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Fisher equation is provided . An example of two-factor model which can be used to value
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1 Introduction

In a seminal paper, Cox, Ingersoll, and Ross (1981) obtained, within the context of a

general equilibrium model of the economy, a functional relation between nominal and

real interest rates. Such a relation can be considered as a stochastic generalization of the

Fisher equation which has been derived in a deterministic framework at the end of the last

century Fisher (1896). In a single good economy, Cox, Ingersoll and Ross proposed an

equilibrium multi-factor model in which the price level is taken as one of the economic

fundamentals used to value nominal and real securities in presence of uncertain inflation.

Under the hypothesis that the state variables follow diffusion processes, they found that

the nominal spot rate is decomposable into the sum of the real interest rate and the

expected rate of inflation plus some terms depending on the stochastic nature of the

price level process, and on the market prices for risk Cox, Ingersoll, and Ross (1988a)

and Cox, Ingersoll, and Ross (1988b). Such extra terms disappear if the price level is

assumed to evolve in time in a deterministic way so that the Fisher effect returns to its

original version in which the nominal spot rate is equal to the sum of the real interest

rate and the rate of inflation.

A completely different approach is followed in this paper, where a no-arbitrage,

multi-factor model of the term structure of interest rates incorporating the effects of

stochastic inflation is proposed. As pointed out by Pennacchi (1991), a basis for this

research is the presumption that a suitable model of the term structure of interest rates

requires multiple sources of uncertainty. Empirical evidence supports this view. Stam-

baugh (1988) considers a latent variable model of the term structure and finds that a two

or three state variables model is sufficient to characterize Treasury-bill returns. Although

his analysis does not attempt to identify these variables, he suggests that variables that

determine the real interest rate and the expected rate of inflation would be obvious can-

didates. Moreover, Brown and Schaefer (1994) emphasize that several countries (the

United Kingdom in particular) have issued inflation-linked securities, and that there-

fore, a theory of the term structure of nominal and real interest rates is central to the

demand for assets and investments. This topic is of great interest as evidenced by many

recent contributions to the literature Mkaouar, Prigent, and Abid (2017) and Singor et
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al. (2013). Having simple models with a good trade-off between financial significance

and mathematical tractability is central to operational applications for pricing inflation-

linked securities.

In this paper, we model a single good economy in which (default-free) contingent

claims on the term structure are traded at nominal prices. The dynamics of the model

is determined by defining the stochastic movements of the nominal forward rate and the

price process of the consumption good taken as the price level to characterize the in-

flation process. The proposed approach is based on the pricing methodology proposed

by Heath, R. Jarrow, and Morton (1992) and Heath, R. Jarrow, and Morton (1990) and

aims to solve the problem of valuing contingent claims on the term structure under un-

certain inflation conditions. Our approach differs from that proposed by R.A. Jarrow

and Yildirim (2003) because in our model the dynamics of the real forward rate is en-

dogenous. This fact allows us to build parsimonious models that are well suited for

operational applications.

The purpose is to value nominal and real securities, taking as given the prices

of the nominal zero coupon bonds and the price level process. Within this context, a

martingale characterization of nominal and real prices is obtained. In fact, it will be

shown that discounted (at the nominal rate) nominal prices, as well as discounted (at the

real rate) real prices, are martingales with respect to well defined risk-neutral measures

Evans (2003). Furthermore, the paper provides a simple and original derivation of the

stochastic Fisher effect as a natural consequence of the no-arbitrage principle and of the

martingale representation of nominal and real prices. Our result is in agreement with that

derived by Cox, Ingersoll, and Ross (1981) within the context of a general equilibrium

model of the economy and generalizes that obtained by Richard (1978). In addition, it

will be shown that the nominal spot-rate can be decomposed into the sum of the real

interest rate plus the expected rate of inflation, where the expectation is taken under the

nominal risk-neutral measure. From this point of view, the Fisher effect survives in an

economy with risk-neutral individuals Lioui and Poncet (2004).

