(3) T (t1 + t2) = T (t1) ◦ T (t2) for all t1, t2 > 0; and

(4) for each x ∈ C, the mapping T (.)x from (0,∞) into C is continuous.

Denote by F = ∩t>0F (T (t)) the set of common fixed points for the semi-

group {T (t) : t > 0}. We know that F is a closed convex subset in H and

F 6= ∅ if C is compact (see, [2]).

Let Ci, i = 1, 2, be two closed and convex subsets in H. Let Ti and

{Ti(t) : t > 0}, i = 1, 2, be two nonexpansive mappings and semigroups

on Ci, respectively. The problems studied in this paper is to find two elements

p ∈ F := F (T1) ∩ F (T2) (1.1)

and

q ∈ F1,2 := F1 ∩ F2, (1.2)

where Fi = ∩t>0F (Ti(t)). Assume that F and F1,2 are not empty. Some

particular cases of (1.1) and (1.2) are the following:

(i) when T1 = T2 = I, the indentity mapping inH, (1.1) is the convex feasibility

problem studied in [3].

(ii) when C1 = C2 = C, problems (1.1) and (1.2) are considered in [4]-[6].

For finding a fixed point of a nonexpansive mapping T on C, in 1953, Mann

[7] proposed the following method:

x0 ∈ C any element,

xn+1 = αnxn + (1− αn)Txn, n ≥ 0,
(1.3)

that converges only weakly, in general (see [8] for an example). In 1967,

Halpern [9] firstly proposed the following iteration process:

xn+1 = βnu+ (1− βn)Txn, n ≥ 0, (1.4)
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where u, x0 are two fixed elements in C and {βn} ⊂ (0, 1). He pointed out

that the conditions limn→∞ βn = 0 and
∑

∞

n=0 βn = ∞ are necessary in the

sense that, if the iteration (1.4) converges to a fixed point of T , then these

conditions must be satisfied. Further, the iteration method was investigated

by Lions [10], Reich [11], Wittmann [12] and Song [13]. Recently, Alber [14]

proposed the following descent-like method

xn+1 = PC(xn − µn[xn − Txn]), n ≥ 0, (1.5)

and proved that if {µn} : µn > 0, µn → 0, as n → ∞ and {xn} is bounded,

then:

(i) there exists a weak accumulation point x̃ ∈ C of {xn};

(ii) all weak accumulation points of {xn} belong to F (T ); and

(iii) if F (T ) is a singleton, i.e., F (T ) = {x̃}, then {xn} converges weakly to x̃.

To obtain strong convergence for (1.3), Nakajo and Takahashi [15] intro-

duced the hybrid Mann’s iteration method:

x0 ∈ C,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

(1.6)

where {αn} ⊂ [0, a] for some a ∈ [0, 1). They showed that {xn} defined by

(1.6) converges strongly to PF (T )x0 as n → ∞. Recently, Yanes and Xu [16]

adapted the iteration process (1.4) as follows:

x0 ∈ C any element,

yn = βnx0 + (1− βn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2

+ βn(‖x0‖
2 + 2〈xn − x0, z〉)},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

(1.7)

They proved that if T is a nonexpansive mapping on a closed convex subset C

with F (T ) 6= ∅ and the sequence {βn} ⊂ (0, 1) is chosen such that

lim
n→∞

βn = 0,
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then the sequence {xn} defined by (1.7) converges strongly to PF (T )x0 as n →

∞.

For finding an element p ∈ F , Nakajo and Takahashi [15] also introduced

an iteration procedure as follows:

x0 ∈ C any element,

yn = αnxn + (1− αn)
1

tn

∫ tn

0

T (s)xnds,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0, n ≥ 0,

(1.8)

where αn ∈ [0,a] for some a ∈ [0,1) and {tn} is a positive real number divergent

sequence. Under the conditions on {αn} and {tn}, the sequence {xn} defined

by (1.8) converges strongly to PFx0.

