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Abstract 
 

The study uses autoregressive fractionally integrated moving average – 

fractionally integrated generalized autoregressive conditional heteroskedasticity 

(ARFIMA-FIGARCH) models and chaos effects to determine nonlinearity 

properties present on currency ETN returns.  The results find that the volatilities 

of currency ETNs have long-memory, non-stationarity and non-invertibility 

properties. These findings make the research conclude that mean reversion is a 

possibility and that the efficient market hypothesis of Fama (1970) became 

ungrounded on these investment instruments.  For the chaos effect, the BDS test 

finds that ETN returns and ARMA residuals also exhibit random processes, 

making conventional linear methodologies not appropriate for their analysis.  

The R/S analysis shows that currency ETN returns, ARMA and GARCH residuals 

have chaotic properties and are trend-reinforcing series.  On the other hand, the 

correlation dimension analyses further confirmed that the utilized time-series have 

deterministic chaos properties.  Thus, investors trying to predict returns and 

volatility of currency ETNs would fail to produce accurate findings because of 

their unstable structures, confirming their non-linear properties.   
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Economic theory offered explanations that irregular tendencies might be 

attributed to the existence of nonlinear properties of some investment instruments.  

The straightforward solutions offered by linear models are often inadequate to the 

growing complexities of financial time-series.  Most of the times, large price 

changes are not followed by relatively huge movements and at times even small 

reactions trigger great changes, leading to a solid conclusion that market 

volatilities are not constant over time.  Financial time-series exhibits irregular 

behavior wherein a process response is not proportional to the stimulus given 

making the mathematics behind it difficult to comprehend.  

This paper determines the application of two nonlinear models, namely 

long-memory and chaos to capture nonlinear characteristics of currency ETN 

returns.  These two models, as revealed by Wei and Leuthold (1998) and Panas 

(2001) were able to capture long memory and chaos in agricultural futures and 

metal futures prices, respectively.  Extant literatures recently have shown the 

presence of nonlinearity in investment instruments (e.g., Antoniou and Vorlow, 

2005; Das and Das, 2007; Korkmaz et al., 2009; and Mariani et al., 2009), but 

because of the recent genesis of ETNs, nonlinear dynamics is not yet applied on 

its returns.  Given the growing number of investments being put on these 

financial instruments, studying their nonlinear tendencies through long-memory 

and chaos is timely.   

Smith and Small (2010) defines ETNs
1
 as senior, unsecured debt securities 

issued by an investment bank which promises a rate of return that is based to the 

change in value of a tracked index. These instruments are traded daily on stock 

exchanges (i.e., AMEX and NYSE), and can also be shorted or bought as a long 

position.  Based on Wright et al. (2009), ETNs are comparable to zero-coupon 

bonds that are with medium- to long-term maturities and sold in 

zero-denominations. They can also be redeemed early and have variable interest 

rates. ETNs have no tracking errors, because their returns closely imitate that of an 

underlying index; and provide investors a tax advantage related to the holding 

period.  Small investors can use ETNs to access difficult to reach type of 

investments like commodity futures or a particular type of investing strategies. 

Currency ETNs are designed to give investors exposure to total returns of a 

single foreign currency index or a basket of currencies index.  For example, the 

iPath EUR/USD Exchange rate ETN (Ticker: ERO) tracks the performance of the 

Euro/US dollar exchange rate which is a foreign exchange spot rate that measures 

the relative values of the Euro and US dollar.  The exchange rate increases when 

the euro appreciates against the US dollar and decreases if the euro depreciates.  

ETNs like ERO, are attractive to investors trying to hedge their exposure to the 

dollar or even looking an opportunity to bet against the dollar, because their index 

values are also a possible avenue for diversification. 

                                                 
1
 For a detailed discussion on ETNs please see the papers of Smith and Small (2010), Wright et al. 

(2010) and Washer and Jorgensen (2011) 
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This paper is a pioneer in applying ARFIMA-FIGARCH models in 

examining the long-memory, and in utilizing chaos effects in determining chaotic 

tendencies of currency ETN returns and volatilities.  The purpose of this study is 

to provide additional evidence of nonlinearities in economic time-series from the 

perspective of ETNs.  To the best of our knowledge no research yet has been 

done to these new investment instruments. The research is motivated by the fact 

that providing new understanding in the non-linear properties of currency ETNs 

creates considerable amount of knowledge for both academicians and researchers. 

The results can also provide the academic community potential avenues for 

research.  Also, proper modeling of this new type of investment instruments 

through nonlinearities; and checking the existence of short, intermediate and long 

memories, and chaotic properties of ETNs can yield better results that will benefit 

the investing community in creating potential opportunity to create profit.   

The short findings of this paper found the returns of currency ETNs 

non-stationarity and non-invertibility properties.  This makes the research 

conclude that the efficient market hypothesis of Fama (1970) stands on solid 

grounds for the time-series utilized and mean reversion is not present.  The BDS 

test found that ETN returns and ARMA residuals exhibit random processes.  The 

R/S analysis showed that currency ETN returns, ARMA and GARCH residuals 

have chaotic properties and are trend-reinforcing.  The correlation dimension 

analyses further confirmed that the time-series utilized have deterministic chaos 

properties.  Thus, investors trying to predict returns and volatility of currency 

ETNs would fail to produce accurate findings.   

The research is structured as follows. Section 2 narrates related studies, 

Section 3 explains the data and methodology of ARFIMA-FIGARCH, BDS test, 

R/S analysis and correlation dimension; Section 4 interprets the empirical 

findings; and Section 5 provides the conclusion. 

 

 

2  Related Literature 
 

This part gives a narration of researches proving the existence of non-linear 

dynamics in the returns of foreign exchange markets.  These literatures address 

two main topics: (1) reviews studies that established long-memory and mean 

reversion in exchange rates, and (2) covers literatures that explained the chaotic 

tendencies of currency markets. 

Analyzing econometric time-series in a nonlinear framework, according to 

Panas (2001), have three primary reasons.  The author explained that 

nonlinearities communicate information about the inherent structure of the data 

series.  These nonlinearities then offer insight into the nature of the process that 

dominates the structure.  And through these methods, it would be easy to 

distinguish between the stochastic and chaotic properties of the time-series, which 

is very difficult or even impossible to determine using linear models.  