In the second part of the paper we propose a two-factor model which can be used

for practical applications. In fact, most pricing formulas show a simpler functional form.

In particular, the nominal discount function factorizes into the product of the real dis-
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count function and of a sort of inflation discount function. Furthermore, the nominal

term structure, expressed in terms of the yield to maturity, can be represented as two

superimposed term structures, namely the real yield plus the inflation yield.

The proposed methodology can be generalized to prices contingent claims on for-

eign currencies Amin and R.A. Jarrow (1991). In such a case, the analogy is obtained

by replacing the prices level process with that of the spot exchange rate.

The scheme of the paper is the following. In Section 2, we illustrate the main

assumptions about the underlying economy, and then we discuss an arbitrage-free multi-

factor model of the term structure of interest rates which can be used to value nominal

and real securities under uncertain inflation. A martingale characterization of nominal

and real prices is provided and discussed. From this, a stochastic generalization of the

Fisher equation is obtained. In Section 3, a two-factor model which can be used for

practical purposed is discussed. Securities such as price-index linked bonds, pension

funds etc., are correctly valued in an economic framework in which both the nominal

and the real components of the term structure must be accounted for. In Section 4, an

example of two-factor model is proposed to value arbitrage-free prices of well defined

inflation-linked securities. Finally, in Section 5, some comments conclude the paper.

2 The model

2.1 The general economic setting

We consider a single good, continuous time-state economy with finite horizon [0, τ ], in

which (default free) contingent claims on the term structure are traded at nominal prices.

Market are ideal in the sense that they are frictionless and competitive, i.e. there are

no taxes or transaction costs and all investors act as price takers. Furthermore, markets

are open continuously and there are no constraints on traded quantities and on short

sales. The internal consistency of the model is assured by requiring the absence of

arbitrage profit opportunities. Within this framework we denote by f(t, T ), t < T , the
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(instantaneous) nominal forward rate and by

v(t, T ) = exp

[
−

∫ T

t

f(t, u)du

]
, (1)

the nominal price at time t, of zero coupon bond with nominal face value F = 1, matur-

ing at time T . The nominal spot-rate is then given by

r(t) = f(t, t). (2)

Furthermore, we denote by p(t) the price level, i.e. the nominal price of one unit of

the consumption good. As we will see later, under the no-arbitrage assumption, the

dynamics of f(t, T ), and p(t), determines the price processes of all (default-free) zero

coupon bonds and of all contingent claims under stochastic inflation. Within the context

of a pure arbitrage model, the processes specifying the evolution of f(t, T ), and p(t) are

exogenously given.

Assumption 1. The dynamics of the model is specified by the following system of

diffusion-type stochastic differential equations

dp(t)

p(t)
= y(t)dt−

n∑
i=1

σpi(t)dwi(t), (3)

df(t, T ) = µ(t, T )dt+
n∑

i=1

σi(t, T )dwi(t), (4)

where w1(t), ..., wn(t) are n independent Brownian motions on a given filtered probabil-

ity space (Ω,ℑ, {ℑt}, P ), where {ℑt} denotes the natural filtration. The model functions

µ and σi (i = 1, 2, ..., n) may also depend on f(t, T ) and on p(t); the functions y and σpi

(i = 1, 2, ..., n) on p(t), and on r(t). All the dynamical functions, namely the drift and

the diffusion coefficients, are assumed to be ℑt measurable and continuous functions of

their arguments1. ⋄

We assume that Condition A of Friedman (1975) holds. This implies that the unique solution to the system of stochastic differential
equation (3) is a diffusion process belonging to M2

w[0, τ ], where M2
w[0, τ ] denotes the class of all non-anticipative functions f(t)

satisfying

E

[ ∫ τ

0
|f(t)|2dt

]
< ∞.
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It is to be noted that, by definition, y(t) is the expected rate of inflation, namely

y(t) = Et

[
dp(t)

p(t)dt

]
. (5)