If C ≡ H, then Cn and Qn in (1.6)-(1.8) are two halfspaces. So, the

projection xn+1 onto Cn ∩ Qn in these methods can be found by an explicit

formula [17]. Clearly, if C is a proper subset of H, then Cn and Qn in (1.6)-

(1.8) are not two halfspaces. Then, the following problem is posed: how to

construct the closed convex subsets Cn and Qn and if we can express xn+1 of

(1.6)-(1.8) in a similar form as in [17]? This problem is solved very recently

in [18]-[20]. In this works, Cn and Qn are replaced by two halfspaces and yn is

the right hand side of (1.5) with a modification. In this paper, motivated by

(1.5), (1.7) and [14], [15], to solve problems (1.1) and (1.2) we introduce the

following new iteration processes:

x0 ∈ H any element,

zn = xn − µn(xn − T1PC1
xn),

yn = βnx0 + (1− βn)T2PC2
zn,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+ βn(‖x0‖
2 + 2〈xn − x0, z〉)},

Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PHn∩Wn
x0, n ≥ 0;

(1.9)
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and
x0 ∈ H any element,

zn = xn − µn

(

xn −
1

tn

∫ tn

0

T1(s)PC1
xnds

)

,

yn = βnx0 + (1− βn)
1

tn

∫ tn

0

T2(s)PC2
znds,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+ βn(‖x0‖
2 + 2〈xn − x0, z〉)},

Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PHn∩Wn
x0, n ≥ 0.

(1.10)

We shall prove the strong convergence of the sequences {xn}, {yn} and

{zn} defined by (1.9) and (1.10) to some elements p and q in Sections 2 and 3,

respectively.

Below, the symbols ⇀ and → denote weak and strong convergences, re-

spectively.

2 Strong convergence to a common fixed point

of two nonexpansive mappings

We formulate the following facts needed in the proof of our results.

Lemma 2.1. [21] Let H be a real Hilbert. There holds the following identity:

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 2.2. [16] Let C be a nonempty, closed and convex subset of a real

Hilbert space H. For any x ∈ H, there exists a unique z ∈ C such that

‖z− x‖ ≤ ‖y− x‖ for all y ∈ C, and z = PCx if and only if 〈z− x, y− z〉 ≥ 0

for all y ∈ C.

Lemma 2.3. (Demiclosedness principle) [21] If C is a nonempty, closed and

convex subset of a real Hilbert space H, T is a nonexpansive mapping on C,

{xn} is a sequence in C such that xn ⇀ x and xn−Txn → 0, then x−Tx = 0.
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Lemma 2.4. [22] Every Hilbert space H has Randon-Riesz property or Kadec-

Klee property, that is, for a sequence {xn} ⊂ H with xn ⇀ x and ‖xn‖ → ‖x‖,

then there hodls xn → x.

Now, we are in a position to prove the following result.

Theorem 2.5. Let C1 and C2 be two nonempty, closed and convex subsets

in a real Hilbert space H and let T1 and T2 be two nonexpansive mappings on

C1 and C2, respectively, such that F := F (T1)∩F (T2) 6= ∅. Assume that {µn}

and {βn} are sequences in [0, 1] such that µn ∈ (a, b) for some a, b ∈ (0, 1) and

βn → 0. Then, the sequences {xn}, {zn} and {yn}, defined by (1.9), converge

strongly to the same point u0 = PFx0, as n → ∞.

Proof. First, note that

‖yn − z‖2 ≤ ‖xn − z‖2 + βn(‖x0‖
2 + 2〈xn − x0, z〉)

is equivalent to

〈(1− βn)xn + βnx0 − yn, z〉 ≤ 〈xn − yn, xn〉 −
1

2
‖yn − xn‖

2 +
βn

2
‖x0‖

2.

