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Abstract 
 

This paper studies the sources of cyclical information delivered by the term spread 

for output growth predictability in the U.S. I use a wavelet-based time-frequency 

decomposition to decompose the predictive power of the yield spread across time 

scales, both in-sample and out-of-sample, over various forecast horizons. Spreads 

between interest rates on 10-year and 3-month Treasuries have a predictive ability 

for output growth that changes largely over different time scales. I find evidence of 

a negative correlation between the spread and future GDP growth for fluctuations 

with a frequency of 4 to 8 years per cycle. A linear combination among filtered yield 

spreads shows a sizable improvement in forecasting out-of-sample. The time-

frequency decomposition is also used to propose an interpretation for the breakdown 

of in-sample predictability documented by Dotsey (1998) that arises after 1985.  
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1. Introduction  

A large body of literature argues that the difference between long and short-term 

interest rates on government bonds - the so-called ‘term spread’ - reflects the 

expectations of financial markets about future macroeconomic conditions. This has 

provided the ground for empirical studies on the predictive ability of the yield 

spread. The seminal work by Estrella and Hardouvelis (1991) shows that the slope 

of the yield curve holds a consistently negative correlation with real GDP growth 

up to the following 6 quarter. Stock and Watson (2003) find that the yield spread is 

also a good predictor for future output growth out-of-sample. Two aspects of the 

predictive relationship are worth stressing. First, there is evidence of a drop of in-

sample fit starting from 1985 (see Dotsey, 1998). Second, the estimated parameters 

of the predictive regressions are unstable over the full post-war sample (see 

Giacomini and Rossi, 2006).  

This paper re-considers the predictive power of the yield curve across time-

frequencies. The aim is to understand what components of the time pattern in the 

predictive relation explain its success or failure. I apply a multiresolution 

decomposition to the quarterly series for real GDP and the term spread in the United 

States. The data sample spans from the first quarter of 1954 to the second quarter 

of 2024. Then, I study the predictive regressions based on these filtered series. The 

methodological framework used here is not new. For instance, Verona and Faria 

(2023) use wavelet-based filtering to build predictors for the equity premium.  

The results indicate that the predictive ability of the decomposed yield spread for 

unfiltered output growth varies largely across time scales. Using a linear 

combination of the decomposed spread as predictor for unfiltered GDP growth, I 

find a sizeable improvement in both in-sample and out-of-sample forecasts. I 

investigate the heterogeneity in predicting ability by regressing filtered output 

growth on the filtered yield spread at each time scale. A remarkable result emerges. 

For series that include cycles with frequency spanning from 4 to 8 years, the relation 

between future output growth and the slope of the yield curve is significantly 

negative over the full sample. Plots of the filtered series indicate that this is a key 

feature of the relation between output growth and the yield spread before 1985. For 

a subsample starting in 1985, the predictive relation has the expected positive sign. 

The decomposed series are also used for proposing a solution to the breakdown of 

in-sample fit documented by Dotsey (1998) that occurs after 1985. 

This paper is organized as follows. Section 2 provides a broad overview of the 

technique of multiresolution decomposition used in the remaining sections. Section 

3 describes the dataset and the properties of the filtered series. Then, I analyze the 

details of the predictive content of the filtered term spread both in-sample, and out-

of-sample. In section 4, I discuss a possible resolution of the forecast breakdown 

after 1985 based on filtered regressors. Section 5 presents some concluding remarks. 
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2. A short review of multiresolution analysis 

The following section provides a discussion of key aspects concerning the 

foundations of multiresolution analysis. I provide results on the connections 

between time-scale decomposition and wavelet functions. For a more thorough 

overview, the reader can refer to Debauchies (1992), which is the standard reference 

for the mathematical properties of multiresolution analysis through wavelets. A 

compact review of the topic with sample of economic applications can be found in 

Ramsey (1999) and Crowley (2005). 

The purpose of multiresolution analysis consists in the approximation of signals. A 

time series is decomposed into a smooth component, that represents the long-run 

trend, and fluctuations or details, that identify the short-run movements. The 

distinction between the smooth and the fluctuating parts is determined by the 

resolution, that is the time scale below which the details cannot be detected. At each 

scale, the multiresolution decomposition approximates a time series by ignoring the 

details at the lower scales. The approximation of the signal improves by adding finer 

details at higher time scales. 

In order to fix the notation, denote by f (t) the signal to decompose. The time scale 

takes on values from (1/2)j, where j is the (integer) resolution level. The j-level 

approximation of the signal is fj(t). The approximation at j+1 is a function of the 

detail level dj(t):  

 

fj+1(t)=fj(t)+dj(t)               (1) 

 

Recursive substitution within this expression suggests the way of recovering the 

original signal. As the resolution goes to infinity, the raw signal is obtained. 