A straightforward application of Ito’s lemma to expression (1) gives the dynamics of the

nominal discount function v(t, T ),

dv(t, T )

v(t, T )
=

[
r(t)−

∫ T

t

µ(t, u)du+
1

2

n∑
i=1

σ2
vi(t, T )dt

]
−

n∑
i=1

σvi(t, T )dwi(t), (6)

where

σvi(t, T ) =

∫ T

t

σi(t, u)du (i = 1, 2, ..., n). (7)

Assumption 2. Fix T1, T2, ..., Tn such that 0 < T1 < T2 < ... < Tn < τ and t < T1. We

assume that

σ̂(t) =


σv1(t, T1) σv2(t, T1) ... σvn(t, T1)

σv1(t, T2) σv2(t, T2) ... σvn(t, T2)
...

... . . . ...

σv1(t, Tn) σv2(t, Tn) ... σvn(t, Tn)

 (8)

is nonsingular a.e. in the product measure P × L[0, T1], where L[0, T1] is the Lebesgue

measure of the interval [0, T1]. This assumption implies that the market is complete, in

the sense that any random variable (XT , T < T1) specifying the payout of a contingent

claim, is attainable by using admissible self-financing trading strategies Harrison and

Pliska (1981) involving the basis bonds with maturities T1, T2, ..., Tn. ⋄

The above assumptions clarify in a formal way the distinction between nominal

interest rate risk and real interest rate risk Bomfim (2001) and Laubach and Williams

(2003). In fact, Assumption 1 leaves open the possibility that some of the diffusion

coefficients of the consumption good price process σpi are zero (see Section III, and

Section IV for an example). This means that possibly m (m < n) sources of risk

drive the evolution of the price level p(t); nevertheless Assumption 2 requires that the

information carried by p(t)is contained in the dynamics of the bond prices wheren−m
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additional sources of risk are also present.

Under Assumption 2, a no-arbitrage argument implies that ∀t, and ∀T , t < T <

T1, the drift coefficient of v(t, T )

µv(t, T ) =

[
r(t)−

∫ T

t

µ(t, u)du+
1

2

n∑
i=1

σ2
vi(t, T )

]
, (9)

can be written in the following form

µv(t, T ) = r(t) +
n∑

i=1

qi(t)σvi(t, T ), (10)

for some qi(t) (i = 1, 2, ..., n), the market prices for risk, that result uniquely determined

from the dynamics and are independent of the chosen basis bonds, i.e. independent of the

vector (T1, T2, ..., Tn). The proof of this statement can be found in Heath, R. Jarrow, and

Morton (1992). Condition (10) is also equivalent to a restriction on the drift of f(t, T ),

namely

µ(t, T ) = −
n∑

i=1

σi(t, T )[qi(t)− σvi(t, T )], (11)

relating the drift coefficient of the nominal forward rate process to the market prices for

risk.

2.2 The nominal economy

After the suitable change of the probability measure induced by the following transfor-

mation of Brownian motions

w∗
i (t) = wi(t)−

∫ t

0

qi(u)du (i = 1, 2, ..., n), (12)

Equations (4), and (6) can be rewritten respectively in the following form

df(t, T ) =
n∑

i=1

σi(t, T )σvi(t, T )dt+
n∑

i=1

σi(t, T )dw
∗
i (t), (13)

dv(t, T )

v(t, T )
= r(t)dt−

n∑
i=1

σvi(t, T )dw
∗
i (t). (14)
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Let us call the new probability measure, obtained by the transformation of Brownian

motions (12), nominal risk-neutral measure. The definition is justified by the fact that if

we compute the expected (with respect to the nominal risk-neutral measure) rate of return

of a T -maturing bond in excess of the nominal spot rate r(t), we get from equation (14)

identically zero. In the nominal economy, it follows, from equation (14), that relative

nominal prices, i.e. r(t)-discounted prices

N(t, T ) = e−
∫ t
0 r(u)duv(t, T ), (15)

are martingales with respect to the nominal risk-neutral measure.

