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Abstract 
 

We study the sources of portfolio returns under parameter uncertainty arising from 

allocation strategies based on holdings of the NASDAQ index, WTI crude oil and 

gold. We investigate the contribution of volatility and correlation forecasts for 

dynamic portfolio allocations in the model of Brandt, Goyal, Clara, and Stroud 

(2005). We estimate alternative forecasting models using Bayesian methods, and 

evaluate investor’s utility under the Bayesian predictive density. We then compare 

the performance of different portfolio strategies through both Sharpe ratios and 

utility-based metrics. 

We show that dynamic strategies based on timing volatilities and correlations can 

add positively to the economic gains generated by non-diversified portfolios 

involving holdings of either crude oil or gold only. Hence, the economic benefits 

generated by holding crude oil and gold in asset allocations with stocks arise from 

the predictability of their volatilities and correlations.  
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1. Introduction  

Crude oil and gold are typically assigned a peculiar role from both a macroeconomic 

and a financial point of view. A significant share of inflation fluctuations is 

attributed to changes in crude oil prices (e.g., see Ha, Kose, Ohnsorge, and 

Yilmazkuday, 2024). It has also been suggested that crude oil may be considered 

more akin to a purely financial asset rather than a commodity, whose underlying 

fundamentals consist in the imbalance between demand and supply (e.g., see Adams 

and Gluck, 2015; Kolodziej, Kaufmann, Kulatilaka, Bicchetti, and Maystre, 2014). 

On the other hand, gold is pointed at as a ‘safe haven’ asset or hedge for U.S. Dollar 

fluctuations (e.g., see Baur and Lucey, 2010; Reboredo, 2013).  

The literature provides empirical evidence about a nonlinear mechanism for 

information transmission and price discovery between crude oil and precious metal 

markets (see Bildirici and Turkmen, 2015; Kumar, 2017).2 This relation takes the 

form of volatility spillovers (see Hammoudeh and Yuan, 2008; Behmiri and Manera, 

2015). A channel of dependence exists between crude oil and gold that runs also 

through exchange rate fluctuations. Evidence of strong dependence between the 

prices for crude oil and gold on one hand, and the U.S. Dollar on the other has been 

documented, especially over periods of financial turmoil (see Bedoui, Braeik, 

Goutte, and Guesmi, 2018).3   

A number of contributions argue that crude oil and gold prices are related to stock 

prices. Christoffersen and Pan (2018) show that oil price volatility is a predictor for 

stock market volatility. At the same time, Ding, Granger, and Engle (1993) finds 

that extreme movements in the stock market carries explanatory power for changes 

in crude oil prices. Ferrer, Shahzad, Lopez, and Jareno (2018) suggest that the 

relation between financial market and crude oil prices has deepened since the 

financial crisis of 2007 in the U.S. The empirical results of Mensi, Ziadat, Rababa’a, 

Vo, and Kang (2024) identify asymmetric spillovers towards crude oil and gold that 

arise from changes in stock market prices: during periods of large market downturn 

or expansion, the effects of shocks from the stock market have a larger magnitude 

than in other circumstances. 

In this paper, we study the scope for crude oil and gold in optimal portfolio 

allocations with stocks. We focus on the implications of volatility and correlation 

forecasting for portfolio strategies that address the effects of alternative sources for 

parameter uncertainty. Like Della Corte, Sarno, and Tsiakas (2013) and Ravazzolo 

and Lombardi (2016), we start from a dynamic asset allocation model that delivers 

utility-maximizing portfolio weights by taking as input the density forecasts for 

conditional volatilities and correlations. This allows us to investigate the 

contribution of different forecasting models to the performance of optimal asset 

 
2 The dependence between crude oil and precious metals has been documented for several countries, 

including China (see Zhang and Tu, 2016) and India (see Jain and Ghosh, 2013). 
3 Sari, Hammoudeh, and Soytas (2010) show that a weak long-term relation exists between the 

prices of precious metals, crude oil and the U.S. Dollar-Euro exchange rate, with a strong feedback 

taking place over the short run. 
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allocations. In order to estimate these models, we use Bayesian methods that deliver 

posterior densities for the parameters. In other words, we account explicitly for 

parameter uncertainty in our asset allocation model.  

Following Barberis (2000) and Kandel and Stambaugh (1996) among others, we 

evaluate the investor’s utility function under the predictive posterior distribution, 

and solve for utility-maximizing portfolio weights. The economic implications of 

parameter uncertainty can then be quantified by comparing measures of portfolio 

performance under two different types of scenarios: one where the parameters of 

the forecasting models take a set of values that are drawn from their posterior 

distributions - i.e., a Bayesian approach -, and another whereby the parameters are 

assigned only the posterior-mean estimates as their ‘true’ value. While the former 

accounts for estimation risk - i.e. uncertainty about the true values of estimated 

parameters -, the latter does not. At the same time, when we compare results across 

different forecasting models, we account for the effects of model uncertainty.4   

In order to compute utility-maximizing portfolios with stocks, gold and crude oil, 

we use the framework for dynamic asset allocation proposed by Brandt, Goyal, 

Clara, and Stroud (2005). Our forecasting models include the constant conditional 

correlation model by Bollerslev (1990), the dynamic conditional correlation model 

by Engle and Sheppard (2001), and the ‘BEKK’ by Engle and Kroner (1995).5 The 

dataset includes daily observations from January 2 1990 until September 3 2024.6  

We estimate the forecasting models over the first subsample until December 29 

2023, and use the resulting parameter densities to initialize the out-of-sample 

forecast application carried out over the second - remaining - part of the sample. 

Based on data from January 2 2024 until September 3 2024, we re-estimate each 

forecasting model on recursive windows and compute one-step-ahead forecasts: the 

estimation window is expanded by one observation at the time and forecasts are 

computed until the end of the sample. We measure portfolio performance both 

through standard return-based indicators - i.e. the Sharpe ratio -, and through 

measures based on utility functions. Following Fleming, Kirby, and Ostdiek (2001), 

we quantify ‘switching costs’ and ‘certainty-equivalent' returns. The former 

indicates the share of returns that an investor would be willing to pay in order to 

switch between two portfolio allocations generated by different strategies. The latter 

consists in the return that makes an investor indifferent between holding a portfolio 

with risky assets and holding a benchmark portfolio that delivers a riskless return.  