Long-memory dynamics in the literature have been applied to several 
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financial instruments and foreign exchange rates.  Kang and Yoon (2007), 

Korkmaz et al. (2009), and Tan and Khan (2010) established the fact that long 

memory properties can exist in both returns and volatilities in the stock markets, 

while Choi and Hammoudeh (2009) found evidence of long memory in spot and 

futures returns and volatilities for oil-related products. Hafner and Herwartz 

(2006) in the study of the currency market were able to track the effect of shocks 

on volatility through time in the time-series of franc/US dollar and mark/US 

dollar. Beine et al. (2002) modeled exchange rates using ARFIMA-FIGARCH and 

found that the persistence of volatility shocks in the pound, mark, franc and yen 

share similar patterns. On the other hand, Nouira et al. (2004) used ARFIMA 

model and showed that by isolating the unstable unconditional variance, 

long-memory was detected on the exchange rate of euro/US dollar returns. 

Related forecasting studies in ETPs are present with the paper of Mariani et 

al. (2009), when they demonstrated that the degree of long memory effects of 

SPDR S&P 500 ETF (Ticker: SPY) and SPDR Dow Jones Industrial Average ETF 

(Ticker: DIA) is virtually the same as their tracked indices, showing the efficiency 

of ETFs’ mimicking the behavior. In a recent study, Yang et al. (2010) used 

GARCH model to determine return predictability of eighteen stock index ETFs.  

Their evidence showed that six ETFs have predictable structures. Rompotis (2011) 

also examined the performance persistence of iShares ETFs and also tried to 

determine their predictability. The study found that ETF returns are superior than 

the S&P 500 Index in the short-run and also concluded that ETF performances are 

somehow predictable through a dummy regression analysis. 

Chaotic tendencies of variables, on the other hand, have also been detected 

from financial instruments and currency markets.  The seminal work of Hsieh 

(1991) provided a comprehensive discussion in the presence of chaos in financial 

markets and also agreed that financial time-series may have chaotic behavior.  

Blank (1991) and Kyrtsou et al. (2004) reported nonlinear dynamics in futures 

prices, and also found that short-term forecasting models may be improved by 

chaotic factors.  Panas and Ninni (2000) showed that the price sequence of oil 

markets contains non-linear dynamics and that ARCH-GARCH models and chaos 

effects can best capture these tendencies.  In a latter study, Moshiri and Faezeh 

(2006) stated that crude oil futures prices have complicated nonlinear dynamic 

patterns.  Furthermore, Panas (2001) applied both long-memory and chaos 

effects to London metal prices, and found that aluminum can be modeled by the 

long-memory process and tin prices supported chaos. 

The significance of chaos in the foreign exchange markets according to 

Yudin (2008) is that investors would be able to find powerful trends that can help 

in predicting the currency market.  There are however mixed literatures in 

determining chaos in foreign exchange markets.  For example, Das and Das 

(2007) revealed that foreign exchange markets exhibited deterministic chaos 

nonlinear processes.  Few results were found by Serletis and Gogas (1997) when 

they utilized chaos effects to determine the tendencies of seven Eastern European 

countries.  They only found two out of seven exchange rates consistent with 
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chaos.  In a recent study of Adrangi et al. (2010) utilizing correlation dimension 

and BDS in the US dollar, Canadian dollar, Japanese yen and Swiss franc 

exchange rates, they only found nonlinear dependence in their data and not chaos 

properties.  But Jin (2005) argued that the absence of chaotic tendencies in 

foreign exchange markets in a particular time can change depending on the degree 

of competition in the market; and may be even affected by transmission of 

volatility from other foreign exchange markets (Cai et al., 2008 and Bubak et al., 

2011).   

We can conclude from the above literatures, nonlinear properties, particularly 

long-memory and chaos exists in the financial markets, foreign exchange markets 

and other financial instruments.  However, chaotic tendencies are yet to be 

established in ETPs.  These evidences make us believe that currency ETNs are a 

good avenue in establishing long-memory, especially chaotic properties since its 

recent genesis lacks the study of its further characterization. 

 

 

3  Data and Methodology 
 

This paper utilizes daily closing prices of currency ETNs obtained from the 

Google Finance Website.  The research period begins at the varying inception 

dates of the ETNs.  As of February 5, 2012, About.com website listed 188 ETNs.  

The data was limited to five because most ETNs are in their early stages of 

inception and some are not actively traded having numerous presence of zero 

volumes and zero returns.  Currency ETNs featured in this study have almost $17.5 

billion in market capitalization.  This considerable amount of investment in this 

security inspired this paper to examine its long memory properties and chaotic 

tendencies that may have significant economic value.  These ETNs were chosen 

because they link their returns on specific type of foreign exchange market and are 

actively traded. 

The autoregressive fractionally integrated moving average (ARFIMA) model 

is a parametric approach in econometric time-series that examines long-memory 

characteristics (Granger and Joyeux, 1980; and Hosking, 1981). This model 

allows the difference parameter to be a non-integer and considers the fractionally 

integrated process in the conditional mean, unlike the autoregressive integrated 

moving average (ARIMA) model proposed by Box and Jenkins (1976) where the 

difference parameter only takes an integer value.  While the fractionally 

integrated generalized autoregressive conditional heteroskedasticity (FIGARCH) 

model as by Baillie et al. (1996) captures long memory in return volatility, the 

process gives more flexibility in modeling the conditional variance.  On the other 

hand, chaos offers an assumption that at least part of underlying process is 

nonlinear, and also evaluates the determinism of the process.  Hsieh (1991) 

defines chaos as a nonlinear deterministic series that appears to be random in 

nature and cannot be identified as nonlinear deterministic system or a nonlinear 

stochastic system.  This means that the dynamics of chaotic process can be 
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misconstrued as a random process by conventional a linear econometric method, 

that is why appropriate modeling is necessary to come up with accurate findings. 