Contingent claims on the term structure are valued on the same ground Harrison

and Kreps (1979) and Harrison and Pliska (1981). If we denote by C(t,XT ) the current

nominal value of a security characterized by the non-negative (ℑT measurable) nominal

random payout XT at time T < T1 with E∗[exp(−
∫ T

0
r(u)du)XT ] < ∞, in absence of

arbitrage, the following theorem 2.1 holds2.

Theorem 2.1. The processes

N(t,XT ) = e−
∫ t
0 r(u)duC(t,XT ), (16)

are martingales with respect to the nominal risk-neutral measure induced by the trans-

formation of Brownian motions

w∗
i (t) = wi(t)−

∫ t

0

qi(u)du (i = 1, 2, ..., n). (17)

Proof . See Harrison and Pliska (1981). ⋄

According to 2.1, nominal prices of contingent claims on the term structure can be cal-

culated by means of the terminal condition

C(t,XT ) = E∗
t

[
e−

∫ T
t r(u)duXT

]
. (18)

We have implicitly assumed that no dividends are paid by the securities. This is not restrictive and the generalization to the case of
contingent claims that pay dividends is straightforward.
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As pointed out by Harrison and Pliska (1981), the nominal prices dynamics is then 
specified by the following stochastic differential equation that in the nominal risk-

neutral measure can be written as

dC(t,XT )

C(t,XT )
= r(t)dt−

n∑
i=1

σci(t,XT )dw
∗
i (t), (19)

where r(t) is the nominal spot-rate3.

2.3 The real economy

It is interesting to give a different characterization of the economy. We define, therefore,

real economy the same economy in which, after a change of the numeraire, the prices

of contingent claims are expressed in units of the good. Let us denote, therefore, by

C̃(t, X̃T ) the real price of a security characterized by a random payout X̃T at time T <

T1, expressed in units of the good. Since X̃T units of the good correspond to a nominal

amount of XT = p(T )X̃T , the following relation holds

C̃(t, X̃T ) =
C(t,XT )

p(t)
. (20)

The theorem 2.2 below furnishes a characterization of the real prices in terms of martin-

gales with respect to a well defined measure.

Theorem 2.2. The processes

R(t, T ) = e−
∫ t
0 x(u)du C̃(t, X̃T ), (21)

are martingales with respect to the probability induced by the following transformation

of Brownian motions

w̄i(t) = wi(t)−
∫ t

0

q̄i(u)du (i = 1, 2, ..., n). (22)

We assume that the diffusion coefficients σci (i = 1, 2, ..., n) belong to M2
w[0, T ].
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The process x(t) describes the real interest rate process, and it is given by

x(t) = r(t)− y(t) +
n∑

i=1

σ2
pi(t) +

n∑
i=1

σpi(t)q̄i(t), (23)

where the quantities

q̄i(t) = qi(t)− σpi(t) (i = 1, 2, ..., n), (24)

are the market prices for risk in the real economy.

Proof. See Appendix. ⋄

In analogy with the nominal case, the probability measure induced by the trans-

formation of Brownian motions (22) is called real risk-neutral measure. The definition

is justified by noticing that if we calculate the expected (under the real risk-neutral mea-

sure) rate of return of a real security in excess of the real rate, we get identically zero.

Equation (24) expresses the link between the market prices for risk in the real and

in the nominal economy. It specifies that q̄i is identically equal to qi if and only if the

i-th sources of risk does not affect the dynamics of the price level. We must notice that

equation (23) can be viewed as a stochastic generalization of the Fisher effect Fisher

(1896). In fact, by rewriting it as

r(t) = x(t) + y(t)−
n∑

i=1

σ2
pi(t)−

n∑
i=1

σpi(t)q̄i(t), (25)

we see that the nominal interest rate decomposes into the sum of the real interest rate plus

the expected rate of inflation, minus some terms depending on the diffusion coefficients

of the price level process. Depending on the values of the market prices for risk in the

real economy, the nominal spot rate may be either greater or less than the sum of the

real interest rate and the expected rate of inflation. It is be noted that if we assume a

deterministic evolution of the prices process p(t), we recover the original form of the

Fisher equation r(t) = x(t) + y(t) in which the nominal spot rate is decomposed into

the sum of the real rate plus the rate of inflation. In addition, it is interesting to remark
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that equation (25) can be rewritten as

r(t) = x(t) + y∗(t), (26)

where y∗(t) is the expected rate of inflation under the nominal risk-neutral measure

y∗(t) = E∗
t

[
dp(t)

p(t)dt

]
. (27)

In this case too, the Fisher equation can be achieved in the original functional form.