We obtain two main results. Consistently with what has been shown for foreign 

exchange rates Della Corte, Sarno, and Tsiakas (2013), timing conditional 

volatilities and correlations generates positive gains in addition to strategies that 

 
4 Given the substantial computational burden that characterizes our optimal portfolio and estimation 

problems, we have chosen not to investigate the effects of model combination in this paper. 
5 Each model is estimated both on the Normal, and on the Student’s t distribution. 
6 Our sample includes a number of episodes of boom-and-busts in financial markets. Episodes of 

instability can cause a breakdown of the correlation patterns that characterize non-turbulent periods 

(e.g., see Bernhart, Hocht, Neugebauer, Neumann, and Zagst, 2011). From a modelling perspective, 

market disruptions can exacerbate the problem of ‘estimation risk’. 
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disregard parameter uncertainty, regardless of the sources of estimation risk. This 

means that there is predictability in the volatilities and correlations of assets whose 

prices have experienced low co-movements and periods with major spikes since 

1990. However, not all the forecasting models are alike: in the case of our forecast-

based rebalancing strategies with a stock market index, crude oil and gold, we 

document a clear ranking in the economic performance generated by the competing 

models. The second finding is that the portfolio holdings optimized for the three 

assets achieve higher economic gains with respect to those obtained from non-

diversified portfolios allocated entirely to a single asset. Hence, the economic gains 

generated from holding crude oil and gold are based on the predictability of 

volatilities and correlations when parameter uncertainty is taken into consideration. 

In other words, the benefits from portfolio diversification concerns also the second 

moments of the distribution of asset returns.  

The outline of the paper is as follows. Section 2 describes our framework for 

multivariate conditional modelling of returns. In section 3, we outline the dynamic 

setup for optimal asset allocation that we use in the empirical analysis. Section 4 

discusses the dataset. Estimation results are presented in section 5. Section 6 focuses 

on performance of the optimized portfolios obtained from both in-sample and out-

of-sample forecasting. Section 7 concludes the paper. 

 

2. Multivariate correlation models 

The starting point of our modelling approach to optimal portfolio allocation consists 

in the forecasts for returns, variances and correlations. We assume that the vector 

Rt of log-returns for stocks, bonds and crude oil at time t evolves according to  

 Rt=Πt+Ω
1/2

t
εt                             (1) 

where Ω denotes the conditional covariance matrix, and εt is a vector of normally-

distributed disturbances. In our empirical application, we make a simplifying 

assumption and impose a constant unconditional mean.  

The first viable specification for the conditional covariance is one where Ωt=Ω, 

which indicates the case of a multivariate linear regression model. A framework 

where the covariance changes over time with constant conditional correlations is 

the CCC model of Bollerslev (1990):  

 

 Ωt=ΣtVΣt                               (2) 

 

 Σ
t
=diag(σ

1/2

1,t
, σ

1/2

2,t
, σ

1/2

3,t
)  (3) 

  

The diagonal elements of Σt are estimated from univariate GARCH models of 

order (1,1).  
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The dynamic conditional correlation model (DCC) of Engle (2002) extends the 

CCC in the following way:  

 Ω
t
=Σ

t
V

t
Σ

t
     (4) 
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 Q
t
=(1−α−β)  Q  +αε

t−1
ε
t−1

'+βQ
t−1

     (7) 

 

where ⊙ denotes the Hadamard product, I is an identity matrix,  Q  is the 

unconditional correlation matrix of εt, α and β are parameters. Finally, the BEKK 

model - of order (K=1, p=1, q=1) - introduced by Engle and Kroner (1995) provides 

for a rich parametrization of the conditional covariance:  

 

 Ω
t
=C+A'R

t−j
R'

t−j
A+B'Ω

t−j
B     (8) 

 

In order to ensure both stationarity and positive definiteness of the covariance 

matrix, we follow a variant introduced by Rast, Martin, Liu, and Williams (2022) 

with all the diagonal elements diag(A)≥0 and diag(B≥0). This yields the so-called 

positive-definite BEKK model. Finally, in order to account for fat-tailed returns, we 

consider two distributional assumptions for εt, namely a Normal and a Student’s t.  

 

2.1 Estimation, model comparison and forecasting 

We estimate 8 models using Bayesian methods. The algorithms involved are 

standard and are discussed at length by Rast, Martin, Liu, and Williams (2022), 

amongst others. Let us denote by Θ: = (u, ℎ1, . . . ℎ𝑡)  the vector of unobserved 

quantities, with a vector u of unknown parameters. Given a posterior density 

p(Θ|Rt) , a prior distribution p(Θ) and a likelihood p(Rt|Θ) , Bayes’ theorem 

prescribes that  

 

 p(Θ|Rt)∝p(Θ)p(Ry|Θ)     (9) 

 

Computing the marginal posterior distribution of parameters p(u|R), a 

multidimensional integration is needed as  

 

 p(u|Rt)= 

h1

 … 

hT

 p(u,…hT)dhT…dh1     (10) 
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Simulation-based integration techniques are then used to deal with this integration 

problem. In particular, a Markov Chain Monte Carlo method is employed to 

simulate from a Markov chain with stationary distribution equal to the density 

p(Θ|Rt).  