The principles of multiresolution analysis generalize to function spaces. Let 

L2 ( )R  denote the space of square-integrable functions. The multiresolution 

decomposition of L2 ( )R  consists of the sequences of subspaces {Wk}
∞

k=j
 and 

Vj such that fj(t)∈Vj and dk(t)∈{Wk}
∞

k=j
. The following theorem establishes the 

conditions of a multiresolution analysis.  

 

Theorem 1: A multiresolution analysis of L2 ( )R  is a nested sequence of 

subspaces {Vj}j∈Z such that:  

• The information at level j is included in the information at finer resolutions: 

…⊂V−1⊂V0⊂V1⊂L2 ( )R  

• All the integrable functions should be included at the highest resolution: 

∩jVj=∅,  ∪jVj  =L2 ( )R  
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• (dilation invariance) Re-scaling from the central space V0 generates all the 

spaces {Vj}j∈Z: f(t)∈Vj⟺f(2t)∈Vj 

• (translation invariance) f(t)∈V0⟹f(t−k)∈V0 

• There exists a scaling function φ(t) such that {φ(t−k)} is an orthonormal basis 

for V0. 

Table 1: Frequency interpretation of time scales 

 Component Quarterly-frequency  

resolution 

D1 1-2 quarters 

D2 2-4 quarters 

D3 1-2 years 

D4 2-4 years 

D5 4-8 years 

 

Through translation invariance, it is possible to generate a set of functions that are 

orthonormal basis for {Vj}j∈Z:  

 

 φj,k(t):=2j/2φ ( )2jt−k            (2) 

 

The level j controls the degree of stretching of the function. The larger the j, the 

more stretched is the basis function. The smaller the time scale, the higher the 

frequency of the decomposed series (see Table 1), the less stretched the basis 

function. The parameter k determines the location of the basis function. Time 

localization captures the information of each form of noise separately at each 

frequency. This property implies that any locally-inhomogenous behavior affects 

only a few coefficients of the transformation.  

Let us assume that the detail spaces {Wj} are orthogonal to each other. Like for 

the approximation spaces, we can define a sequence {ψj,k(t)}k  of orthonormal 

basis functions that spans L2 ( )R :  

 

 ψj,k(t):=2j/2ψ ( )2jt−k            (3) 

 

The function ψj,k(t)  is called wavelet. Like the set of scaling functions, wavelets 

are generated by dilation and translation from a mother wavelet ψ(t). 

In the analysis presented in this paper, the assumption of orthogonality among detail 

spaces is relaxed, and biorthogonal wavelet functions are used. In order to allow the 

decomposition of a function space by linear combination of nonorthogonal basis, 

dual multiresolution analysis introduces the dual subspaces {̃Wk}
∞

k=j
 and {Ṽj}j∈Z. 
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These are generated, respectively, from a dual scaling function �̃�(t) and a dual 

mother wavelet �̃�(t). Given an inner product < >⋅  on L2 ( )R , the conditions for 

biorthogonality take the form:  

 
 

where and 

 

Summing up, the biorthogonal wavelet decomposition of a time series f (t) can be 

written as:  

 
The discrete wavelet transform of (t) is summarized by the set  

 

The term AJ  is a level approximation that captures the long-run (trending) 

properties of the signal. Given a decomposition scaling function �̃�(𝒕, 𝑱, 𝒌) and a 

reconstruction scaling function �̃�(𝒕, 𝑱, 𝒌), AJ can be written as:  

 
 

The level details Dj focus on high-resolution properties of the series. They are 

constructed in a way analogous to that of the level approximation:  

 

Dj= 
k

  [ ]φ(t,j,k)f(t) ψ(t,j,k)          (12) 
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The biorthogonal wavelet transform makes use of four types of functions. One type 

- decomposition scaling and decomposition wavelet function - is needed for 

decomposing the signal. The other type - reconstruction scale and reconstruction 

wavelet function - is used for reconstructing the series. 

The choice of the wavelet filter should not affect the behavior of the series extracted 

at each time scale. The filter should also be sufficiently long so that no artificial 

properties are generated both for filtering and for reconstruction. Yogo (2008) finds 

that a lowpass filter with 17 periods as the length, and a high-pass filter with 11 

periods performs quite well for the decomposition of real output. Consistently with 

these results, I apply the 17-11 filter bank. 