 
3.1. Long memory properties 

The ARFIMA ),,( qdp  model is used to examine the long-memory 

characteristics (Granger and Joyeux, 1980; and Hosking, 1981) of ETNs. This 

econometric model permits the difference parameter to be a non-integer and 

considers the fractionally integrated process )(dI  in the conditional mean. The 

ARFIMA model, as defined by Korkmaz et al. (2009) can be illustrated as: 

),0(~,)()1)(( 2

 ttt

d LYLL  ,        (1) 

where  

d is the fractional integration real number parameter;  

L is the lag operator; and  

t is a white noise residual.  

This equation satisfies both the assumptions of stationarity and invariability 

conditions.  

The fractional differencing lag operator dL)1(  can be further illustrated 

by using the expanded equation below: 
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!3

)2)(1(

!2

)1(
1)1( 32 





 L

ddd
L

dd
dLL d

     (2) 

Based on Hosking (1981), and as applied by Kang and Yoon (2007) and 

Korkmaz et al. (2009), when 5.05.0  d , the series is stationary, wherein the 

effect of market shocks to t decays at a gradual rate to zero. When d = 0, the 

series has short memory and the effect of shocks to t  decays geometrically. 

When d = 1, there is the presence of a unit root process.   

Furthermore, there is a long memory or positive dependence among distant 

observations when 0 < d < 0.5.  Also, the series has intermediate memory or 

antipersistence when -0.5 < d < 0 (Baillie, 1996). The series is non-stationary 

when 5.0d . While the series is stationary when 5.0d , but considered a 

non-invertible process, which means that the series cannot be determined by any 

autoregressive model. 

The FIGARCH ),,(
_

qdp  model captures long memory in return volatility 

(Baillie et al., 1996). The model is more flexible in modeling the conditional 

variance, capturing both the covariance stationary GARCH for 
_

d =0, and the 

non-stationary IGARCH for 
_

d =1. The FIGARCH model can be illustrated as: 

tt

d vLLL )](1[)1)(( 2  


,         (3) 

where  

tv  is the innovation for the conditional variance, and )(L and )](1[ L  
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have roots that lie outside of the unit root circle. The differencing parameter d 

dictates the long-memory property of the volatility if 0   d   1. 

 

3.2. Chaos methodologies 

According to Peters (1994), the existence of a fractal dimension and sensitive 

dependence on initial conditions are the two necessary requirements in order for a 

structure to be chaotic.   Figure 1 illustrates a Mandelbrot Set wherein a figure of 

a fractal is shown.  A time series with high affinity will show that no matter how 

large the magnification of a fractal, the shape of the Mandelbrot Set will still be 

similar to the original one.  As shown in the magnified Figure 2, it indicates that 

a system is similar in affinity with its entirety.  This research utilizes three 

different approaches in testing if the underlying time series data of five currency 

ETNs have chaotic tendencies. The detailed methodologies are as follows: 

 

3.2.1. Brock, Dechert, and Scheinkman test 

The BDS test, devised by Brock et al. (1996) is a powerful test in separating 

random series from deterministic chaos or from nonlinear stochastic series.  

Chaos as defined by Hsieh (1991) is a nonlinear deterministic series that seems 

random in nature and cannot be identified as nonlinear deterministic system or a 

nonlinear stochastic system.  The BDS statistic calculates statistical significance 

of the correlation dimension and determines nonlinear dependence.  When 

Opong et al. (1999) applied this test to FTSE stock index returns, they found that 

the series is not random because of detected frequent showing of patterns.  

However, according to Hsieh (1991), the BDS test has a low power against 

autoregressive (AR) and ARCH models, and before proceeding with the test; the 

observations are pre-filtered with a linear filter such as ARMA (or ARIMA) and a 

nonlinear filter such as GARCH. 

The BDS test uses a statistic based on the correlation integral which is 

computed as: 

 



st

N

s

N

tl

NN

N xxI
TT

TlC ),(
)1(

2
),( ,        (4) 

where 1 NTTN . 

The correlation integral is based on a given sequence  Ttxt ,...,1:   of 

observations which are independent and identically distributed (iid), and 

N-dimensional vectors  ),...,( 11  Nttt

N

t xxxx , called the “N-histories”.  
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Source: Based on the illustration of Aros fractals software 

Figure 1: Mandelbrot set fractals 

 

 

 
Source: Based on the illustration of Aros fractals software 

Figure 2: Magnified version of the Mandelbrot set fractals 

 

Brock et al. (1996) illustrated that the null hypothesis  tx  is iid with a 

non-degenerative density F, N

N lCTlC )(),( 1  with probability of one, as 

T , for any fixed N and l.  Also, the author proposed that 

 N

N TlCTlCT ),(),( 1  has a normal distribution with zero mean and variance:  

 
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where 

      )()1()1()(),()1()1()(
2

zdFzFzFlKKzdFzFzFlCC . 

Furthermore, ),(1 TlC  is a consistent estimate of C(l), and 
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Eq. (6) is also a consistent estimate of K(l).  Therefore, )(lN  can be estimated 

consistently by ),( TlN , which ),(1 TlC  and ),(1 TlK  can replace )(lC  and 

)(lK  in the equation.  The BDS statistic which follows a normal distribution can 

be illustrated below:  

   ),(/),(),(),( 1 TlTlCTlCTTlw N

N

NN  ,      (7) 

where ),( TlN is the standard deviation of the correlation integrals. 

 

3.2.2. Rescaled Range analysis: Hurst exponent 

R/S analysis is a test defined by the range and standard deviation (R/S 

statistic) or the so-called reschaled range.  Hurst (1951) first developed the 

rescaled range procedure, with improvements made by Mandelbrot and Wallis 

(1969), and Wallis and Matalas (1970)  The major shortcoming of the traditional 

rescaled range (R/S) is that it can identify range dependencies, without 

discrimination between short and long dependencies (Lo, 1991).  And the 

modified R/S analysis was able to remove short-term dependencies and also able 

to detect long term dependencies.  Peters (1994) and Opong et al. (1999) showed 

the procedures on how to perform the R/S analysis.  Each of the ETNs under 

study is initially transformed into logarithmic return given by: 

 )/ln( 1 PPS tt ,            (8) 

where tS = logarithmic returns at time t, and tP =price at time t.  The tS  series 

is pre-whitened to reduce the effect of linear dependency and non-stationarity by 

adopting an AR(1) model to tS  which is shown as follows: 

 ttt SS   1 ,            (9) 

where 1tS  is the logarithmic return at time period t-1.    and   represent 

the parameters to be estimated and t  is the residual.  