It consents to decompose the nominal interest rate as the sum of the real interest rate

plus the expected rate of inflation calculated with respect to the nominal risk-neutral

measure. From this point of view, the Fisher effect survives in an economy with risk-

neutral individuals.

Before ending this Section, we note that it is possible to express equation (3) in the

following useful form

dp(t)

p(t)
= y∗(t)dt−

n∑
i=1

σpi(t)dw
∗
i (t), (28)

thus showing that the process

D(t) = e−
∫ t
0 y∗(u)dup(t), (29)

is a martingale under the nominal risk-neutral measure

p(t) = E∗
t

[
e−

∫ T
t y∗(u)dup(T )

]
(T > t). (30)

3 A two-factor model

In this Section we discuss a two-factor specification of the aforementioned theory which

can be used for practical purpose. Let us express the nominal forward rate as

f(t, T ) = x(t, T ) + y∗(t, T ), (31)
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which is reminiscent of the Fisher decomposition of the nominal spot rate. In the case

T = t, the functions x(t, T ) and y∗(t, T ) are constrained by the Fisher equation to

become x(t, t) = x(t) (the real rate), and y∗(t, t) = y∗(t) (the expected rate of inflation

under the nominal risk-neutral measure) respectively. From this point of view x(t, T )

and y∗(t, T ) can be considered as the real component and the inflation component of the

nominal forward rate. We assume that these components are stochastically independent

and that the real component is also stochastically independent of the (consumption good)

price process. We state therefore the following,

Assumption 3. In the risk-neutral nominal economy the dynamics is specified by the

following system of diffusion-type stochastic differential equations (see equation (13))

dp(t)

p(t)
= y∗(t)dt− σp(t)dw

∗
I (t), (32)

dx(t, T ) = σR(t, T )σvR(t, T )dt+ σR(t, T )dw
∗
R(t), (33)

dy∗(t, T ) = σI(t, T )σvI(t, T )dt+ σI(t, T )dw
∗
I (t), (34)

where

σR(t, T ) = σR(x(t, T ), t, T ),

σI(t, T ) = σI(y
∗(t, T ), p(t), t, T ),

σp(t) = σp(y
∗(t), p(t), t),

and, according to Equation (7)

σvi(t, T ) =

∫ T

t

σi(t, u)du (i = R, I). (35)

w∗
R(t), and w∗

I (t) are two independent Brownian motions on a given filtered probability

space (Ω,ℑ, {ℑt}, P ∗), and {ℑt} is the natural filtration. ⋄

Under Assumption 3, the dynamics of the model partially decouples thus getting

dx(t, T ) = σR(x, t, T )σvR(x, t, T )dt+ σR(x, t, T )dw
∗
R(t), (36)
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and

dp(t)

p(t)
= y∗(t)dt− σp(t)dw

∗
I (t), (37)

dy∗(t, T ) = σI(t, T )σvI(t, T )dt+ σI(t, T )dw
∗
I (t),

where the coefficients σI(t, T ), y∗(t), and σp(t) do not depend on x(t, T ), and x(t).

3.1 The real economy

Under Assumption 3, we will prove that most pricing formulas show a simpler functional

form. In particular we will show that the nominal discount function factorizes into the

product of the real discount function and of the inflation discount function, and that the

nominal term structure, expressed in terms of the yield to maturity, can be represented

as two superimposed term structures, namely the real yield plus the inflation yield.