Figure 1: Time-scale decomposition for the 10-year yield spread 
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3. Dataset 

I use quarterly data obtained from the FREDII online database of the Federal 

Reserve Bank of St. Louis. The sample spans from the first quarter of 1954 to the 

second quarter of 2024. The yield spread is computed as the difference between the 

10-year yield and the 3-month yield on constant-maturity Treasury bonds. This 

definition of the spread has been standard practice since the seminal work of Estrella 

and Hardouvelis (1991), and is applied here for comparison with the literature. 

The wavelet decomposition is applied to the seasonally-adjusted level of the real 

GDP (in billions of chained 2000 U.S. Dollars), and to each of the bond yields 

separately. The filtered series for GDP growth and the yield spread at every 

predictive horizon are computed afterwards. By applying the wavelet filter on the 

raw data rather on differenced series, I avoid the non-standard problems that would 

arise otherwise.  

Figure 2: Time-scale decomposition for the level of GDP 

 

The discrete wavelet transform can be applied to sample sizes that are multiples of 

m power of 2. The sample size is 282, which suggests that decompositions up to 

level 5 is feasible. Finally, I should point out that the wavelet decomposition 
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introduces some distortion at the end of the filtered series. The reason lies in the 

wave-like periodic shape of the transformation, which is interrupted independently 

from the location along the wave. Like most empirical studies, I disregard this issue. 

Figures 1 and 2 show the decomposition of the series. As expected, details at level 

1 and 2 identify the noisiest components. The approximations pick up the (possibly 

nonlinear) trends. The level decomposition from 1 to 3 captures the large outliers in 

the interest rate series in coincidence with the two episodes of large inversion of the 

yield curve in the first half of the 1980s. 

 

4. Predicting over the full sample 
This section studies the predictive relation between future output growth and the 

yield spread at each level of decomposition over the entire sample. The model takes 

the standard regression form:  

  
  









 
400

h
ln 









 
yt+h

yt
=α+βst+εt+h            (13) 

 

 

where and st is the term spread. Standard errors are estimated through the 

covariance estimator proposed by Newey and West (1987).2  
 

4.1 Global predictability 

The first column of Table 2 displays the well-known result of in-sample 

predictability for the unfiltered data. All the estimates of the slope coefficients are 

statistically significant and have the expected positive sign. The estimated R2 

statistics are somewhat lower than what found in previous studies like Estrella and 

Hardouvelis (1991). This is due to the fact that the sample used here includes the 

period of predictability breakdown starting in 1985 (see Dotsey, 1998).  

The rest of Table 2 shows the results from regressing unfiltered future output 

growth on the filtered yield spread at each decomposition level. It is clear that the 

pattern of predictability is not homogenous across time scales. The slope 

coefficients for the regressions at the levels A5, D1 and D5 are statistically not 

different from zero for all the predictive horizons. The yield spread at the levels D4 

and D5 appear as good predictors, both in terms of statistical significance of the 

relation and in terms of R2. The long-term relationship between the term spread  

and future output growth at A5 is negative, although not significant. 

 
 

 
2 The potential issues arising in this application arise from a small-sample bias, and from size 

distortions in inference based on asymptotic distribution theory. As suggested in Kilian (1999), I 

could address this problem by computing bootstrapped p-values. However, since the application of 

the wavelet filter might create nonstandard statistical problems, I disregard these issues. 
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Table 2: Predictive models with level regressors, full sample 

 Unfiltered 

series 

A5 D1 D2 D3 D4 D5 

 

h: 2 

       

α 2.15(4.83) 4.98(4.22) 4.38(9.90) 4.38(10.11) 4.43(9.97) 4.43(11.27) 3.10(10.14) 

β 0.91(4.97) -0.50(−0.82) (0.68)0.44 1.92(2.61) 0.94(1.07) 1.81(5.93) 0.88(1.86) 

R
2

 
0.12 0.02 0.002 0.05 0.02 0.14 0.03 

 

h: 2 

       

α 2.20(4.96) 4.99(4.38) 4.43(10.23) 4.44(10.40) 4.43(10.44) 4.46(12.55) 4.45(10.89) 

β 0.89(4.00) -0.50(−0.82) -0.06(−0.25) 0.97(2.02) 1.63(2.11) 1.88(5.41) 1.05(2.60) 

R
2

 
0.19 0.02 0.00002 0.02 0.04 0.25 0.06 

 

h: 2 

       

α 2.43(5.40) 4.95(4.65) 4.43(10.92) 4.43(10.91) 4.38(10.83) 4.45(12.82) 4.44(12.27) 

β 0.87(4.62) - 0.68(−0.84) -0.06(−0.45) (0.88)0.25 1.38(1.81) 1.63(6.87) 1.19(2.83) 

R
2

 
0.21 0.02 0.0002 0.002 0.04 0.27 0.12 

 

h: 2 

       