Let us now turn to the choice of prior distributions. Since we estimate the models 

on log-returns of the data, we set the prior for Π to a Normal distribution with mean 

and variance obtained from a multivariate linear regression on a constant. The prior 

for the degrees of freedom v of the multivariate student’s t distribution is truncated 

normal with μ=0, σ=30 and lower truncation point at 2. The GARCH parameters 

underlying the DCC models are truncated in order to induce stationarity. Hence, 

they are drawn from uniform distributions U(0, α<1) and U(0, (1−β)>α). In the cases 

of both unconstrained and positive-diagonal BEKK, the priors are uniformly 

distributed. Their lower and upper bounds impose a stationarity condition, such that 

the eigenvalues of  
 

 A⊗A+B⊗B    (11) 

 

in modulus are lower than one. For the positive-diagonal BEKK, we have prior 

distributions A∼U(a1,a2)  and B∼U(b1,b2)  with the additional restriction 

(a1, a2, b1, b2)>0. The prior for the constant correlation 𝑄̅ of the DCC model is 

distributed according to Lewandowski, Kurowicka, and Joe (2009) - denoted as LKJ 

- with scalar parameter m equal to 1. Following standard practice, we break down 

the constant covariance of all the BEKK models into C=SPS, with P as a correlation 

matrix and S is a diagonal matrix with standard deviations (see Alvarez, Niemi, and 

Simpson, 2014). We assume that P∼LKG(m=1) and that the standard deviations in 

S are log-normally distributed with mean 0.1 and standard deviation 0.7. 

Since we focus on providing an economic evaluation of dynamic asset allocation 

strategies, we choose to refrain from carrying out a proper out-of-sample forecast 

evaluation of the - non-nested - conditional correlation models. However, in order 

to gain insights about their statistical properties, we compare their fitting abilities 

by using the deviance information criterion of Spiegelhalter, Best, Carlin, and van 

der Linde (2002): 

 

 DIC=2E[D(Θ
M

)]−D(E[Θ
M

])    (12) 

 

where ΘM is the set of parameters in model M and D(⋅) is the deviance function, 

defined as minus twice the log-likelihood function. However, since the DIC is 

subject to Monte-Carlo sampling error, we follow Fioruci, Ehlers, and Filho (2014) 

and compute also the DIC weights, where the DIC score of every model is compared 

against the score of the best model:  

 

 w
M

∝exp(−(DIC
M

−DIC
B

)/2)    (13) 
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3. Dynamic asset allocation framework 

In this paper we apply the framework for dynamic portfolio allocation proposed by 

Brandt, Goyal, Clara, and Stroud (2005). We consider the portfolio choice of an 

investor that maximizes end-of-period utility by allocating assets to a portfolio of N 

risky assets and a risk-free rate. The investor’s optimization problem takes the form 

 

𝑉𝑡(𝑊𝑡; 𝑍𝑡) =  𝑚𝑎𝑥 
{𝑤𝑠}𝑠=𝑡

𝑇−1  𝐸𝑇[𝑈(𝑊𝑇)|𝑍𝑇]; 𝑊𝑠+1=𝑤𝑠𝑅𝑝;𝑠+1; ∀𝑠 ≥ 𝑡      (14) 

 

The term R
p,s+1

=w'
s
(R

s+1
−R

f
)+R

f  denotes the gross portfolio return from period s 

to s+1, w
s
 is a vector of portfolio weights for the risky assets, and Rf is the risk-

free rate. Given the intertemporal dimension of the asset allocation problem, the 

investor takes into account the fact that portfolio holdings will change at each future 

point in time depending both on the available wealth, and on the information set. 

This dynamic effect is controlled for by the value function V
t
(W

t
,Z

t
).  

We assume that instantaneous utility carries constant relative risk aversion:  

 

 U(W
T

)= 

W
1−λ

T

1−λ
                            (15) 

 

with λ as the coefficient of relative risk aversion. Brandt, Goyal, Clara, and Stroud 

(2005) follow a dynamic-programming approach, which delivers the first-order 

condition:  

 

 E
t
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
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f
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f
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f
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The discrete-time problem is solved using a simulation method. Overall, the 

computation of the optimal asset allocation involves the following steps:  
 

(A) we simulate paths of returns using one-step ahead forecasts for conditional 

means and correlations from estimated econometrics models. At each point in time 

t, we draw randomly the shock εt from the distribution N(0,I) - with I as the identity 

matrix - to generate n=1,…10000 simulations of returns from 

  

 R
t
=Π

t
+Ω

1/2

t
ε
t
                            (17) 

 

for given out-of-sample forecasts for Σ
ε

t

 and h
t
. Obtaining analytical expressions 

for the forecasts from the different models is rather straightforward, except for the 

case of the DCC model. Following Engle and Sheppard (2001), we use the 

approximation  
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𝐸𝑡(𝑉𝑡+𝑛) = ∑ [(1 − 𝛼 − 𝛽)𝑉̅(𝛼 + 𝛽)𝑖 + (𝛼 + 𝛽)𝑛−𝑖𝑉𝑛+1]𝑛−2
𝑖=0             (18) 

                 

The resulting information set of the investor consists of a stream of returns and state 

variables at time t for each path s. We can denote this set in a compact form as 

I
s

t
={R

s

t
,Z

s

t
}, where s denotes simulated values;  

 (B) we compute end-of-period time-T wealth for each n-path and solve the 

allocation  problem backwards: at each t for every simulated path n, we use the 

recursion of the Bellman equation to solve for the optimal portfolio weights; 

 (C) we initialize the solution by computing the portfolio weights for the second-

order Taylor approximation of the value function. This is then used as a starting 

guess for the solution of a fourth-order approximation of the value funtion; 

 (D) the process is iterated until the change in the optimal weights is numerically  

negligible. 

Finally, in the evaluation of expected utility, we use the predictive distribution:  

 

 p ( )R
t+1

,Π
t+1

,h
t+1

,Σ
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|Z
t

=p(R
t+1

|Π
t+1

,h
t+1

,Σ
t+1

,Z
t
)p(Π

t+1
,h

t+1
,Σ

t+1
|Z

t
)      (19) 

 

This means that the predictive distribution can change over time when the 

conditioning set Z
t
 incorporates additional data, which is factored into the 

posterior beliefs. As a result, the model accounts for Bayesian learning.7 

 

 

 

 

 

 

 

 
7 As pointed out by Della Corte, Sarno, and Tsiakas (2013), the Bayesian estimation framework 

provides the tools that are needed to consider two different dimensions of the dynamic asset 

allocation problem. The first one concerns the role of parameter uncertainty, while the second has to 

do with the predictability of means, variances and correlations. With both parameter uncertainty and 

predictability for time-varying volatilities and correlations, the optimal portfolio allocations account 

for both Bayesian learning and estimation risk. Under no predictability, there model contemplates 

only constant means, volatilities and correlations. With no parameter uncertainty, only the point 

estimates are factored into the solution of the dynamic planning problem.  
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(a) Prices 

 

 

(b) Net returns 

Figure 1: Plots of the daily dataset 
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4. Dataset and model calibration 

We extract data from the FRED Database of the St Louis Federal Reserve Bank for 

West Texas Intermediate (Cushing, Oklahoma) spot prices and the NASDAQ 

composite index.8 We also obtain old spot prices from the World Gold Council.9 

The risk-free rate is measured as the rate on a 3-month U.S. Treasury Bill, which is 

also retrieved from FRED. The full sample runs from January 2 1990 to September 

3 2024. After removing missing values, the dataset includes 8702 observations, 

which are plotted in Figure 1. 