Let us denote by b(t, T ) the real price, at time t, of a real bond paying one unit

of the consumption good at time T . Since we have assumed that in our model only one

source of uncertainly drives the evolution of the price level process p(t), it follows that

q̄R(t) = qR(t), i.e. the market price for real rate risk is the same both in the nominal and

in the real economy. In addition, by applying the composition (20) and 2.1, we get

p(t)b(t, T ) = E∗
t

[
e−

∫ T
t r(u)dup(T )

]
, (38)

and by recalling the martingale feature of p(t) we finally obtain

b(t, T ) = E∗
t

[
e−

∫ T
t x(u)du

]
, (39)

where the Fisher equation r(t) = x(t)+y∗(t) and Assumption 3 have been used. There-

fore, b(t, T ) can be viewed as the real discount function. In a similar way, the nominal

price at time t of a nominal bond paying the face value F = 1 at maturity T , is given by

v(t, T ) = exp

[
−

∫ T

t

x(t, u)du−
∫ T

t

y∗(t, u)du

]
= E∗

t

[
e−

∫ T
t r(u)du

]
. (40)
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Under Assumption 3, the above equation factorizes into

v(t, T ) = E∗
t

[
e−

∫ T
t x(u)du

]
E∗

t

[
e−

∫ T
t y∗(u)du

]
= b(t, T )h(t, T ), (41)

where

h(t, T ) = E∗
t

[
e−

∫ T
t y∗(u)du

]
. (42)

The nominal discount factor can be therefore decomposed as the product of the real

discount factor b(t, T ) and of the inflation discount factor h(t, T ). As a consequence, the

nominal term structure, expressed in terms of the yield to maturity, can be represented

as two superimposed term structures

Y (t, T ) = − 1

T − t
log v(t, T ) = − 1

T − t
log b(t, T )− 1

T − t
log h(t, T ) =

(43)

= YR(t, T ) + YI(t, T ),

which reflects the decomposition f(t, T ) = x(t, T ) + y∗(t, T ) of the nominal forward

rate. The assumed stochastic decoupling (see Assumption 3) allows to derive the dy-

namics of b(t, T ) and of h(t, T ). In fact, by applying Ito’s lemma to equation (41) we

easily get
db(t, T )

b(t, T )
= x(t)dt− σvR(t, T )dw

∗
R(t), (44)

and
dh(t, T )

h(t, T )
= y∗(t)dt− σvI(t, T )dw

∗
I (t). (45)

The solutions of the above stochastic differential equations subject to the terminal con-

ditions b(T, T ) = 1 and h(T, T ) = 1 respectively, are given by

b(t, T ) = exp

[
−
∫ T

t

x(t, u)du

]
, (46)

and

h(t, T ) = exp

[
−

∫ T

t

y∗(t, u)du

]
. (47)

x(t, T ) can be, therefore, identified with the real forward rate. On the other hand, if



Stochastic

 

Inflation

 

and

 

the

 

Term

 

Structure

 

of

 

Interest

 

Rates:

 

a

 

Simple...

                 

35

the real interest rate process is identically equal to zero, h(t, T ) can be viewed as the

value at time t of a zero coupon bond paying the face value F = 1 at maturity T , in an

economy in which only stochastic inflation survives. It will be shown in the next section

that h(t, T ) can be used as a reference index to build a class of index linked securities

which are self-immunizing against the risk of inflation.

Price-index linked bondsSchwartz (1982) and Garcia and Rixtel (2007) represent

an interesting class of index-linked securities which can be easily valued within the con-

text of the proposed model.

If we denote by F the face value of such a bond, its terminal condition is charac-

terized by the fact that it pays at maturity F/p(t) unites of the consumption good, i.e.

the same amount of the good that can be bought at time t with F units of money. From

this point of view, these securities can be considered as fully immunized against the risk

of inflation. Their prices can be easily calculated by recalling the martingale features of

p(t), thus obtaining

P (t, F, T ) = FE∗
t

[
e−

∫ T
t r(u)du p(T )

p(t)

]
= Fb(t, T ). (48)

The price of such a bond is therefore given by the nominal face value discounted at the

real rate from time T to time t.