α 2.50(5.87) 4.92(4.96) 4.38(11.54) 4.38(11.53) 4.38(11.51) 4.43(12.61) 4.43(14.50) 

β 0.63(4.46) -0.50(−0.87) 0.06(0.63) 0.15(0.63) 0.69(1.26) 1.23(5.81) 1.27(4.22) 

R
2

 
0.19 0.02 0.0002 0.002 0.02 0.22 0.18 

 

h: 2 

       

α 2.81(6.80) 4.91(5.17) 4.43(12.55) 4.43(12.12) 4.43(12.12) 4.43(12.45) 4.43(14.89) 

β 0.67(2.93) -0.64(−0.89) -0.02(−0.17) 0.14(0.81) 0.41(0.80) 0.82(4.19) 1.28(4.64) 

R
2

 
0.14 0.02 0.00002 0.002 0.0002 0.13 0.25 

 

h: 2 

       

α 2.85(5.61) 4.89(5.38) 4.43(12.63) 4.43(12.64) 4.43(12.62) 4.38(12.63) 4.43(15.69) 

β 0.46(2.63) -0.63(−0.90) 0.05(0.83) 0.25(1.58) 0.28(0.85) 0.64(2.50) 1.24(4.18) 

R
2

 
0.11 0.03 0.0002 0.004 0.005 0.05 0.29 

Legend: Round brackets indicate t-values. 
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Table 3: Predictive models with filtered regressors, full sample 

 h 

 2a 4b 6c 8c 10d 12a 

α 4.45(11.67) 4.47(14.87) 4.45(14.99) 4.43(15.20) 4.43(15.09) 4.43(14.84) 

β 1.50(5.38) 1.50(6.52) 1.64(6.57) 1.20(6.47) 1.02(5.64) 0.82(4.86) 

R2 0.20 0.45 0.63 0.62 0.46 0.26 

Legend: The regressors are obtained by summing the explanatory variables in table 2 that are 

significant at the 5% level for each predictive h. aSum between crystals at D2, D4 and D5. bSum 

between crystals at D2, D3, D4 and D5. cSum between crystals at D3, D4 and D5. dSum between 

crystals at D4 and D5. Round brackets indicate t-ratios.  

 

Can the finding on time-heterogeneity be used to improve the in-sample fit of the 

predictive model? In order to answer this question, I study the predictive relation 

between prices and dividend-price ratios of stocks. The intuition goes as follows. 

Since the statistical properties of the predictive models for output growth vary 

across time scales, I can look for a linear combination among the level components 

of the yield spread that have a statistically significant predictive power. In other 

words, the aim is that of finding a filtered regressor that removes the ‘noisy’ 

components of the predictive regressor at each time scale. I compute this filtered 

regressor as the sum of level components whose estimated slopes are statistically 

significant at the 5% level. This variable is then used to predict unfiltered output 

growth. For instance, predictions for two quarters ahead use the sum between 

crystals at levels D2, D4 and D5 as the regressor. Table 3 shows that there are large 

gains from following this strategy. First, the proposed filtered predictors perform 

very well in-sample even at long predictive horizons. Second, the sum among the 

statistically significant regressors has a predictive power larger than that of each 

level regressor from Table 2. 

The subsequent question of interest is whether the filtered series can be used for 

forecasting out-of-sample. Thus, I compute the tests for forecasting comparisons of 

nested models proposed by Clark and McCracken (2001). Like in Stock and 

Watson (2003), the nested model postulates that output growth is unpredictable in 

that it follows a random walk. This idea is formalized by imposing �̂� = �̂� = 0. 

The forecast-encompassing tests are applied to split-sample, recursive and rolling 

forecasting schemes. The null is that the nested and non-nested model have equal 

predictive ability.3   

Encompassing tests cannot be applied to nonstationary data (see Kilian, 1999). 

Hence, I apply the variants of the tests of Dickey and Fuller (1979) and Phillips and 

Perron (1988) proposed by Perron and Ng (1996, 2001) for the null of a unit root. 

These tests retain power in small samples through the use of a set of selection 

 
3 I do not report the results from the tests of Diebold and Mariano (1995) for they do not apply to 

comparisons between nested models. 
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criteria for the order of the underlying autoregression. The results are reported in a 

statistical annex available upon request. They indicate strong rejections of the null 

of a unit root for the unfiltered yield spread at all predictive horizons. There is 

evidence of nonstationarity for the raw series of output growth only up to a 

predictive horizon of 4 quarters ahead. I calculate the first difference of the 

variables that are nonstationary before computing the nested models. 