Table 1 reports the descriptive statistics of net returns. The empirical distributions 

are left-skewed and peaked. The null of normality is rejected by the Jarque-Bera 

test statistics, especially for WTI returns. Table 1 includes also the statistics for the 

normality test of Anderson and Darling (1952), which confirms the rejection of the 

null of normality. The significance of the Ljung-Box statistics provides support for 

ARCH-type dynamics in the returns. These empirical facts are largely consistent 

with most studies on financial markets at the daily frequency. Interestingly, 

Spearman’s rank correlation coefficients show that the returns for NASDAQ, spot 

gold and spot crude oil are characterized only by minor comovements. From an 

intuitive point of view, this should call into question the capability of extracting 

portfolio gains from forecasting the correlation between these assets.10 

In order to compute optimized portfolios, we need to pin down two additional 

assumptions. We need to choose a value for the risk-aversion parameter λ of the 

utility function 15. Empirical studies based on microeconomic data tend to deliver 

estimates of λ in the range 1 to 4. Other studies such as Kandel and Stambaugh 

(1991) and Mehra and Prescott (1985) have proposed far higher value. We follow 

Barberis (2000) and calibrate λ to 5. The second assumption is related to the choice 

of the riskless asset, which is a 3-month U.S. Treasury Bill traded on the secondary 

market.  

 

 

 

 

 

 

 

 

 
8 The series can be downloaded, respectively, from https://fred.stlouisfed.org/series/DCOILWTICO 

and https://fred.stlouisfed.org/series/NASDAQCOM. 
9 Available for download from https://www.gold.org/goldhub/data/gold-prices. 
10 It should be mentioned that linear correlations provide a similar picture. 
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Table 1: Descriptive statistics for net returns 

 

 

Legend: Brackets report the marginal probability. The LJB(12) is the Ljung-Box test statistics on the squared 

residuals from the regression of the conditional mean. Under the null of no serial correlation, it is distributed as 

a χ2(q) distribution with q lags and a criticical value equal to 21.03. JB is the Jarque-Bera test of normality. It 

has a χ2 distribution with 2 degrees of freedom. The critical value at the 5% level is 5.99.  
 

5. Estimation results 
We start by estimating the models on a subsample with 8534 observations until 

December 29 2023. The posterior-mean estimates provide the starting values for a 

recursive estimation and out-of-sample forecast application over the second part of 

the sample. Running from January 2 2024 until September 2 2024, the estimation 

window is expanded by one observation at the time, the models are re-estimated, 

and one-step-ahead forecasts are computed.  

The potential numerical issues that may arise in the - automatic - recursive 

estimation imposes a burden on the Markov Chain Monte Carlo algorithm to both 

run smoothly, and deliver well-behaved chains. However, this problem has already 

been tackled in a number of previous contributions. We follow the standard practice 

of relying on short pilot runs to find an initial guess for the parameter estimates, 

which are then used as a starting point for the full algorithm. The length of the pilot 

run is set to 10000 iterations for each model. The main algorithm is then run for 

60,000 iterations, from which we disregard the first 10000 as burn-in. The simulated 

Markov chains are automatically assessed for convergence through the test 

diagnostic of Brooks and Gelman (1998). In addition, in the estimation of the 

models based on the first part of the sample, we also check the plots of the running 

means of the marginal posteriors as suggested by Bauwens, Lubrano, and Richard 

(1999), and apply the separated partial means tests of Geweke (2005, p. 149).  

 

Panel (a): Summary statistics 

 WTI Treasury bond Nasdaq 

Mean 0.00008 0.0001 0.0005 

Std dev 0.044 0.021 0.015 

Skewness -38.767 -0.078 -0.024 

Kurtosis 2571.107 9.692 9.756 

Panel (b): Normality and ARCH tests 

Anderson-Darling 17.455 [0.08] 11.310 [0.4] 9.601 [0.03] 

JB 1.7e+3* 2.1e+3* 1.9e+2* 

LJB(12) 16.13* 21.04* 13.01* 

Panel (c): Spearman’s rank correlations 

 Brent crude Treasury bond Nasdaq 

Brent crude 1   

Treasury bond 0.095 1  

Nasdaq 0.091 -0.020 1 
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In order to provide some understanding on the results of the estimation from the 

first part of the sample, we can consider the in-sample statistical fit of the models. 

Table 2 reports the values for the DIC statistics obtained from estimation on data 

until December 29 2023. Based on the deviance information criterion, a clear 

ranking emerges among the models. The use of a Student’s t distribution generates 

superior models with respect to a Normal distribution. In addition, regardless of any 

distributional assumption, BEKK models deliver improvements in fit with respect 

to both CCC and DCC models. Hence, allowing for a more flexible structure and a 

richer parametrization in the model for conditional correlations allows to capture 

features of the data that are otherwise harder to match under tighter modelling 

assumptions. On the other hand, imposing a positivity constraint on the diagonal 

ARCH and GARCH parameters in a BEKK model delivers a better fit. Despite these 

considerations, we should notice that the DIC statistics are somewhat similar across 

the model space: the pd-BEKK with t distribution has an improvement in DIC by 

10% with respect to the CCC with a Normal distribution. This suggests that there 

can be a statistical case for ranking models through DIC weights, thus providing a 

clear-cut picture. 