Based on the application of Opong et al. (1999) and Peters (1994), the time 

period is separated into A adjacent sub-periods of length n, such that  NnA  , 

where N denotes the extent of the series tN .  Each sub-period is labeled aI , 

a=1,2,3,…,A.  The elements contained in aI  is marked akN , , k=1,2,3,…,n.  

The average value ae  for each aI  of length n is  
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The range 
aI

R  is the difference between the maximum and minimum value 

akX , , within each sub-period aI  is   

 )min()max( ,, akakI XXR
a

 , where nk 1 , Aa 1 ,   (11) 

where  

 



k

i

aaiak eNX
1

,, )( , k=1,2,3,…,n  represents the time series for each 

sub-period of departures from the mean value.  R/S analysis requires the 
aIR to 

be normalized by dividing by the sample standard deviation 
aIS  equivalent to it 

and is calculated as follows: 
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The average R/S values for length n is computed as: 


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         (13) 

The application of an OLS regression with log(n) as the independent variable 

and )/log( SR as the dependent variable is the last step in the analysis.  The 

Hurst exponent, H is derived from the slope obtained from the regression.  The 

three values of the H exponent would be: 5.0H , which denotes that the series 

follows a random walk;  5.00  H , which stands for an anti-persistent series; 

and 15.0  H , which means that the series is a persistent, or is a 

trend-reinforcing series.  The R/S analysis is appraised by computing the 

expected values of the R/S statistics which is shown as: 


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The expected Hurst exponent is derived from the slope of the regression of 

nSRE )/(log(  on log(n).  The variance of the Hurst exponent is shown as: 

T
nHVar

1
)(  ,           (15) 

where T denotes the total number of observations in the series.  
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3.2.3. Correlation Dimension Analysis 

Correlation dimension (CD) introduced by Grassberger and Procaccia (1983), 

provides a diagnostic process in distinguishing deterministic and stochastic time 

series  tx .  It determines the degree of complexity of a time-series, which can 

be a sign of having chaos.  Kyrtsou and Terraza (2002) made an empirical study 

and showed evidence based on correlation dimension (CD) that the French 

CAC40 returns can be either generated through a noisy chaotic or a pure random 

process.  Based on the studies of Grassberger and Procaccia (1983), and Hsieh 

(1991), the analysis initially requires the filtering of the observations throuth the 

ARMA and GARCH processe from autocorrelation and conditional 

heteroscedasticity, respectively which can negatively affect some tests for chaos.   

Next step is to create n-histories of the filtered data, which are illustrated as 

follows: 

 1-history: 
tt xx 1 ,           (16) 

 2-history: )( ,1

2

ttt xxx  ,          (17) 

                : 

 n-history: )( ,...,1 tnt

n

t xxx  .         (18) 

where n-history represents a particular point in the n-dimensional space. 

The correlation integral is then calculated, which is utilized by Grassberger 

and Procaccia (1983) and define the correlation dimension as follows: 

  2/:,,0),,(#lim)( TxxTststC n

s

n

tTn    ,    (19) 

where # represents the number of points in the set, and  denotes the sup- or 

max- norm. Thus, the correlation integral )(nC  is defined as the fraction of 

pairs ),( n

t

n

s xx , which are close to each other, based on :  

    itisni xx1,...,0max .        (20) 

The final step requires calculating the slope of )(log nC  on log  for 

small values of   with the equation below:  

 log/)(loglim 0 nn Cv  .         (21) 

The series is consistent with chaotic behavior if the correlation dimension 

)( nv  does not increase with n.  
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4  Empirical Results 
 

Table 1 shows that currency ETN returns mostly have minimal losses and 

gains. The highest positive return that we could have on our sample is just 2.1% 

from the URR ETN, and the lowest negative return is 0.3% from the DRR ETN.  

These two ETNs also have the highest volatility in the samples.  Following the 

Modern Portfolio Theory of Markowitz (1952), we can tell that with the greater 

dispersion of these ETN returns, the higher their risk which may lead to higher gains 

and higher losses.  The lowest positive return and lowest volatility is ICI ETN.  

Most of the samples are negatively skewed except for DRR and ICI and the kurtosis 

coefficients have leptokurtic distributions. The Jarque-Bera statistic for residual 

normality shows that the ETN returns are under a non-normal distribution 

assumption.  All ETN samples have no serial correlation. The minimum value of 

the Akaike Information Criterion (AIC) is used to identify the orders of ARFIMA 

and FIGARCH models.  Enders (2004) discussed that the AIC has more power in 

small sample sizes.  This paper used the Lagrange Multiplier Test (ARCH-LM) to 

test the ARCH effect.  We can apply GARCH models in the chosen dataset, 

because the null hypothesis for all ETN samples was rejected.  

 

4.1. Long memory property results 

Table 2 illustrates the results for both ARFIMA and ARFIMA-FIGARCH 

models. ARFIMA model identified two significant results. The returns of CNY 

and ICI ETNs exhibited a non-invertible stationary process, which means that it 

cannot be represented by any autoregressive process.  For the return volatility 

outcome proposed by Baillie et al. (1996) for the FIGARCH model, ERO ETN 

sample showed non-stationarity and is also difficult to model.  However, this 

study considers the volatility structure of the remaining DRR, CNY, ICI and URR 

returns to be exhibiting long-memory processes in their volatility structures, 

similar to what Kang and Yoon (2007) and Tan and Khan (2010) observed in 

studying the Korean and Malaysian stock market returns, respectively.  These 

make the study conclude that the efficient market hypothesis of Fama (1970) is 

not consistent with this type of investment instruments and that mean reversion
1
 

is also possible because of the presence of long memory properties, which also is 

consistent to the earlier conclusion of Rompotis (2011).  Thus, fund managers 

and investors trying to model and forecast the following ETNs would have the 

possibility of having  extra returns, because their structures are predictable. The 

pricing efficiency of ETPs is earlier proven by the researches of Kayali (2007) and 

Zhou (2010) in their studies of actively traded ETFs in Pakistan and US, 

respectively; and of Wright et al. (2010) in their introduction of ETN paper, and 

this study found evidences saying the opposite.  