Table 4: Predictability tests on models based on the full sample 

Statistic Unfiltered regressors Filtered regressors 

 h h 

 2 4 6 8 10 12 2a 4b 6c 8c 10d 12a 

QLR 34.14 54.17 9.23 14.50 6.69 14.86 24.41 22.1 41.13 24.64 12.54 11.27 

p-value 0 0 0.21 0.04 0.5 0.03 0 0 0 0 0.06 0.1 

Exp-W 12.43 22.65 2.2 4.81 1.23 2.87 5.49 6.68 15.82 8.69 2.69 1.84 

p-value 0 0 0.38 0.07 0.81 0.18 0 0 0 0 0.24 0.67 

Nyblom 4.64 6.69 0.61 1 0.47 0.38 0.88 1.6 4.64 1.41 0.54 0.41 

p-value 0 0 0.62 0.13 0.86 0.84 0.26 0.02 0 0.04 0.51 0.85 

ENCsp 172.09* 199.07* -5.55 -5.69 -1.65 25.85* 19.96* 30.19* 170* 116.06* 122.19* 19.21* 

ENCre 225.1* 414.94* -0.95 -2.99 4.13* 30.23* 21.19* 39.14* 210.50* 111.67* 138.64* 45.97* 

ENCro 240.48* 444.52* -1.82 -3 6.04* 30.17* 22.12* 41.93* 240* 105.29* 124.65* 40.03* 
Legend: Models for predictive hs from 1 to 5 quarters ahead, and for 11 quarters ahead use non-

differenced variables. All other models are based on data in first difference. The filtered regressors 

are obtained by summing the explanatory variables from the level regressions that are significant at 

the 5% level for each predictive h. aSum between crystals at D2, D4 and D5. bSum between crystals 

at D2, D3, D4 and D5. cSum between crystals at D3, D4 and D5. dSum between crystals at D4 and 

D5. This table reports the following test statistics and p-values. A series of tests for a one-time 

structural break: Andrews (1993) test, labeled QLR, Andrews and Ploberger (1993) tests, labeled 

Exp-W and Mean-W, Nyblom (1989) test, labeled Nyblom. A series of tests for out-of-sample 

relative forecast comparisons: the test for forecasting comparisons for nested models discussed by 

Clark and McCracken (2001), labeled ENC-NEW. The latter tests are applied to rolling, recursive 

and fixed forecasting schemes, respectively labeled with the following subscripts: roll, rec, and fix. 

*Significant at the 1% level. **Significant at the 5% level. ***Significant at the 10% level.  

 

Table 4 reports the results from a battery of tests for a one-time structural break, 

namely the tests of Andrews (1993), Andrews and Ploberger (1993) and Nyblom 

(1989). The null is that of parameter stability. The low p-values suggest that both 

models with unfiltered and filtered regressors suffer from structural instability. 

Hence, the reader should focus on the forecast-encompassing tests based on rolling-

windows estimates, which are known to be robust to parameter instability. 

Unfiltered regressors have no predictive power out-of-sample for 6 and 8 quarters 

ahead (see Table 4). The use of the predictive regressors restores the predictive 

power over all the horizons.  
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Figure 3: Plots of decompositions at A5 and D5 

 

4.2 A negative slope in the long run 

The previous section has established that the predictive power of the yield spread 

for unfiltered output growth varies across time scales. In this section, I investigate 

further the implications of the heterogeneity in the predictive relation. I regress 

filtered output growth on the filtered yield spread at each level. Table 5 shows that 

the quality of the predictive relation changes largely over time scales. 

Differently from the standard results, for a time scale between 4 and 8 years, the 

slope of the predictive regressions are negative and largely significant (see Table 5). 

This result holds both for the detail D5 and the level approximation A5, that is both 

for details at long cycles and for the trend. In the former, the elasticity of future 

output growth to the yield spread is negative. In the latter, the elasticity is positive 

over all the predictive horizons owing to the large estimated constant terms.  
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Table 5: Level regressions, full sample 

 A5 D1 D2 D3 D4 D5 

h: 2       

α 4.95(15.60) 0.002(0.03) -0.02(−0.11) 0.02(0.02) 0.13(0.68) 0.03(0.26) 

β -0.64(−4.50) 0.45(1.56) 1.45(2.96) 1.04(1.84) 1.17(4.89) 0.49(1.97) 

R
2

 
0.23 0.02 0.11 0.03 0.21 0.05 

 

h: 4 

      

α 4.98(14.14) 0.002(0.10) 0.02(0.25) -0.02(−0.09) 0.13(0.63) 0.05(0.28) 

β −0.65(−4.81) -0.10(−1.15) 0.81(2.67) 1.80(2.57) 1.47(5.67) 0.59(4.02) 

R
2

 
0.26 0.02 0.15 0.12 0.38 0.13 

 

h: 6 

      