 
Table 2: DIC model comparison 

Model DIC w
M

 

CCC - Normal 1851.20 0.0000 

DCC - Normal 1820.06 0.0000 

BEKK - Normal 1809.51 0.0000 

pd-BEKK - Normal 1801.99 0.0000 

CCC - t 1803.38 0.0000 

DCC - t 1794.06 0.0000 

BEKK - t 1755.82 0.0911 

pd-BEKK - t 1751.22 0.9089 

 

Since the t-distributed positive-diagonal BEKK model appears to deliver the best 

fit, and in the interest of parsimony, we discuss the key estimation results only for 

this model. Table 3 includes the point estimates, along with numerical standard 

deviations and 95% credible intervals estimated as 95% highest density intervals. 

All the numerical standard deviations are of a small magnitude, indicating that the 

parameter estimates have converged towards the posterior means. There is no 

difference in the precision with which the conditional mean parameters are 

estimated with respect to the parameters driving the conditional volatilities and 

correlations. The last row of Tables 3 indicates high values for the degrees of 

freedom of the t distribution. This indicates that a distribution with fat tails provides 

a reasonable assumption. Finally, there is evidence of persistence in both 

conditional volatilities and correlations. 

 

 



Stocks, Gold and Crude Oil: How Valuable are Volatility and Correlation Timing? 81  

Table 3: Point estimates and 95% credible intervals for the  

positive-diagonal BEKK model with t distribution 

 

Parameter Estimate Standard deviation Credible intervals 

μ
1
 0.00120 0.00044 (-0.0190, 0.0173) 

μ
2
 0.00137 0.00058 (-0.0164, 0.0180) 

μ
3
 0.00218 0.00071 (-0.0183, 0.0166) 

A [1, 1] 0.2300 0.0710 (0.1791, 0.2150) 

A [2, 2] 0.2390 0.0500 (0.1740, 0.2756) 

A [3, 3] 0.1977 0.0118 (0.1522, 0.2300) 

C [1, 1] 0.2509 0.0185 (0.1408, 0.3509) 

C [2, 1] 0.3110 0.0170 (0.1701, 0.4308) 

C [2, 2] 0.4071 0.0315 (0.2900, 0.6911) 

C [2, 3] 0.2760 0.0509 (0.1371, 0.3119) 

C [3, 1] 0.2049 0.0840 (0.0920, 0.3050) 

C [3, 3] 0.4460 0.0790 (0.2700, 0.6202) 

B [1, 1] 0.7103 0.0910 (0.7460, 0.8687) 

B [2, 2] 0.7514 0.0580 (0.8248, 0.8671) 

B [3, 3] 0.7855 0.0811 (0.8640, 0.8850) 

v 6.1900 0.407 (1.0370, 2.9600) 

Legend: the table reports credible intervals from the 95% highest posterior density region for each 

parameter estimate, which is the shortest interval containing 95% of the posterior distribution. 

Numerical standard errors are also included.  

 

Panels (a) and (b) of Figure 2 plot the in-sample forecasts for conditional variances 

and correlations from the t-distributed positive-diagonal BEKK. The model 

captures well-known spikes in market turbulence, such as those that took place both 

in 2009 and in 2020 as a consequence of the Covid outbreak. Estimated positive 

correlations appear to have become stronger over time after 2010. The pd-BEKK 

with t distribution captures no visible break after the Lehman bankruptcy of 2008, 

which is often associated with the beginning of a period of positive correlations with 

increasing size. Out-of-sample forecasts can be found in panels (c) and (d). The t-

distributed positive-diagonal BEKK picks up the increase in volatility that has 

characterized both oil and gold prices since June 2024. The resulting spike in stock 

market volatility goes hand-in-hand with an increase in correlation between gold 

and NASDAQ index prices on one hand, and a drop in the correlation between oil 

and NASDAQ.  
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(a) In-sample variance forecasts 

 

(b) In-sample correlation forecasts 

 

 

(c) Out-of-sample variance forecasts 

 

 

(d) Out-of-sample correlation forecasts 

 

Figure 2: Forecasts of conditional variances and correlations for the t-

distributed positive-diagonal BEKK 
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6. The economic value of optimal dynamic portfolios 

The solution to the optimal portfolio allocation problem of the representative 

investor involves two stages. Based on the posterior-mean estimates obtained from 

data until December 29 2023, the investor starts by computing one day-ahead 

forecasts for returns, conditional volatilities and correlations. Then, the utility-

maximization problem is solved by choosing optimal portfolio weights, thereby 

generating portfolio rebalancing strategies on a daily frequency. And a full cycle 

including recursive estimation, forecast computation, and utility maximization 

through portfolio rebalancing is repeated until September 2 2024. 11  Given the 

substantial computational costs involved in the recursive estimation and in the 

solution of the dynamic programming problem, we only consider daily rebalancing 

strategies that bear a transaction cost c equal to 5 basis points. 

In order to provide evidence on the economic implications of volatility and 

correlation forecasting, we compute optimal ‘static’ portfolios based on constant 

variances and covariances. These are obtained from multivariate linear models of 

excess returns estimated with Bayesian methods. From an intuitive point of view, 

the static allocation can be interpreted as a baseline portfolio composition without 

rebalancing based on volatility and correlation forecasting.  

Since the Bayesian estimation framework allows us to study the role of estimation 

risk, we compare the economic outcomes from portfolio allocations based on 

different degrees of parameter uncertainty. For this purpose, we consider a 

benchmark where any source of uncertainty is switched off. In a ‘plug-in method’ 

for assigning parameters, we fix parameter values to their estimates (see Della Corte, 

Sarno, and Tsiakas, 2013). Then, we move on to optimal portfolios in models with 

uncertain volatilities and correlations, where the unconditional mean is fixed to the 

estimates from a multivariate linear regression. Finally, we compare the results 

obtained earlier with the implications from parameter uncertainty for means, 

volatilities and correlations.  