The initial results of ARFIMA-FIGARCH models provided a good starting 

                                                 
1
 Mean reversion is the tendency of prices and returns to eventually or in the long-run move back 

towards the average rate in the market (Henry and Olekalns, 2002). 
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point to characterize currency ETN returns. This paper conducted further testing to 

provide additional characterization on the inherent structure of currency ETN 

returns and what causes this deterministic behavior.  This study found another set 

of answers on the chaos process to support this claim.  This research initially did 

filtering of the data and Table 3 shows that the alternative of no unit roots is not 

rejected in all ETN returns through the Augmented Dickey-Fuller (ADF) unit-root 

test.  To determine optimal lags for ETN returns, ARMA residuals and GARCH 

residuals models, the minimum value of the Akaike Information Criterion (AIC) 

was applied.  The findings also presented that the null hypothesis of no serial 

correlation cannot be rejected for 
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Table 1: The Sample Size and Period of Currency ETNs 
Currency ETNs Start of Data Obs. Mean Std. Dev. Skew. Kurt. J-Bera LM test 

iPath EUR/USD Exchange Rate ETN (ERO) May 11 2007 925 -0.002 0.430 -0.144 20.310 11.589*** 9.157 

Market Vectors Double Short Euro ETN (DRR) May 8, 2008 849 -0.003 0.732 0.219 1.070 47.321*** 13.051 

Market Vectors Renminbi/USD ETN (CNY) Mar. 17, 2008 833 -0.001 0.243 -0.268 54.818 1.043*** 10.969 

iPath Optimized Currency Carry ETN (ICI) Oct. 2, 2008 717 0.003 0.216 0.255 0.977 36.316*** 9.117 

Market Vectors Double Long Euro ETN (URR) May 8, 2008 641 0.021 0.965 -0.133 1.948 103.25*** 12.556 

Source: Yahoo Finance – various inception dates up to September 30, 2011; http://www.yahoo.com/finance. 

 

Table 2: Summary Statistics of ARFIMA and ARFIMA-FIGARCH models 
Green ETFs ARFIMA  

ARCH-LM 

ARFIMA-FIGARCH 

model d-coeff. AIC  d-coeff. model d-coeff. AIC 

ERO (3,2) 0.011 (0.831) 1.144 169.189*** 0.051 (0.310) (2,3) 1.286 (0.000)*** 0.870 

DRR (2,3) -0.015 (0.726) 2.217 7.440*** -0.006 (0.064) (3,3) 0.856 (0.000)*** 2.123 

CNY (3,3) -0.331 (0.000)*** -0.227 65.714*** -0.168 (0.180) (1,1) 0.836 (0.000)*** -0.854 

ICI (0,2) -0.130 (0.033)** -0.238 13.320*** -0.069 (0.280) (1,2) 0.565 (0.040)** -0.374 

URR (2,2) -0.043 (0.188) 2.770 10.471*** 0.030 (0.810) (2,3) 0.697 (0.010)*** 2.670 

Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses. 

 

Table 3: Summary Statistics of Unit Root, LM, and ARMA-LM tests for stock index and ETN returns 
ETNs ADF ARMA AIC LM- 

test 

ARMA  

Res. 

AIC LM- 

test 

ARCH- 

LM 

GARCH 

Res. 

AIC ARCH- 

LM 

ERO -24.327*** (3,2) 1.124 2.919 (3,3) 1.114 0.970 174.758*** (2,2) 0.831 2.811 

DRR -27.928*** (2,3) 2.217 0.400 (0,1) 2.203 0.450 15.248*** (3,3) 1.849 1.849 

CNY -23.774*** (3,3) -0.241 0.939 (3,2) -0.264 0.425 65.563*** (2,3) -0.826 0.114 

ICI -24.327*** (0,2) -0.056 1.433 (2,3) -0.065 0.610 121.542*** (1,1) -0.375 7.395 

URR -20.090*** (2,2) 2.770 -0.043 (2,3) 2.755 0.527 28.555*** (3,3) 2.667 0.154 

Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses.
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all the currency ETN returns through the Breush-Godfrey LM test.  The Lagrange 

Multiplier Test (ARCH-LM) was used in testing for the ARCH effect (Engle, 1982).  

The relevant statistics of the ARMA returns and ARMA residuals models with the 

null hypothesis of no ARCH effect for all samples was rejected and fit for further 

testing for the GARCH residuals test.  And for the last column, the results showed 

that there is no longer an ARCH effect for all of the samples.  

 

4.2. Chaos methodology results: BDS test, R/S analysis and Correlation 

dimension analysis 

This study conducted a series of test to detect chaos in the time-series data.  

The BDS is first of the three tests to detect chaos and rules out the possibility that 

the data behaves iid, followed by the R/S analysis and correlation dimension 

analysis to determine chaotic properties.   

 

4.2.1. Brock, Dechert, and Scheinkman test results 

The research used four values of  /  from 0.5 to 2.0 to cover both short 

and long dimensions which improve the power of the BDS test.  Table 4 

illustrates that the BDS statistics are significant at the 1% level for most values of 

 /  for the ETN returns and ARMA residuals.  Thus, this paper can conclude 

that data sets are not iid, and conventional linear methodologies are not 

appropriate for their analysis, because the data is not a pure random series.  In 

earlier studies, Eldridge et al. (1993) and Opong et al. (1999) finds similar 

findings of non-stochastic process in the S&P 500 cash index and returns of FTSE 

index, respectively.  However, we cannot conclude the stochastic properties for 

all the GARCH residuals, except for CNY and URR ETNs.  The presence of 

significant results from embedding dimensions 2-5 and values of  /  from 

0.5-2.0 for CNY, and from embedding dimensions 3-6 and value of 0.5  /  for 

URR mean that at least on a shorter dimension, a possibility of a chaotic series and 

not a random process may be present. Since BDS test is just the beginning in 

testing for chaos, this paper further tests its validity and utilizes rescaled range 

(R/S) and correlation dimension analyses to supplement this initial test. 