α 4.00(12.55) 0.0002(0.02) 0.002(0.07) -0.03(−0.45) 0.10(0.57) 0.05(0.38) 

β -0.50(−4.26) −0.05(−0.81) 0.22(2.46) 1.50(2.99) 1.45(6.12) 0.87(4.81) 

R
2

 
0.28 0.004 0.05 0.17 0.49 0.22 

 

h: 8 

      

α 4.02(11.65) -0.002(−0.20) -0.004(−0.67) -0.02(−0.45) 0.06(0.63) 0.06(0.46) 

̂β -0.50(−2.99) 0.05(1.00) 0.23(2.89) 0.86(2.63) 1.15(6.27) 0.91(5.51) 

R
2

 
0.40 0.02 0.07 0.12 0.48 0.43 

 

h: 10 

      

α 4.03(11.09) 0.0002(0.10) -0.002(−0.29) -0.0002(−0.10) 0.03(0.26) 0.06(0.61) 

̂β −0.50(−2.83) -0.02(−0.65) 0.24(2.64) 0.45(1.57) 0.83(5.64) 1.00(10.67) 

R
2

 
0.41 0.002 0.11 0.04 0.40 0.64 

 

h: 12 

      

α 4.04(10.83) −0.0003(−0.13) 0.002(0.49) -0.0003(−0.17) 0.02(0.14) 0.06(0.50) 

̂β −0.65(−2.82) 0.04(1.87) 0.20(2.05) 0.20(1.18) 0.50(4.40) 1.05(14.14) 

R
2

 
0.43 0.02 0.10 0.03 0.16 0.54 

Legend: Round brackets indicate t-values. 

Figure 3 indicates that, for the A5 components, the negative relation between output 

growth and the yield spread is an evident feature of the data until 1985. For the D5 

components there appears to be a cyclical pattern in sign of the slope of the 

predictive model. For instance, from 1955 to 1960, and from 1965 to 1970, the slope 

evidently takes a negative sign. Instead, from 1960 to 1965, and from 1970 to 1975, 

the slope should be positive. Following this hint, I compute the level regressions for 

both the pre-1985 and the post-1985 period. Table 6 replicates all the findings that 

emerge from table 5. Since the results from the pre-1985 regressions are standard 

(included in the unpublished appendix), I can conclude that the negative slope of 

the predictive model is due to features of the data that are present only in the pre-

1985 subsample.  
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Table 6: Level regressions, pre-1985 subsample 

 A5 D1 D2 D3 D4 D5 

 

h: 2 

      

α 4.67(20.19) 0.002(0.03) -0.02(−0.07) 0.02(0.04) (0.87)0.24 -0.09(−0.67) 

β -1.43(−6.23) 0.61(1.89) 1.97(4.94) 1.58(1.40) 1.59(4.85) 0.65(2.21) 

R
2

 
0.63 0.03 0.19 0.04 0.28 0.11 

 

h: 4 

      

α 4.67(16.10) 0.002(0.12) 0.02(0.47) -0.00(−0.02) 0.20(0.86) −0.07(−0.51) 

β -1.38(−5.03) −0.09(−0.86) 1.17(4.52) 4.04(2.55) 1.86(5.10) 0.65(4.41) 

R
2

 
0.65 0.02 0.27 0.20 0.49 0.23 

 

h: 6 

      

α 4.50(14.18) 0.0005(0.05) 0.003(0.21) -0.02(−0.13) 0.16(0.68) −0.07(−0.63) 

β -1.40(−4.68) -0.04(−0.60) 0.41(4.41) 2.83(4.16) 1.68(5.15) 0.82(5.53) 

R
2

 
0.67 0.003 0.10 0.41 0.65 0.47 

 

h: 8 

      

α 4.64(14.07) 0.00002(0.003) −0.004(−0.45) −0.02(−0.25) 0.10(0.54) −0.06(−0.49) 

β −1.28(−4.19) 0.07(1.64) 0.38(4.50) 1.61(4.21) 1.60(5.12) 0.95(9.67) 

R
2

 
0.68 0.02 0.13 0.24 0.63 0.51 

 

h: 10 

      

α 4.63(12.44) 0.0002(0.06) −0.002(−0.18) −0.02(−0.43) 0.06(0.48) -0.04(−0.45) 

β -1.25(−4.02) −0.006(−0.21) 0.43(4.07) 0.69(2.25) 1.00(4.58) 1.05(14.97) 

R
2

 
0.69 0.0002 0.20 0.10 0.43 0.64 

 

h: 12 

      

α 4.60(11.83) 0.0003(0.10) 0.004(0.56) −0.02(−0.50) 0.03(0.25) −0.03(−0.40) 

β -1.22(−4.90) 0.05(2.15) 0.29(4.50) 0.63(1.67) 0.59(4.65) 1.09(16.59) 

R
2

 
0.69 0.02 0.19 0.07 0.17 0.84 

Legend: Round brackets indicate t-values.  