We are left with the problem of measuring the economic implications of our 

dynamic portfolio strategies. For the sake of comparison with the available literature, 

we compute Sharpe ratios based on ex-post annualized mean portfolio returns and 

annualized standard deviation. However, it should be kept in mind that Sharpe ratios 

are affected by a number of issues. As suggested by Han (2006), they disregard the 

role of higher moments, and are subject to various forms of distortions arising from 

dynamic allocation strategies. Hence, it becomes appealing to rely on metrics that 

have economic underpinnings. Following Fleming, Kirby, and Ostdiek (2001) and 

West, Edison, and Cho (1993) amongst others, we compute the fee Φ that an 

investor would be willing to pay in order to switch from portfolio a to portfolio b in 

order to achieve a similar average utility level. This can also be interpreted as a 

breakeven cost, above which switching across strategies is not desirable. Given 

 
11 As a result, also the estimates for the conditional-mean parameters change between periods 

when we run the full round of estimation and simulation to solve for the optimizing portfolio 

weights. 
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R
b

p,t+1
 and R

a

p,t+1
 as the returns from benchmark and alternative allocations, 

we compute Φ such that:  

 

∑ 𝐸𝑡
𝑇−1
𝑡=0 [𝑈(𝑅𝑝,𝑡+1

𝑎 /𝑒𝑥𝑝(Φ))] = ∑ 𝐸𝑡
𝑇−1
𝑡=0 [𝑈(𝑅𝑝,𝑡+1

𝑏 )]        (20) 

      

We consider four static benchmark portfolios:  

• an allocation ‘R’ based on the constant conditional covariance estimated 

from a multivariate regression model of excess returns;  

• an allocation S with only stocks;  

• an allocation W with only WTI crude oil;  

• an allocation G with only gold.  

 

6.1 Optimal in-sample portfolios 

Table 4 reports the performance of optimal allocations based on in-sample forecasts. 

Panels (a) summarizes the key portfolio statistics where there is no estimation risk. 

Panel (b) shows the results with parameter uncertainty in volatilities and 

correlations, while panel (c) summarizes the portfolio statistics in models with full 

Bayesian learning. A number of interesting results arise, some of which are 

consistent with the findings on other assets obtained by Della Corte, Sarno, and 

Tsiakas (2013) and Ravazzolo and Lombardi (2016).  

First of all, higher Sharpe ratios are generated as the sources of parameter 

uncertainty are factored into optimal portfolios allocations. Average return variance 

increases less than average excess returns when estimation risk becomes widespread. 

Disregarding estimation risk generates portfolios characterized by the lowest 

average returns and volatilities. On the other hand, addressing the effects of full 

uncertainty penalizes portfolio performance with respect to the case of uncertainty 

in volatilities and correlations. To put it differently, even in a portfolio of assets 

carrying low unconditional correlation, there are returns that can be generated by 

forecasting conditional volatilities and correlations, in addition to the returns 

derived from optimal allocations that disregard parameter uncertainty.  

In order to interpret these findings, we should stress that there is a trade-off between 

the depth of estimation risk arising from model size, and the increase in predictive 

ability generate by larger models under parameter uncertainty. In our modelling 

framework, the latter overcomes the former. However, improvements in forecast 

performance depend on the source of parameter uncertainty. Our random walk 

model for returns is clearly unable to deliver a satisfactory forecast performance. 

And this can explain the worsening in portfolio statistics with full uncertainty with 

respect to uncertainty in volatilities and correlations.  
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Table 4: Performance of optimal in-sample portfolios 

Legend: μ
p
 and σ

p
 denote annualized average portfolio returns and volatilities. SR is the Sharpe 

ratio. Φ(⋅) is the cost that an investor is willing to pay in order to switch from a benchmark to an 

alternative portfolio. The alternative portfolio is based on in-sample forecasts produced by each 

model reported in the model. Benchmark portfolios include only stocks (S), holding only WTI crude 

oil (W), only gold (G), and a portfolio of assets generated from a multivariate regression model of 

excess returns.  

 

 

 

 

Model μ
p
 σ

p
 SR Φ(R) Φ(S) Φ(W) Φ(G) 

(a) Plug-in method 

MLR 18.700 12.109 1.016 - - - - 

CCC - Normal 22.800 12.614 1.300 490.0 511.0 501.0 301.4 

DCC - Normal 26.140 13.720 1.438 539.0 546.7 535.7 337.9 

BEKK - Normal 26.305 13.910 1.431 812.0 610.8 577.0 401.8 

pd-BEKK - Normal 26.955 14.200 1.447 833.0 612.0 574.8 449.0 

CCC - t 27.961 14.790 1.457 931.0 686.0 673.4 350.9 

DCC - t 28.505 14.850 1.488 934.8 738.0 708.0 361.2 

BEKK - t 28.977 15.290 1.476 1029.0 906.5 775.5 709.8 

pd-BEKK - t 29.79 0 15.520 1.507 1127.0 896.7 802.6 720.3 

(b) Uncertainty in volatilities and correlations 

MLR 18.499 11.903 1.008 - - - - 

CCC - Normal 25.553 13.395 1.429 502.7 526.3 536.7 387.3 

DCC - Normal 25.957 13.662 1.431 553.0 563.1 542.6 417.7 

BEKK - Normal 26.765 13.959 1.458 836.9 629.1 583.4 420.0 

pd-BEKK - Normal 27.068 14.157 1.459 854.6 630.3 582.2 439.3 

CCC - t 28.28 14.949 1.463 955.2 706.5 682.1 458.9 

DCC - t 28.785 14.989 1.493 959.1 760.1 717.2 469.5 

BEKK - t 29.088 14.751 1.538 1195.8 933.7 785.5 726.2 

pd-BEKK - t 29.290 14.157 1.616 1256.3 923.6 863.6 806.5 

(c) Uncertainty in means, volatilities and correlations 

MLR 18.008 11.582 1.002 - - - - 

CCC - Normal 25.809 13.596 1.427 500.1 520.0 524.4 372.5 

DCC - Normal 26.217 13.867 1.429 544.1 556.9 540.0 409.4 

BEKK - Normal 27.033 14.168 1.456 852.0 617.2 581.0 412.0 

pd-BEKK - Normal 27.339 14.369 1.457 860.2 620.7 676.0 420.5 

CCC - t 28.563 15.173 1.460 940.0 699.7 680.5 442.0 

DCC - t 29.073 15.213 1.490 944.3 750.9 714.7 460.5 

BEKK - t 29.379 14.972 1.534 1152.0 920.9 780.1 713.3 

pd-BEKK - t 29.583 14.369 1.613 1226.0 916.0 849.1 790.4 



86                                           Paolo Zagaglia 

The only exception to this finding concerns the dynamic allocations under constant 

volatilities and correlations estimated from linear regressions, which suffer from a 

drop of Sharpe ratios as additional sources of parameter uncertainty are introduced. 