 

4.2.2. Rescaled Range analysis: Hurst exponent results 

Table 5 shows that all Hurst exponents of the currency ETN returns, ARMA 

and GARCH residuals are way below 0.5, however, after scrambling the data 

series, all Hurst exponents are 
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Table 4: BDS test for Currency ETNs 

 

 

ERO 

 /  

ETN returns ARMA residuals GARCH residuals 

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

2 0.005*** 

(0.007) 

0.009*** 

(0.001) 

0.000 

(n/a) 
0.006*** 

(0.001) 

0.004*** 

(0.001) 

0.010*** 

(0.000) 

0.010*** 

(0.000) 

0.008*** 

(0.000) 

-0.001 

(0.133) 

-0.003 

(0.165) 

-0.002 

(0.276) 

-0.001 

(0.589) 

3 0.005*** 

(0.000) 

0.016*** 

(0.000) 

0.000 

(n/a) 

0.015*** 

(0.000) 

0.004*** 

(0.000) 

0.017*** 

(0.000) 

0.023*** 

(0.000) 

0.019*** 

(0.000) 

-0.001 

(0.134) 

-0.002 

(0.376) 

-0.002 

(0.514) 

-0.001 

(0.842) 

4 0.004*** 

(0.000) 

0.021*** 

(0.000) 

0.000 

(n/a) 

0.026*** 

(0.000) 

0.003*** 

(0.000) 

0.021*** 

(0.000) 

0.033*** 

(0.000) 

0.031*** 

(0.000) 

-0.000 

(0.272) 

-0.001 

(0.457) 

-0.003 

(0.556) 

-0.001 

(0.775) 

5 0.003*** 

(0.000) 

0.025*** 

(0.000) 

0.000 

(n/a) 

0.041*** 

(0.000) 

0.002*** 

(0.000) 

0.023*** 

(0.000) 

0.045*** 

(0.000) 

0.046*** 

(0.000) 

-0.000 

(0.812) 

-0.001 

(0.645) 

-0.002 

(0.692) 

-0.001 

(0.771) 

6 0.001*** 

(0.000) 

0.025*** 

(0.000) 

0.000 

(n/a) 

0.055*** 

(0.000) 

0.001*** 

(0.000) 

0.023*** 

(0.000) 

0.054*** 

(0.000) 

0.060*** 

(0.000) 

0.000 

(0.503) 

-0.000 

(0.905) 

-0.001 

(0.825) 

-0.001 

(0.825) 

DRR 

 /  

ETN returns ARMA residuals GARCH residuals 

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

2 0.002*** 

(0.010) 

0.006*** 

(0.005) 

0.007*** 

(0.004) 

0.005*** 

(0.002) 

0.002** 

(0.016) 

0.006*** 

(0.005) 

0.006*** 

(0.008) 

0.004*** 

(0.006) 

-0.000 

(0.540) 

0.000 

(0.829) 

-0.000 

(0.955) 

0.000 

(0.750) 

3 0.002*** 

(0.000) 

0.010*** 

(0.000) 

0.015*** 

(0.000) 

0.014*** 

(0.000) 

0.001*** 

(0.004) 

0.009*** 

(0.000) 

0.013*** 

(0.000) 

0.012*** 

(0.000) 

-0.000 

(0.606) 

-0.001 

(0.702) 

-0.001 

(0.639) 

-0.000 

(0.972) 

4 0.001*** 

(0.000) 

0.010*** 

(0.000) 

0.021*** 

(0.000) 

0.024*** 

(0.000) 

0.001*** 

(0.000) 

0.009*** 

(0.000) 

0.019*** 

(0.000) 

0.022*** 

(0.000) 

0.000 

(0.974) 

-0.001 

(0.426) 

-0.003 

(0.424) 

-0.001 

(0.724) 

5 0.001*** 

(0.000) 

0.009*** 

(0.000) 

0.026*** 

(0.000) 

0.033*** 

(0.000) 

0.000*** 

(0.000) 

0.007*** 

(0.000) 

0.023*** 

(0.000) 

0.030*** 

(0.000) 

0.000 

(0.641) 

-0.001 

(0.201) 

-0.004 

(0.304) 

-0.003 

(0.545) 

6 0.000*** 

(0.000) 

0.008*** 

(0.000) 

0.028*** 

(0.000) 

0.041*** 

(0.000) 

0.000*** 

(0.000) 

0.006*** 

(0.000) 

0.025*** 

(0.000) 

0.037*** 

(0.000) 

0.000 

(0.026) 

-0.001 

(0.326) 

-0.003 

(0.433) 

-0.001 

(0.618) 

CNY

 /  

ETN returns ARMA residuals GARCH residuals 

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

2 0.037*** 

(0.000) 

0.042*** 

(0.000) 

0.031*** 

(0.000) 

0.021*** 

(0.000) 

0.030*** 

(0.000) 

0.039*** 

(0.000) 

0.029*** 

(0.000) 

0.018*** 

(0.000) 

-0.005*** 

(0.002) 

-0.010*** 

(0.001) 

-0.006*** 

(0.008) 

-0.002* 

(0.097) 

3 0.049*** 

(0.000) 

0.077*** 

(0.000) 

0.063*** 

(0.000) 

0.044*** 

(0.000) 

0.033*** 

(0.000) 

0.068*** 

(0.000) 

0.060*** 

(0.000) 

0.045*** 

(0.000) 

-0.004*** 

(0.004) 

-0.012*** 

(0.006) 

-0.012*** 

(0.007) 

-0.008*** 

(0.008) 

4 0.049*** 

(0.000) 

0.106*** 

(0.000) 

0.095*** 

(0.000) 

0.069*** 

(0.000) 

0.030*** 

(0.000) 

0.092*** 

(0.000) 

0.091*** 

(0.000) 

0.071*** 

(0.000) 

-0.002** 

(0.030) 

-0.009** 

(0.046) 

-0.013 

(0.035) 

-0.010** 

(0.021) 

5 0.043*** 

(0.000) 

0.126*** 

(0.000) 

0.127*** 

(0.000) 

0.093*** 

(0.000) 

0.024*** 

(0.000) 

0.107*** 

(0.000) 

0.118*** 

(0.000) 

0.097*** 

(0.000) 

-0.001* 

(0.077) 

-0.006 

(0.144) 

-0.011 

(0.113) 

-0.011* 

(0.061) 

6 0.035*** 

(0.000) 

0.141*** 

(0.000) 

0.151*** 

(0.000) 

0.115*** 

(0.000) 

0.018*** 

(0.000) 

0.118*** 

(0.000) 

0.144*** 

(0.000) 

0.122*** 

(0.000) 

-0.001 

(0.399) 

-0.003 

(0.438) 

-0.007 

(0.368) 

-0.010 

(0.188) 
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Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses.