Can the finding of the negative slope be reconciled with the available theories on 

the term structure of interest rates? The conventional wisdom on the predictive 

power of the yield spread suggests that the slope the yield curve reflects both current 

and expected monetary policy actions. A monetary tightening raises both nominal 

and real short-term interest rates in the presence of nominal price rigidity. The 

opportunity cost of real investment increases, thus making future output fall. Since 

long-term rates are unchanged, the yield curve flattens (see Estrella and Hardouvelis, 

1991).  

A different line of explanation relies on the expectations hypothesis of the term 

structure. This theory postulates that long-term rates are the average of expected 

interest rates at short maturities. If financial markets predict a boom, and expected 
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monetary policy is countercyclical, then the expected short-term rates rise (see 

Rudebusch, 1995). Since current short-term rates do not change, the yield curve 

becomes steeper. However, as discussed in Chapter 7 of Mishkin (1989), the 

expectations hypothesis is characterized by several flaws.  

Mishkin (1990) argues that the measure of yield spread used in this paper 

corresponds to a forward interest rate from 3 months to 10 years in the future. This 

rate can be decomposed into an expected real interest rate and a component of 

expected inflation. The expected real rate is related to the expectations of monetary 

policy. Furthermore, inflation and output growth are positively correlated, and so 

are expected inflation and expected output growth (see Estrella and Mishkin, 1996).  

Overall, the available theories are unable to account for a negative relationship 

between the slope of the yield curve and future output. However, they indicate that 

the expectations of the monetary policy stance play a key role for the result of 

predictability. This raises the issue of whether the negative slope is related to the 

course of monetary policy. Estrella and Hardouvelis (1991) suggest to include the 

federal funds rate among the predictive variables, and check whether the estimated 

coefficient �̂� on the yield spread is statistically-significant. The model becomes:  

 









 
400

h
ln 









 
yt+h

yt
=α+βst+γffrt+εt+h           (14) 

 

where ffrt is the nominal federal funds rate.  

 

The models estimated on unfiltered data indicate that increases in the federal funds 

rate are negatively correlated with future output growth (see Table 7). Like in 

Estrella and Hardouvelis (1991), the information in the Fed funds rate does not 

exhaust the predictive content of the yield spread. However, at the A5 and D5 levels, 

the current stance of monetary policy in uninformative, with the exception of the 

A5 level for predictions two quarters ahead. This suggests that the negative relation 

between the yield spread and future output growth in the long run is determined by 

factors other than monetary policy.  
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Table 7: Level regressions with the federal funds rate, full sample 

 Unfiltered Level Regressions 

Series A5 D1 D2 D3 D4 D5 

 

h: 2 

       

α 4.61 (5.12) 4.69 (14.06) -0.004 (−0.02) 0.02 (0.23) −0.02 (−0.07) (0.51) 0.09 0.03 (0.26) 

β 0.80 (2.84) 0.84 (−5.52) − −0.05 (−0.13) 0.86 (2.44) −0.05 (−0.14) (0.87) 0.43 −0.60 (−1.84) 

γ −0.43 (−4.47) 0.09 (1.93) −0.81 (−2.83) −0.86 (−2.60) −1.53 (−5.90) (−2.20) −0.56 −0.52 (−5.85) 

R
2

 
0.24 0.44 0.06 0.17 0.64 0.26 0.26 

 

h: 4 

       

α 4.99 (5.13) 4.89 (10.82) -0.002 (−0.03) 0.02 (0.40) -0.002 (−0.04) (0.63) 0.07 0.04 (0.29) 

β 0.81 (2.84) −0.80 (−4.12) −0.22 (−1.86) 0.88 (2.29) 0.64 (1.60) (2.83) 1.03 −0.11 (−0.64) 

γ -0.26 (−4.64) 0.07 (1.20) −0.23 (−2.21) −0.04 (−0.47) −1.29 (−9.67) (−0.89) −0.19 −0.50 (−4.48) 

R
2

 
0.41 0.43 0.03 0.15 0.55 0.43 0.40 

 

h: 6 

       

α 4.68 (4.80) 4.88 (9.83) -0.005 (−0.18) -0.002 (−0.24) −0.02 (−0.40) (0.49) 0.06 0.05 (0.44) 

β 0.63 (2.80) −0.87 (−4.63) −0.11 (−0.85) 0.21 (2.17) 0.81 (2.25) (4.59) 1.51 0.17 (0.81) 