An interesting application of the model is the valuation of price index linked bonds

with a guaranteed minimum. To this end, let us consider a security which pays at time T

the nominal amount

XT = F max

(
p(T )

p(t)
,m

)
, (49)

where F is the face value and the ratio p(T )/p(t) between the level price at maturity

and the level price at the valuation date, is the reference index. The quantity m is the

guaranteed minimum. If we pose K = mp(t), equation (49) becomes

XT =
F

p(t)
[K +max(p(T )−K, 0)]. (50)
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The nominal price of this bond is given by

C(t,XT ) =
F

p(t)
Kv(t, T ) +

F

p(t)
CO(t, T,K), (51)

where CO(t, T,K) is the price of a European call option on the level price with exercise

time T and striking price K. This value can be expressed as

CO(t, T,K) = b(t, T )E∗
t

[
e−

∫ T
t y∗(u)du max(p(T )−K, 0)

]
, (52)

which can be computed by numerical methods.

4 A practical model

As an example of application we consider a two-factor model of the economy described

by the following system of stochastic differential equations

dx(t, T ) = σR(t, T )σvR(t, T )dt+ σR(t, T )dw
∗
R(t), (53)

dp(t)

p(t)
= y∗(t)dt− σpdw

∗
I (t),

dy∗(t, T ) = ρ2σ2
p(T − t)dt+ ρσpdw

∗
I (t).

The volatility function σR(t, T ) is assumed to decay exponentially in time according

to the relation σR(t, T ) = σRe
−λ(T−t), where σR and λ are constant. The volatility σp

of the price level process is assumed constant. Finally, the ρ parameter, which can be

considered as a measure of the correlation between the processes p(t) and y∗(t, T ), is

also constant. Under the above assumptions we easily get the following solutions

f(t, T ) = f(0, T ) +
σ2
R

2λ2

[
2e−λT (eλt − 1)− e−2λT (e2λt − 1)

]
+

+ ρ2σ2
pt

(
T − t

2

)
+ σR

∫ t

0

e−λ(T−u)dw∗
R(u) + ρσpw

∗
I (t),
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where f(0, T ) = x(0, T ) + y∗(0, T ) is the initial forward rate, and

p(t) = p(0) exp

[ ∫ t

0

y∗(u)du− 1

2
σ2
p(t)− σpw

∗
I (t)

]
. (54)

This model is characterized by fact that it allows real and nominal rates to become nega-

tive with a strictly positive probability. However, as pointed out by Flesaker (1993), the

probability to get negative nominal rates may be made arbitrarily small by choosing a

suitable form of the market prices for risk. After some lengthy calculations, the nominal

discount function can be cast in the following form

v(t, T ) = exp

[
−

∫ T

t

f(t, u)du

]
= A(t, T )e−β(t,T )x(t)−y∗(t)(T−t), (55)

where

A(t, T ) =
v(0, T )

v(0, t)
exp

[
β(t, T )x(0, t) + (T − t)y∗(0, t)

]
×

× exp

[
− σ2

R

4λ
(1− e−2λt)β2(t, T )− 1

2
ρ2σ2

pt(T − t)2
]
,

and

β(t, T ) =
1

λ

[
1− e−λ(T−t)

]
. (56)

v(0, s) is the initial discount function. In this model the Fisher equation becomes

r(t) = x(t) + y(t)− σ2
p − σpq̄I(t). (57)

We assume that q̄I(t), the market price for inflation risk in the real economy, is identically

zero Cox, Ingersoll, and Ross (1981), so that, by recalling equation (24), it follows that

qI(t) = σp, (58)

and

r(t) = x(t) + y(t)− σ2
p. (59)
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The quantity σ2
p that is equal to zero in the original Fisher equation, is due to the stochas-

tic nature of the process p(t). It is numerically negligible in several practical applications