ICI 

 /  

ETN returns ARMA residuals GARCH residuals 

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

2 0.008*** 

(0.000) 

0.019*** 

(0.000) 

0.019*** 

(0.000) 

0.014*** 

(0.000) 

0.007*** 

(0.000) 

0.017*** 

(0.000) 

0.017*** 

(0.000) 

0.012*** 

(0.000) 

-0.001 

(0.387) 

-0.001 

(0.786) 

-0.000 

(0.911) 

0.000 

(0.774) 

3 0.009*** 

(0.000) 

0.036*** 

(0.000) 

0.041*** 

(0.000) 

0.030*** 

(0.000) 

0.008*** 

(0.000) 

0.033*** 

(0.000) 

0.040*** 

(0.000) 

0.030*** 

(0.000) 

-0.000 

(0.612) 

0.000 

(0.930) 

0.001 

(0.823) 

0.002 

(0.544) 

4 0.006*** 

(0.000) 

0.042*** 

(0.000) 

0.060*** 

(0.000) 

0.046*** 

(0.000) 

0.005*** 

(0.000) 

0.041*** 

(0.000) 

0.060*** 

(0.000) 

0.048*** 

(0.000) 

-0.000 

(0.903) 

0.001 

(0.710) 

0.001 

(0.701) 

0.003 

(0.546) 

5 0.004*** 

(0.000) 

0.042*** 

(0.000) 

0.075*** 

(0.000) 

0.064*** 

(0.000) 

0.003*** 

(0.000) 

0.041*** 

(0.000) 

0.076*** 

(0.000) 

0.067*** 

(0.000) 

-0.000*** 

(0.006) 

0.001 

(0.687) 

0.002 

(0.705) 

0.004 

(0.512) 

6 0.002*** 

(0.000) 

0.037*** 

(0.000) 

0.083*** 

(0.000) 

0.078*** 

(0.000) 

0.002*** 

(0.000) 

0.037*** 

(0.000) 

0.084*** 

(0.000) 

0.082*** 

(0.000) 

-0.000*** 

(0.006) 

-0.000 

(0.997) 

0.000 

(0.986) 

0.002 

(0.707) 

URR 

 /  

ETN returns ARMA residuals GARCH residuals 

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 

2 0.003** 

(0.028) 

0.007** 

(0.018) 

0.010*** 

(0.002) 

-0.000*** 

(0.000) 

0.002 

(0.192) 

0.005 

(0.103) 

0.008*** 

(0.010) 

0.008*** 

(0.001) 

-0.001 

(0.300) 

-0.003 

(0.266) 

-0.000 

(0.863) 

0.001 

(0.717) 

3 0.003*** 

(0.001) 

0.016*** 

(0.000) 

0.027*** 

(0.000) 

-0.001*** 

(0.000) 

0.002** 

(0.049) 

0.011** 

(0.037) 

0.022*** 

(0.000) 

0.022*** 

(0.000) 

-0.001* 

(0.100) 

-0.003 

(0.277) 

-0.001 

(0.871) 

0.002 

(0.606) 

4 0.002*** 

(0.001) 

0.015*** 

(0.000) 

0.034*** 

(0.000) 

-0.002*** 

(0.000) 

0.001* 

(0.075) 

0.011** 

(0.043) 

0.028*** 

(0.000) 

0.034*** 

(0.000) 

-0.001** 

(0.019) 

-0.004 

(0.145) 

-0.002 

(0.695) 

0.002 

(0.680) 

5 0.001*** 

(0.001) 

0.013*** 

(0.000) 

0.040*** 

(0.000) 

-0.002*** 

(0.000) 

0.001** 

(0.013) 

0.010** 

(0.014) 

0.033*** 

(0.000) 

0.045*** 

(0.000) 

-0.000** 

(0.027) 

-0.003 

(0.170) 

-0.002 

(0.760) 

0.003 

(0.607) 

6 0.000*** 

(0.000) 

0.010*** 

(0.000) 

0.037*** 

(0.000) 

-0.004*** 

(0.000) 

0.000*** 

(0.002) 

0.007*** 

(0.019) 

0.031*** 

(0.000) 

0.047*** 

(0.000) 

-0.000** 

(0.030) 

-0.003 

(0.113) 

-0.004 

(0.484) 

-0.001 

(0.879) 
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Table 5: Hurst exponents 

 