Thus, Hn is a halfspace. It is clear that

F (T ) = F (TPC) := {p ∈ H : TPCp = p}

for any mapping T from C into C. So, we have that F = F (T̃1)∩F (T̃2) where

T̃i = TiPCi
, i = 1, 2, and T̃i, i = 1, 2, are also two nonexpansive mappings on

H. Hence, by (1.9) and Lemma 2.1, we obtain for any p ∈ F that

‖zn − p‖2 = ‖(1− µn)(xn − p) + µn(T̃1xn − p)‖2

= (1− µn)‖xn − p‖2 + µn‖T̃1xn − p‖2

− (1− µn)µn‖xn − T̃1xn‖
2

≤ (1− µn)‖xn − p‖2 + µn‖xn − p‖2

− (1− µn)µn‖xn − T̃1xn‖
2

≤ ‖xn − p‖2 − (1− µn)µn‖xn − T̃1xn‖
2 ≤ ‖xn − p‖2.

(2.1)
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By the similar argument and the convexity of ‖.‖2, we also obtain

‖yn − p‖2 = ‖βnx0 + (1− βn)T̃2zn − p‖2

≤ βn‖x0 − p‖2 + (1− βn)‖T̃2zn − T̃2p‖
2

≤ βn‖x0 − p‖2 + (1− βn)‖zn − p‖2

≤ βn‖x0 − p‖2 + (1− βn)‖xn − p‖2

= ‖xn − p‖2 + βn(‖x0 − p‖2 − ‖xn − p‖2)

= ‖xn − p‖2 + βn(‖x0‖
2 + 2〈xn − x0, p〉).

Therefore, p ∈ Hn for all n ≥ 0. It means that F (T ) ⊂ Hn for all n ≥ 0.

Next, we show by mathematical induction that F (T ) ⊂ Hn ∩Wn for each

n ≥ 0. For n = 0, we have W0 = H, and hence F (T ) ⊂ H0 ∩ W0. Suppose

that xi is given and F (T ) ⊂ Hi ∩ Wi for some i > 0. There exists a unique

element xi+1 ∈ Hi ∩Wi such that xi+1 = PHi∩Wi
x0. Therefore, by Lemma 2.2,

〈xi+1 − x0, p− xi+1〉 ≥ 0

for each p ∈ Hi ∩ Wi. Since F (T ) ⊂ Hi ∩ Wi, we get F (T ) ⊂ Wi+1. So, we

have F (T ) ⊂ Hi+1 ∩Wi+1.

Further, since F (T ) is a nonempty, closed and convex subset of H, there

exists a unique element u0 ∈ F (T ) such that u0 = PF (T )x0. From xn+1 =

PHn∩Wn
(x0), we obtain

‖xn+1 − x0‖ ≤ ‖z − x0‖

for every z ∈ Hn ∩Wn. As u0 ∈ F (T ) ⊂ Wn, we get

‖xn+1 − x0‖ ≤ ‖u0 − x0‖ ∀ n ≥ 0. (2.2)

This implies that {xn} is bounded. Now, we show that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.3)

From the definition of Wn and Lemma 2.2, we have xn = PWn
x0. As xn+1 ∈

Hn ∩Wn, we obtain

‖xn+1 − x0‖ ≥ ‖xn − x0‖ ∀ n ≥ 0.

Therefore, {‖xn − x0‖} is a nondecreasing and bounded sequence. So, there

exists limn→∞ ‖xn − x0‖ = c. On the other hand, from xn+1 ∈ Wn, it follows

that

〈xn − x0, xn+1 − xn〉 ≥ 0,
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and hence

‖xn − xn+1‖
2 = ‖xn − x0 − (xn+1 − x0)‖

2

= ‖xn − x0‖
2 − 2〈xn − x0, xn+1 − x0〉+ ‖xn+1 − x0‖

2

≤ ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 ∀n ≥ 0.

Thus, (2.3) is proved by using the last inequality and limn→∞ ‖xn − x0‖ = c.