γ −0.20 (−2.67) ) 0.05 (0.86) −0.12 (−0.87) −0.02 (−0.21) −0.84 (−6.84) (0.86) 0.17 −0.60 (−4.87) 

R
2

 
0.41 0.43 0.02 0.06 0.50 0.61 0.46 

 

h: 8 

       

α 4.52 (4.65) 4.95 (9.23) -0.002 (−0.41) 0.002 (0.02) −0.02 (−0.19) (0.29) 0.03 0.06 (0.49) 

β 0.53 (2.62) −0.83 (−4.00) 0.04 (0.65) 0.12 (1.57) 0.51 (1.61) (6.14) 1.81 0.62 (2.58) 

γ −0.15 (−1.87) 0.03 (0.64) -0.002 (−0.03) −0.15 (−2.51) −0.49 (−4.86) (4.06) 0.65 −0.38 (−4.44) 

R
2

 
0.27 0.44 0.02 0.13 0.27 0.68 0.63 

 

h: 10 

       

α 4.67 (4.61) 4.03 (8.99) -0.006 (−0.07) 0.003 (0.52) 0.002 (−0.11) (0.13) 0.02 0.06 (0.637) 

β 0.60 (2.27) −0.69 (−2.81) −0.07 (−1.40) 0.17 (1.67) 0.25 (1.12) (6.53) 1.62 0.65 (5.06) 

γ −0.11 (−1.44) 0.02 (0.16) −0.11 (−1.54) −0.09 (−2.00) −0.12 (−1.65) (4.683) 0.59 −0.23 (−2.80) 

R
2

 
0.20 0.45 0.03 0.15 0.07 0.51 0.50 

 

h: 12 

       

α 4.62 (4.48) 4.09 (8.91) 0.002 (0.19) 0.004 (0.68) −0.02 (−0.38) 0.00 (−0.03) 0.06 (0.67) 

β 0.41 (1.88) −0.65 (−2.69) 0.03 (1.04) 0.20 (1.90) 0.16 (0.89) 1.41 (5.68) 0.83 (8.43) 

γ (−1.02) −0.07 −0.02 (−0.07) −0.02 (−0.21) 0.002 (−0.10) −0.07 (−1.61) 0.59 (4.27) −0.15 (−2.02) 

R
2

 
0.15 0.46 0.02 0.10 0.05 0.67 0.56 

Legend: Round brackets indicate t-values.  
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5. A post-1985 predictability breakdown 
Dotsey (1998) and Haubrich and Dombrosky (1996) report substantial evidence of 

a fall in the predictive power of the term spread since 1985. Ang et al. (2006) show 

that the short-term rate is a better predictor for output growth than the yield spread 

during the 1990s. In what follows, I investigate the question of forecast breakdown 

from a time-scale perspective. I divide the full sample into pre-1985 and post-1985 

subsamples, and compute predictive regressions along the lines developed in the 

previous sections.  

Like for the full sample, table 8 shows that the statistical significance of the 

regressions with filtered yield spread varies largely over time scales. This suggests 

a way out of the in-sample predictive breakdown after 1985, namely that of using 

an appropriate level component for the term spread in the predictive model. In 

particular, the table indicates that the D4-component of the yield spread is the best 

candidate, in that it is a significant predictor for output growth for up to 10 quarters 

ahead. I have also checked whether in-sample fit can be improved by regressing the 

unfiltered output growth on the sum of level regressors whose estimated regression 

slopes are significant at the 5% level. Differently from the full sample, no relevant 

results have emerged.  

The issue is whether the filtered yield spread can help predicting out-of-sample. 

Both the tests for structural stability and the forecast-encompassing tests suggest 

that no gains in terms of out-of-sample forecasts are achieved by using filtered 

regressors.  

 

6. Conclusion 
In this paper, I revisit the relation of predictability between the yield spread and 

output growth at several forecasting horizons. I show that the predictive relation is 

heterogeneous across time scales. For a time scale between 4 to 8 years, a negative 

slope of the yield curve translates into positive GDP growth in the future in contrast 

to the existing literature. There is a linear combination of decomposed series for the 

yield spread that predicts output growth out-of-sample more accurately than the 

unfiltered regressor. Finally, I propose a solution to the breakdown of in-sample fit 

after 1985 through the use of a filtered regressor. 

Several extensions are on the agenda. The question of primary interest is why the 

negative slope in the very long run explains future changes in output well. The issue 

of parameter instability is not solved through wavelet-filtered regressors. 

Giacomini and Rossi (2006) argue that the instability in predicting growth can be 

related to monetary policy conduct of the Fed. It would be interesting to check 

whether their conjecture applies to the analysis of monetary policy over time scales. 
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