Table 6: Correlation Dimension estimates 

Note: n.v. – no value 

Stock returns ERO DRR CNY ICI URR 

Original Series -0.004440 0.000750 0.003648 -0.00144 0.000371 

Scrambled Series 0.479791 0.518809 0.216550 0.396414 0.487579 

ARMA residuals ERO DRR CNY ICI URR 

Original Series 0.000148 0.000253 0.000253 0.000289 0.000414 

Scrambled Series 0.509586 0.508859 0.508859 0.476339 0.50562 

GARCH residuals ERO DRR CNY ICI URR 

Original Series 0.000666 0.000504 -0.000340 -0.000340 0.000362 

Scrambled Series 0.504446 0.521021 0.544587 0.544587 0.544807 

Correlation 

Dimensions  

Embedding Dimensions 

1 2 3 4 5 6 7 8 9 10 

1. ERO ETN 

returns 
1.174 1.996 2.791 3.391 3.887 4.504 4.453 4.978 4.998 4.911 

ARMA 

residuals 
1.025 2.013 2.95 3.567 3.975 4.461 4.643 5.201 4.723 5.195 

GARCH 

residuals 
0.994 1.957 2.554 3.17 3.787 3.825 4.292 4.266 4.647 4.989 

2. DRR ETN 

returns 
1.164 2.079 2.896 3.541 3.972 4.355 4.76 4.862 5.017 5.013 

ARMA 

residuals 
1.005 2.004 2.925 3.541 3.831 4.39 4.312 4.85 5.102 5.59 

GARCH 

residuals 
1.046 2.054 2.911 3.691 4.165 4.879 5.102 5.277 5.775 5.627 

3. CNY ETN 

returns 
0 2.255 3.16 3.87 4.300 4.683 4.99 5.191 5.749 5.653 

ARMA 

residuals 
1.056 2.012 2.789 3.368 3.683 3.95 3.797 4.153 4.607 4.066 

GARCH 

residuals 
1.021 1.926 2.624 3.061 3.606 3.81 4.146 4.546 4.099 4.438 

4. ICI ETN 

returns 
1.604 2.019 2.932 3.623 4.169 4.695 4.85 5.448 5.426 5.291 

ARMA 

residuals 
1.014 2.022 2.765 3.394 4.182 4.138 4.867 4.91 4.869 5.209 

GARCH 

residuals 
1.021 1.926 2.624 3.061 3.606 3.81 4.146 4.546 4.099 4.438 

5. URR ETN 

returns 
1.002 2.113 3.127 3.92 4.474 5.079 5.486 5.848 5.874 n.v. 

ARMA 

residuals 
1.079 2.185 3.116 3.743 4.443 4.482 5.206 4.456 4.818 5.244 

GARCH 

residuals 
1.044 2.086 2.986 3.682 4.193 4.828 4.709 5.275 5.011 5.028 
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significantly asymptotic to 0.5.  These findings are consistent with Peters (1994)
1
 

and Opong et al. (1999), and in the expectations of this paper.  This research also 

concludes that currency ETNs have persistent and trend-reinforcing series, in 

which having an upward (downward) trend in the last period, will continue to be 

positive (negative) in the following period. 

 

4.2.3. Correlation Dimension Analysis results 

The last test done to finally conclude for the chaotic properties of currency 

ETN returns is shown in Table 6, wherein the correlation dimension estimates 

were utilized. This paper observed that as the embedding dimensions gradually 

increased from 1 to 10, the correlation dimension generally increases. This 

behavior tells that the underlying data of ETN returns, ARMA and GARCH 

residuals is consistent with chaos as defined by Wei and Leuthold (1998).  Thus, 

this paper concludes the currency ETN returns are consistent with chaos and these 

findings also conforms to the study of Kyrtsou et al. (2004) of the French CAC40 

index returns. 

In sum, the ARFIMA-FIGARCH models generally concluded that the returns 

structure cannot be generated by any autoregressive (AR) model which is a type of 

a stochastic process, while the volatility structure was defined to have 

long-memory properties and non-stationary. Further tests showed that currency 

ETN returns, ARMA residuals and GARCH residuals are consistent with 

deterministic chaos, which explains the initial results of ARFIMA-FIGARCH 

processes of deterministic properties. The economic implication of these findings 

is that practitioners should be cautious in trying to predict return and volatility 

movements of currency ETNs using AR processes. They would generally find 

misleading forecast that maybe detrimental to possible earnings of profits and 

worse can create losses, because the inherent structure is defined by chaotic 

properties. 

 

 

5  Conclusions 
 

This paper utilized ARFIMA-FIGARCH models to indentify long-memory 

properties of currency ETNs. The study found that the returns of CNY and ICI 

ETNs exhibited a non-invertible stationary process. For the return volatility 

outcomes of the FIGARCH model, ERO ETN sample showed non-stationarity and 

is also difficult to model.  However, the volatility structure of the remaining 

DRR, CNY, ICI and URR returns exhibited long-memory processes in their 

volatility structures.  Since the study samples showed non-stationarity and 

non-invertibility properties, but with enough evidence to prove its long-memory 

                                                 
1
 Peters (1994) explained that if a time-series is determined by a chaotic process, the Hurst 

exponent, which developed by Hurst (1951) would be much closer to 0.5 after scrambling the data 

than the one before scrambling. 
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properties, these make us conclude that the efficient market hypothesis of Fama 

(1970) did not apply for the volatility of currency ETNs. The tendency of currency 

ETN returns to eventually move back towards the average rate in the long-run is a 

possibility.  

To further understand their behavior, BDS, R/S Analysis and Correlation 

Dimension tests were applied and concluded that the time-series showed 

evidences of chaos.  The BDS test found that ETN returns and ARMA residuals 

are not iid, and that conventional linear methodsare not suited for their analysis.  

This test initially cannot ensure the iid properties of GARCH residuals, except for 

CNY and URR.  However, when the R/S analysis was conducted, all Hurst 

exponents of the currency ETN returns, ARMA and GARCH residuals became 

significantly asymptotic to 0.5 after scrambling the data which means that a 

chaotic tendency is present. This study also concludes that the data have persistent 

and trend-reinforcing series.  The correlation dimension analyses was also used 

to supplement the first two tests and observed that as the embedding dimensions 

gradually increased from 1 to 10, the correlation dimension generally increases, 

further confirming a deterministic chaos for the time-series.   

Fund managers and traders attempting to forecast return and volatility of 

currency ETNs utilizing AR processes would fail to incur additional gains and in 

worse cases may suffer losses, because their behavior is inherently chaotic.  

Also, general stakeholders like the government and the investing public will have 

a good working knowledge of the nonlinear properties of ETNs in helping them 

make informed choices based on their risk preferences in selecting currency ETNs 

for investments.  On the other end, the findings can also solidify or melt present 

knowledge of academicians from the pool of financial time-series literatures, and 

also lead their future studies to further explore huge unchartered territories of 

ETNs.  Researchers will be able to gain some insights on the tendencies of this 

new investment and at the same time acquire some ideas on some possible models 

that can be applied to other financial instruments. 
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