Next, since xn+1 ∈ Hn we have that

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + βn(‖x0‖+ 2〈xn − x0, z〉)}.

Therefore, from (2.3), the boundedness of {xn}, βn → 0 and the last inequality,

it follows that

lim
n→∞

‖yn − xn+1‖ = 0. (2.4)

This together with (2.3) implies that

lim
n→∞

‖yn − xn‖ = 0. (2.5)

Noticing that T̃2zn = yn − βn(xn − T̃2zn) + βn(xn − x0), we have

‖xn − T̃2zn‖ ≤ ‖xn − yn‖+ βn‖xn − T̃2zn‖+ βn‖xn − x0‖.

From (2.2) and the last inequality, it follows that

‖xn − T̃2zn‖ ≤
1

1− βn

(

‖xn − yn‖+ βn‖u0 − x0‖

)

.

By βn → 0 (βn ≤ 1− β for some β ∈ (0, 1)), (2.5) and the last inequality, we

obtain

lim
n→∞

‖xn − T̃2zn‖ = 0. (2.6)

Now, we shall prove that ‖xn − T̃1xn‖ → 0 and ‖xn − T̃2xn‖ → 0, as n → ∞.

Indeed, since {xn} is bounded, for any p ∈ F and any subsequence {T̃1xnk
−

xnk
} of {T̃1xn − xn} there exists a subsequence {xnj

} ⊂ {xnk
} such that

lim
j→∞

‖xnj
− p‖ = lim sup

k→∞

‖xnk
− p‖ = a.

By (2.6), (2.1) and the following inequalities

‖xnj
− p‖ ≤ ‖xnj

− T̃2znj
‖+ ‖T̃2znj

− p‖

≤ ‖xnj
− T̃2znj

‖+ ‖znj
− p‖

≤ ‖xnj
− T̃2znj

‖+ ‖xnj
− p‖,
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we get that

lim
j→∞

‖xnj
− p‖ = lim

j→∞
‖znj

− p‖ = a.

Again from (2.1) and the condition on µn, it implies that

a(1− b)‖T̃1xnj
− xnj

‖ ≤ ‖xnj
− p‖ − ‖znj

− p‖.

So, ‖T̃1xnj
− xnj

‖ → 0 and hence ‖T̃1xn − xn‖ → 0, as n → ∞. Further, since

‖T̃2xn − xn‖ ≤ ‖T̃2xn − T̃2zn‖+ ‖T̃2zn − xn‖

≤ ‖xn − zn‖+ ‖T̃2zn − xn‖,

lim
n→∞

‖zn − xn‖ = lim
n→∞

µn‖T̃1xn − xn‖ = 0, (2.7)

by (2.6) and ‖T̃1xn−xn‖ → 0, we also obtain that ‖T̃2xn−xn‖ → 0. Since {xn}

is bounded, there exists a subsequence {xni
} of {xn} that convegers weakly to

some element p ∈ H as i → ∞. By Lemmas 2.3 and ‖T̃1xn−xn‖, ‖T̃2xn−xn‖ →

0, we have that p ∈ F .

Now, from (2.2) and the weak lower semicontinuity of the norm it implies

that

‖x0 − u0‖ ≤ ‖x0 − p‖ ≤ lim inf
j→∞

‖x0 − xnj
‖ ≤ lim sup

j→∞

‖x0 − xnj
‖ ≤ ‖x0 − u0‖.

Thus, we obtain limj→∞ ‖x0 − xnj
‖ = ‖x0 − u0‖ = ‖x0 − p‖. This implies

xkj → p = u0 by Lemma 2.4. By the uniqueness of the projection u0 = PFx0,

we have that xn → u0. Consequently, from (2.7) it follows that zn → u0. From

(2.5), we also get that yn → u0. This completes the proof.

We have the following corollaries.