Moriconi (1993). From equation (54), and by noticing that y∗(t, t) = y∗(t), we get

y∗(t) = y∗(0, t) +
1

2
ρ2σ2

pt
2 + ρσpw

∗
I (t), (60)

where w∗
I (t) = wI(t)− σpt, and the expected rate of inflation is therefore given by

y(t) = y(0, t)− ρσ2
pt

(
1− 1

2
ρt

)
+ ρσpwI(t), (61)

with

y(0, t) = y∗(0, t) + σ2
p. (62)

Within the framework of this model, we can discuss the pricing procedure of an interest-

ing class of inflation-linked securities. Let us, therefore, consider a bond which pays at

time T the nominal amount

XT = F + F

[
1

h(s, s+ τ)
− 1

]
(t < s, s+ τ < T ), (63)

where F is the face value of the bond and the quantity 1
h(s,s+τ)

− 1 the reference index.

Since such securities are characterized by a terminal condition which is given by the

face value F multiplied by one plus the rate of return of h(t, T ), calculated on the period

from time s to time s + τ , they can be considered as a kind of contingent claims which

are partially self-immunizing against the risk of inflation. The price at time t can be

calculated according to the martingale representation in the following way

C(t,XT ) = FE∗
t

[
e−

∫ T
t r(u)du

h(s, s+ τ)

]
, (64)

where

h(t, s) =
h(0, s)

h(0, t)
exp

[
− ρ2σ2

p

st

2
(s− t)− ρσp(s− t)w∗

I (t)

]
. (65)

h(0, s) can be inferred from the initial discount function v(0, s) = b(0, s)h(0, s), where

b(0, s) accounts for the real part of the initial term structure. An explicit calculation,
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using normal random variables, shows that expression (64) simplifies to

C(t,XT ) = Fv(t, T )
h(t, s)

h(t, s+ τ)
eρ

2σ2
p[τ

2(s−t)−τ(T−s)(s−t)], (66)

so that the price of such a security is factorized in two terms. The first represents the

nominal price of a zero coupon bond with face value F , and the second accounts for

inflation risk reduction. The case s = t, τ = T − t is also significant, and the above

formula becomes

C(t, T ) = Fb(t, T ), (67)

which coincides with the price of a fully immunized security (see equation (48)).

5 Conclusions

The modeling procedure proposed in this paper may be viewed as a first insight toward

an arbitrage-free, multi-factor theory of the term structure of interest rates incorporating

the effects of uncertain inflation. Within this context, a stochastic generalization of the

Fisher equation has been derived and a practical example of application of the theory

discussed. The single good model can be considered as a first approximation to more so-

phisticated multi-good descriptions of the economy, in which the price of an opportunely

chosen basket of goods can used as reference index for the inflation process.

All the relevant equations are derived by requiring the absence of arbitrage profit

opportunities, nevertheless the followed procedure leaves open the question about the

possibility to include such models within the context of a general equilibrium model of

the economy.

A Appendix

Proof of Theorem 2.2.

It is easy to show that, by applying Ito’s lemma to expression (20), we obtain
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d[C(t,XT )/p(t)]

C(t,XT )/p(t)
=

[
r(t)− y(t) +

n∑
i=1

σci(t,XT )qi(t) +
n∑

i=1

σ2
pi(t) + (A.1)

−
n∑

i=1

σci(t,XT )σpi(t)

]
dt−

n∑
i=1

[
σci(t,XT )− σpi(t)

]
dwi(t),

where equations (19) and (3) have been used. By recalling equations (22) and (23), we

finally get

d[C(t,XT )/p(t)]

C(t,XT )/p(t)
= x(t)dt−

n∑
i=1

[
σci(t,XT )− σpi(t)

]
dw̄i(t). (A.2)

Since the diffusion coefficients in the above relation (A.2) belong to M2
w[0, T ], it follows

that the real interest rate discounted processes

R(t, T ) = e−
∫ t
0 x(u)du C(t,XT )

p(t)
, (A.3)

are martingales with respect to the real risk-neutral measure induced by the Brownian

motions transformation

dw̄i(t) = dwi(t)− q̄i(t)dt (i = 1, 2, ..., n). (A.4)
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