Following the reasoning discussed earlier, using a constant covariance matrix 

implies removing the sources for possible gains from predictability of volatilities 

and correlations.  

Our results show that distributional assumptions for the forecasting models matter. 

Models with fat tails are associated with larger Sharpe ratios than models based on 

the Normal distribution. At the same time, imposing constant volatilities and 

correlation yields the most ‘cautious’ portfolios across different degrees of 

parameter uncertainty.  

Forecasting conditional volatilities and correlations through multivariate models 

with a richer structure of interactions contribute to deliver higher Sharpe ratios. The 

family of BEKK models outperforms the in-sample capabilities of alternative 

models. On the other hand, we also find that imposing parametric restrictions that 

have economic underpinnings does deliver gains in portfolio performance: the 

positive-diagonal BEKK achieves consistently higher returns and lower volatility 

especially when parameter uncertainty is considered. This indicates that there can 

be benefits from responding to estimation risk when a model with a sufficiently 

flexible structure is adopted.  

Let us now focus on the costs of switching across from static portfolios to dynamic 

allocations. We consider four benchmark - static - portfolios based on non-

diversified holdings with the NASDAQ index, WTI crude oil, gold, as well as a 

constant-weight allocation obtained from a linear regression model. The first 

noticeable result is that the fees for switching towards forecast-based strategies have 

a positive sign for all the correlation models, regardless of the benchmark portfolio. 

Consistently with the results for the Sharpe ratios, the switching costs increase as 

parameter uncertainty is accounted for by optimal portfolio allocations: the 

improvements in average returns lead to higher utility levels that are discounted by 

the investor.  

Portfolio holdings with only the NASDAQ index leads to the highest losses with 

respect to dynamic allocations. All in all, large opportunity costs can emerge both 

from disregarding uncertainty in volatilities and correlations, and from choosing 

portfolios with fixed asset allocations.  

A benchmark allocation with only gold holdings generates the lowest breakeven 

costs against the alternative portfolios, while the benchmark linear-regression 

allocation produces consistently higher fees. This means that a static portfolio 

entirely allocated to gold generates economic gains that are closer to those obtained 

from the alternative portfolio strategies, with respect to the performance of other 

benchmarks. All these results suggest that the source of economic gains from 

holding gold or crude oil lies in the contributions that they deliver for portfolio 

diversification. 
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Table 5: Performance of optimal out-of-sample portfolios 

Legend: μ
p
 and σ

p
 denote annualized average portfolio returns and volatilities. SR is the Sharpe 

ratio. Φ(⋅) is the cost that an investor is willing to pay in order to switch from a benchmark to an 

alternative portfolio. The alternative portfolio is based on in-sample forecasts produced by each 

model reported in the model. Benchmark portfolios include only stocks (S), holding only WTI crude 

oil (W), only gold (G), and a portfolio of assets generated from a multivariate regression model of 

excess returns. 

 

 

Model μ
p
 σ

p
 SR Φ(R) Φ(S) Φ(W) Φ(G) 

(a) Plug-in method 

MLR 11.151 10.816 0.439 - - - - 

CCC - Normal 13.035 10.584 0.626 337.8 255.5 336.2 246.7 

DCC - Normal 13.893 10.656 0.703 467.9 426.0 332.3 260.5 

BEKK - Normal 15.354 11.448 0.782 495.2 330.8 340.5 258.1 

pd-BEKK - Normal 15.134 10.872 0.803 511.6 473.5 394.4 346.1 

CCC - t 15.961 11.736 0.814 540.1 304.8 440.8 270.5 

DCC - t 16.448 12.168 0.825 552.8 305.7 523.1 278.5 

BEKK - t 16.504 12.168 0.830 620.1 598.5 550.7 547.2 

pd-BEKK - t 17.105 12.456 0.859 670.5 610.9 602.0 555.3 

(b) Uncertainty in volatilities and correlations 

MLR 10.602 10.332 0.406 - - - - 

CCC - Normal 13.188 10.074 0.673 360.1 270.9 347.8 251.7 

DCC - Normal 13.776 10.143 0.720 475.9 405.1 343.8 265.8 

BEKK - Normal 14.897 10.688 0.710 510.1 345.7 352.2 263.4 

pd-BEKK - Normal 15.408 10.971 0.821 524.0 494.8 407.9 353.2 

CCC - t 16.276 11.316 0.872 527.5 318.5 456.0 275.9 

DCC - t 16.877 11.592 0.903 530.8 359.4 541.2 284.1 

BEKK - t 16.850 11.661 0.893 586.2 625.3 569.7 558.3 

pd-BEKK - t 17.492 12.075 0.918 699.2 638.3 622.8 566.5 

(c) Uncertainty in means, volatilities and correlations 

MLR 10.065 9.576 0.382 - - - - 

CCC - Normal 12.219 12.054 0.482 280.3 233.6 210.7 206.9 

DCC - Normal 13.251 12.136 0.564 391.0 372.7 311.5 248.0 

BEKK - Normal 14.706 12.382 0.670 477.6 429.5 380.2 316.5 

pd-BEKK - Normal 14.967 13.038 0.657 455.5 414.3 369.7 290.3 

CCC - t 15.481 13.366 0.679 490.3 436.7 413.2 226.9 

DCC - t 16.035 13.858 0.695 504.9 330.5 490.4 233.6 

BEKK - t 16.438 14.186 0.707 511.4 523.7 516.3 459.1 

pd-BEKK - t 16.087 13.858 0.699 501.1 534.6 564.4 465.8 
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(a) Differential with respect to linear-regression 

allocation 

 