Corollary 2.6. Let Ci, i = 1, 2, be two nonempty, closed and convex subsets

in a real Hilbert space H. Let Ti, i = 1, 2, be two nonexpansive mappings on

Ci such that F (T1) ∩ F (T2) 6= ∅. Assume that {µn} is a sequence such that

0 < a ≤ µn ≤ b < 1. Then, the sequences {xn} and {yn}, defined by

x0 ∈ H any element,

yn = T2PC2
(xn − µn(xn − T1PC1

xn)),

Hn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},

Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PHn∩Wn
(x0), n ≥ 0,
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converge strongly to the same point u0 = PF (T )x0, as n → ∞.

Proof. By putting βn ≡ 0 in Theorem 2.5, we obtain the conclusion.

Corollary 2.7. Let Ci, i = 1, 2, be two nonempty, closed and convex subsets

in a real Hilbert space H such that C := C1 ∩ C2 6= ∅. Assume that {µn} and

{βn} are sequences in [0, 1] such that µn ∈ (a, b) for some a, b ∈ (0, 1) and

βn → 0. Then, the sequences {xn}, {zn} and {yn}, defined by

x0 ∈ H any element,

zn = xn − µn(xn − PC1
xn),

yn = βnx0 + (1− βn)PC2
zn,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+ βn(‖x0‖+ 2〈xn − x0, z〉)},

Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PHn∩Wn
x0, n ≥ 0,

converge strongly to the same point u0 = PCx0, as n → ∞.

Proof. By putting T1 = T2 = I in Theorem 2.5, we obtain the conclusion.

3 Strong convergence to a common fixed point

of two nonexpansive semigroups

We need the following Lemma in the proof of our result.

Lemma 3.1. [23] Let C be a nonempty bounded closed convex subset in a real

Hilbert space H and let {T (t) : t > 0} be a nonexpansive semigroup on C.

Then, for any h > 0

lim sup
t→∞

sup
y∈C

∥

∥

∥

∥

T (h)

(

1

t

∫ t

0

T (s)yds

)

−
1

t

∫ t

0

T (s)yds

∥

∥

∥

∥

= 0.
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Now, we prove the following result.

Theorem 3.2. Let C1 and C2 be two nonempty closed convex subsets in a real

Hilbert space H and let {T1(t) : t > 0} and {T2(t) : t > 0} be two nonexpansive

semigroups on C1 and C2, respectively, such that F = F1 ∩ F2 6= ∅ where

Fi = ∩t>0F (Ti(t)), i = 1, 2. Assume that {µn} and {βn} are sequences in

[0, 1] such that µn ∈ (a, b) for some a, b ∈ (0, 1) and βn → 0 and {tn} is

a positive real divergent sequence. Then, the sequences {xn}, {zn} and {yn},

defined by (1.10), converge strongly to the same point u0 = PFx0, as n → ∞.

Proof. For each p ∈ F , we have for each s > 0 that

p = PCi
p = T̃i(s)p, i = 1, 2,

where T̃i(s) = Ti(s)PCi
, and hence from (1.10) and Lemma 2.1, we obtain that

‖zn − p‖2 =

∥

∥

∥

∥

(1− µn)(xn − p) + µn

(

1

tn

∫ tn

0

T̃1(s)xn)ds− p

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(1− µn)(xn − p) + µn

(

1

tn

∫ tn

0

[T̃1(s)xn − T̃1(s)p]ds

)∥

∥

∥

∥

2

= (1− µn)‖xn − p‖2 + µn

∥

∥

∥

∥

1

tn

∫ tn

0

T̃1(s)xn − T̃1(s)pds

∥

∥

∥

∥

2

− (1− µn)µn

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃1(s)xnds

∥

∥

∥

∥

2

≤ ‖xn − p‖2 − (1− µn)µn

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃1(s)xnds

∥

∥

∥

∥

2

≤ ‖xn − p‖2.