(b) Differential with respect to NASDAQ-only 

allocation 

 

 

(c) Differential with respect to WTI-only 

allocation 

 

(d) Differential with respect to gold-only 

allocation 

 

Figure 3: Certainty-equivalent return differentials 

Legend: the figures report certainty equivalent return differentials over a one-day forecast horizon with 

respect to the certianty equivalent returns of alternative benchmark strategies.   
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6.2 Optimal out-of-sample portfolios 

Let us now turn to optimal portfolio allocations evaluated out of sample. Table 5 

reports the summary statistics for different degrees of parameter uncertainty. The 

drop in average portfolio returns is larger than the reduction of average volatility 

generated by all the models: this is the cost arising from the struggle of our 

predictive models to produce reliable forecasts when the information on which they 

are based does not cover the entire dataset. The rest of the patterns that characterize 

optimal in-sample portfolios emerge also in the case of out-of-sample dynamic 

allocations. Hence, volatility and correlation forecasts contribute positively both to 

return-based and to utility-based metrics of performance. However, the challenge 

to forecast the means of returns prevents full Bayesian learning from delivering 

additional benefits in favour of the portfolio allocations. While distributional 

assumptions do make a different, so does the choice of the dynamic correlation 

model.  

In order to gain additional insights on the sources of economic benefits generated 

by the forecasting models, we evaluate the certainty-equivalent return associated to 

each portfolio. This is the riskless return that delivers the same utility level arising 

from an alternative portfolio of risky assets. In other words, that would make an 

investor indifferent between choosing an allocation of riskless assets and an 

allocation of risky assets. Given the utility function 15, we use the results obtained 

under uncertainty in volatilities and correlations to compute:  

 

 CER
t+1

=U
−1

 ( )E
t
 ( )U(W

t+1
)     (21) 

 

Rather than reporting end-of-period values, we study the evolution of certainty-

equivalent returns in comparison to each benchmark static allocation introduced 

earlier for measuring the switching costs across strategies. The cumulative 

certainty-equivalent return over the out-of-sample forecast period can be written as:  

 

 CCER
a

t+1
= 

m=0

T−1
  



CER

a

m,t+1
−CER

b

m,t+1
    (22) 

 

A cumulative certainty-equivalent return that increases over time indicates that the 

alternative model records a stronger return-generation performance than that of the 

benchmark allocation. Consistently with the results of Table 5, Figure 3 shows that 

all the forecast-based portfolios are capable of generating net economic gains over 

the forecast period. Even the constant-correlation models are capable of a positive 

performance with respect to each benchmark allocation. However, the growth rate 

of the cumulative certainty-equivalent returns differs across models. For instance, 

when compared against the static allocation with only the NASDAQ index, the 

positive-diagonal BEKK model with t-distributed disturbances typically starts from 

the highest values at the beginning of the forecast evaluation period, and then suffers 
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from a number of periods with negative returns. Non-diversified portfolios with full 

allocations to either gold or crude oil perform very poorly with respect to dynamic 

utility-maximizing portfolios. This supports the finding discussed previously for 

which there are benefits from portfolio diversification also in out-of-sample 

allocation decisions.  

 

7. Conclusion 

The goal of this paper is to study the sources of economic value that can be extracted 

from forecast-based strategies for the construction of optimal portfolios with 

holdings of the NASDAQ index, WTI crude oil and gold. We use Bayesian methods 

to estimate alternative models for conditional volatilities and correlations. We then 

compute out-of-sample forecasts for conditional means, volatilities and correlations 

of the returns. The forecasts from each competing model are used to solve for 

optimal dynamic portfolios in the model of Brandt, Goyal, Clara, and Stroud (2005) 

where investor’s utility is evaluated at the Bayesian predictive density. This way, 

we can factor different degrees of parameter uncertainty into the construction of 

portfolios. Optimal asset allocation are evaluated using standard financial metrics - 

such as the Sharpe ratio -, as well as criteria based on economic principles. We 

obtain two main results. First of all, timing conditional volatilities and correlations 

generates positive gains in addition to those delivered by strategies involving 

holdings of one asset only. Second, the sources of the economic benefits generated 

by either WTI crude oil or gold rely on their contributions to portfolio 

diversification. 

Our analysis can be extended along several directions. Since a daily rebalancing 

frequency can have an effect on the ability to time volatilities and correlations, we 

should explicitly model the fact that the costs of changing asset weights affect the 

transition to a new portfolio. For instance, we could modify our asset allocation 

problem by introducing the idea of transaction cost aversion proposed by Collin-

Dufresne, Daniel, Moallemi, and Saglam (2012). We should also examine the role 

of our assumption about the utility function of investors. First of all, the effects of 

changes of the coefficient of relative risk aversion should be assessed properly. We 

should also compare the performance of optimal portfolios under different 

functional forms of utility, like the logarithmic utility, or the function due to Epstein 

and Zin (1989). As stressed by Buraschi, Porchia, and Trojani (2010), forecasting 

correlations in the context of optimal portfolio allocation raises the issue of 

correlation risk. While our discussion provides insights on the implications of this 

source of risk for portfolio composition, we do not attempt to quantify directly the 

resulting demand for hedging.  

From the point of view of statistical modelling, we should study the effects of model 

uncertainty on our optimal asset allocations. This would amount to extending our 

work by comparing the performance of alternative schemes for generating forecasts. 

Avramov (2002) suggests that model uncertainty can have portfolio implications 

more compelling than those of estimation risk. Disregarding model uncertainty may 
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lead investors to favor portfolio strategies with poor performance. In our case, it 

would be interesting to apply the forecast-combination framework of Bates and 

Granger (1969). To be consistent with our estimation methods, the Bayesian Model 

Averaging approach presents appealing features. Finally, since our sample includes 

a period of substantial market instability, we should model explicitly the dynamics 

of higher moments. This would allow us to extend our results to the case of 

distributional timing discussed by Jondeau and Rockinger (2006) among others. 
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