(3.1)

By the similar argument and the convexity of ‖.‖2, we also obtain

‖yn − p‖2 =

∥

∥

∥

∥

βn(x0 − p) + (1− βn)

(

1

tn

∫ tn

0

T̃2(s)znds− p

)∥

∥

∥

∥

2

≤ βn‖x0 − p‖2 + (1− βn)

∥

∥

∥

∥

1

tn

∫ tn

0

[T̃2(s)zn − T̃2(s)p]ds

∥

∥

∥

∥

2

≤ βn‖x0 − p‖2 + (1− βn)‖zn − p‖2

≤ βn‖x0 − p‖2 + (1− βn)‖xn − p‖2

= ‖xn − p‖2 + βn(‖x0 − p‖2 − ‖xn − p‖2)

= ‖xn − p‖2 + βn(‖x0‖
2 + 2〈xn − x0, p〉).
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Therefore, p ∈ Hn for n ≥ 0. It means that F ⊂ Hn for n ≥ 0. As in the proof

of Theorem 2.5, we can obtain the following properties:

(i) F ⊂ Hn ∩Wn,

‖xn+1 − x0‖ ≤ ‖u0 − x0‖, u0 = PFx0 (3.2)

for n ≥ 0. This implies that {xn} is bounded.

(ii)

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

lim
n→∞

‖yn − xn+1‖ = 0. (3.4)

lim
n→∞

‖yn − xn‖ = 0. (3.5)

Noticing that

1

tn

∫ tn

0

T̃2(s)znds = yn − βn

(

xn −
1

tn

∫ tn

0

T̃2(s)znds

)

+βn(xn − x0),

we have

‖xn −
1

tn

∫ tn

0

T̃2(s)znds‖ ≤ ‖xn − yn‖

+βn

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃2(s)znds

∥

∥

∥

∥

+βn‖xn − x0‖.

From (3.2) and the last inequality, it follows that

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃2(s)znds

∥

∥

∥

∥

≤
1

1− βn

(

‖xn − yn‖+ βn‖u0 − x0‖

)

.

By βn → 0 (βn ≤ 1− β for some β ∈ (0, 1)), (3.5) and the last inequality, we

obtain

lim
n→∞

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃2(s)znds

∥

∥

∥

∥

= 0. (3.6)

As in the proof of Theorem 2.5, by using (3.6) we can obtain that

lim
n→∞

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃i(s)xnds

∥

∥

∥

∥

= 0, i = 1, 2, (3.7)

and

lim
n→∞

‖xn − zn‖ = 0. (3.8)
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Since
1

tn

∫ tn

0

T̃i(s)xnds ∈ Ci, i = 1, 2,

we have that
∥

∥

∥

∥

PCi
xn −

1

tn

∫ tn

0

T̃i(s)xnds

∥

∥

∥

∥

=

∥

∥

∥

∥

PCi
xn − PCi

1

tn

∫ tn

0

T̃i(s)xnds

∥

∥

∥

∥

≤

∥

∥

∥

∥

xn −
1

tn

∫ tn

0

T̃i(s)xnds

∥

∥

∥

∥

,

and hence from (3.7) it implies that

lim
n→∞

∥

∥

∥

∥

PCi
xn −

1

tn

∫ tn

0

T̃i(s)xnds

∥

∥

∥

∥

= 0, i = 1, 2. (3.9)

Since {xn} is bounded, there exists a subsequence {xnj
} of {xn} that converges

weakly to some element q ∈ H as j → ∞. From (3.7) and (3.9), we also obtain

that ui
nj

:= PCi
xnj

→ q as j → ∞. It means that q ∈ C1 ∩ C2. Then, for each

h > 0, we have that

‖Ti(h)u
i
n − ui

n‖ ≤

∥

∥

∥

∥

Ti(h)u
i
n − Ti(h)

(

1

tn

∫ tn

0

Ti(s)u
i
nds

)∥

∥

∥

∥

+

∥

∥

∥

∥

Ti(h)

(

1

tn

∫ tn

0

Ti(s)u
i
nds

)

−
1

tn

∫ tn

0

Ti(s)u
i
nds

∥

∥

∥

∥

+

∥

∥

∥

∥

1

tn

∫ tn

0

Ti(s)u
i
nds− ui

n

∥

∥

∥

∥

≤ 2

∥

∥

∥

∥

1

tn

∫ tn

0

Ti(s)u
i
nds− ui

n

∥

∥

∥

∥

+

∥

∥

∥

∥

T (h)

(

1

tn

∫ tn

0

Ti(s)u
i
nds

)

−
1

tn

∫ tn

0

Ti(s)u
i
nds

∥

∥

∥

∥

.

(3.10)

Let C i
0 = {z ∈ Ci : ‖z − u0‖ ≤ 2‖x0 − u0‖}. Since u0 = PFx0 ∈ Ci, we have

that

‖ui
nj

− u0‖ = ‖PCi
xnj

− PCi
u0‖ ≤ ‖xnj

− u0‖ ≤ 2‖x0 − uo‖.

So, C i
0 is a nonempty bounded closed convex subset. It is easy to verify that

{Ti(t) : t > 0} is a nonexpansive semigroup on C i
0. By Lemma 3.1, we get

lim
n→∞

∥

∥

∥

∥

Ti(h)

(

1

tn

∫ tn

0

T (s)ui
nds

)

−
1

tn

∫ tn

0

T (s)ui
nds

∥

∥

∥

∥

= 0

for every fixed h > 0 and hence by (3.9)-(3.10) we obtain that

lim
j→∞

‖Ti(h)u
i
nj

− ui
nj
‖ = 0
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for each h > 0. By Lemma 2.3, q ∈ F (Ti(h)) for all h > 0. It means that

q ∈ F . As in the proof of Theorem 2.5, by using (3.2), (3.5) and (3.8), we

also obtain that the sequences {xn}, {yn} and {zn}, defined by (1.10), converge

strongly to u0 as n → ∞. This completes the proof.

Corollary 3.3. Let C be a nonempty closed convex subset in a real Hilbert

space H and let {T (t) : t > 0} be a nonexpansive semigroup on C such that

F = ∩t>0F (T (t)) 6= ∅. Assume that {βn} is a sequence in [0, 1] such that

βn → 0. Then, the sequences {xn} and {yn}, defined by

x0 ∈ H any element,

yn = βnx0 + (1− βn)
1

tn

∫ tn

0

T (s)PC(xn)ds,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+ βn(‖x0‖+ 2〈xn − x0, z〉)},

Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PHn∩Wn
(x0), n ≥ 0,

converge strongly to the same point u0 = PFx0, as n → ∞.

Proof. By putting T1(s) = I for all s > 0, C1 = H,C2 = C and T2(s) = T (s)

in Theorem 3.2, we obtain the conclusion.

Corollary 3.4. Let C be a nonempty closed convex subset in a real Hilbert

space H and let {T (t) : t > 0} be a nonexpansive semigroup on C such that

F = ∩t>0F (T (t)) 6= ∅. Assume that {αn} is a sequence in [0, 1] such that

αn → 1. Then, the sequences {xn} and {yn}, defined by

x0 ∈ H any element,

yn =
1

tn

∫ tn

0

T (s)PC

(

xn − µn

[

xn −
1

tn

∫ tn

0

T (s)PCxnds

]

ds

)

,

Hn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},

Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PHn∩Wn
(x0), n ≥ 0,

converge strongly to the same point u0 = PFx0, as n → ∞.

Proof. By putting βn ≡ 0, C2 = H,C1 = C, T2(s) = I and T1(s) = T (s) for

all s > 0 in Theorem 3.2, we obtain the conclusion.
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