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Abstract

Bayesian approach for principal component analysis (PCA) is a novel

method to determine the number of dimensionality through using dif-

ferent prior probabilities. In common strategy one often equally selects

variances for the columns of mapping matrix by using the mixture priors.

In this article, we generalize this approach by using the mixture priors

with different variances in multivariate normal distribution. Further, we

employ an orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of values of linearly uncorrelated

variables. Estimations of principal component and number of effective

dimensionality are performed via Markov Chain Monte Carlo (MCMC)

algorithm.
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1 Introduction

Principal Component Analysis (PCA) is a dimensionality reduction model-

ing technique that transforms a set of process variables by rotating their axes

of representation [1, 2, 3, 4]. It has been successfully applied in many fields

such as, data compression, image processing, pattern recognition, data visual-

ization and so on [1, 2, 5, 6]. Probabilistic interpretation of PCA is proposed in

[1, 3, 4]. In probabilistic PCA the observed data is assumed a linear mapping

of the latent variable plus Gaussian error [2, 7, 8].

In PCA no external information about the data is utilized but with consid-

ering probabilistic PCA we can define a Bayesian model and put prior infor-

mation to it [7, 8, 9, 10]. So the problems in common PCA can be solved with

statistical inferential methods. The maximum likelihood method was proposed

in [1, 2, 3], which is not applicable for determining number of principal com-

ponents. Many investigations in determination of the number of appropriate

principal component have been done. [1] proposed a Bayesian approach with

using a hierarchical prior distribution over the mapping matrix for which each

column is assumed with zero mean normal distribution (for more details see,

[3, 4]). In this method after estimating the parameters, columns with small

variances are ignored, and the number of remaining columns is chosen as the

dimension of components. However it is unclear how small the variance can

be to ignore the corresponding columns of mapping matrix.

To get around this issue [2] has proposed the mixture priors for mapping

matrix. In their method the prior distribution of each column is mixture of zero

mean normal distribution and a discrete distribution that assign probability

one to point zero. In this paper, we define more general case of this mixture

prior in which the continuous part is a normal distribution that governed by

a q-dimensional vector of hyper parameters α = {α1, α2, ..., αq}. Indeed we

consider normal distributions with different variances for significant columns

of mapping matrix. Also posterior inferences of parameters will be obtain via

MCMC algorithm.

In the next Section, we review PCA and probabilistic PCA. In Section 3,

the Bayesian model of PCA is introduced. A simulation example is presented

in Section 4 and conclusion is given in Section 5.
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2 Review of PCA and Probabilistic PCA

2.1 Interpretation of PCA

Consider a data set T of observed d-dimensional data vectors T = {tn}

where n = {1, 2, 3, ..., N}. Common PCA is determined by first computing

the sample covariance matrix given by

S =
1

N

N
∑

n=1

(tn − t̄) (n − t̄)′ ,

where t̄ = N−1
∑N

n=1 tn is the sample mean. Next the eigenvectors ui and

eigenvalues λi of S are found such that Sui = λiui i = 1, 2, 3, ..., d. The

eigenvectors corresponding to the q largest eigenvalues (where q < d, for parsi-

monious representation) are retained and a reduced dimensionality representa-

tion of the data set is defined by Zn = U ′
q (tn − t̄), where Uq = {u1, u2, ..., uq}.

It can be easily shown that PCA corresponds to the linear projection of a

data set for which the retained variance is maximum and the sum of squares

reconstruction cost is minimized [5, 8].

A significant limitation of common PCA is that, it does not define any

probability model for the observed data.

2.2 Interpretation of Probabilistic PCA

Following [6], PCA can be formulated as the maximum likelihood solution

of a specific latent variable model. This model relates a d-dimensional vector

tn to a corresponding q-dimensional vector of latent variable

tn = Wxn + µ+ ε, (1)

where W is a d × q matrix that relates the two sets of variables, µ is a d-

dimensional mean vector, the latent variables {xn} are defined independent and

Gaussian with identity covariance matrix. The noise ε is zero mean Gaussian

with covariance matrix σ2Id.

Under model (1) the probability distribution of the observed variable tn

given xn is N (Wxn + µ, σ2Id). So, the elements of tn given the latent variable
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xn are independent. The marginal distribution of the observed variable is given

by

p (tn) =

∫

p (tn|xn) p (xn) dxn = N (µ,C) ,

where the covariance matrix C = WW ′ + σ2Id. The log probability of the

parameters under the observed data set T is

`
(

µ,W, σ2
)

= −
N

2

{

dln (2π) + ln|C|+ trace
(

C−1S
)}

,

where S is the sample covariance matrix. The maximum likelihood solution

for µ,W and σ2 is seen to be as follow;

µML = t̄n

WML = Uq

(

Λq − σ2Iq
) 1

2

σ2
ML =

1

d− q

d
∑

i=q+1

λi.

The posterior distribution of xn is given by using Bayes’rule

xn|tn ∼ N
(

M−1W ′ (tn − µ) , σ2M−1
)

,

where M = W ′W + σ2Iq.

Also the dimensionality reduction representation for observed data is consid-

ered as

〈xn〉 = M−1W ′ (tn − µ) n = 1, 2, ..., N.

The optimal reconstruction of the observed data is obtained by using pos-

terior mean of latent variable as follows

t̂n = W (W ′W )
−1

W ′tn.

[1, 3] introduced a hierarchical prior p (W |α) over the matrix W that governed

by a vector of hyper parameters α = {α1, α2, α3, ..., αq}. Also the dimensional-

ity of the latent space was assumed to its maximum possible value, q = d− 1.

In p (W |α), each αi controls the corresponding column in matrix W trough a

conditional Gaussian distribution of the form

p (W |α) =

q
∏

i=1

{

( αi

2π

) d
2

exp(−
1

2
αi||wi||

2)

}

, (2)
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where {Wi} are the columns of W . The latent space dimensionality also is

obtained as the number of large values in estimated elements of α , but it is

not clear that how large αi is.

In [2] a Bayesian model with mixture priors was applied for which solve

the problem [4]. Their proposed mixture prior was as

Wi|α, p ∼ (1− p) δ0 (wj) + P (1− δ0 (wi))N

(

0,
1

α
Id

)

, i = 1, 2, ..., q,

where

δ0 (wi) =

{

1 wi = 0,

0 wi 6= 0.

In this article we consider a fully Bayesian model and generalize [2] ap-

proach by using a mixture prior with specific variance in each column of map-

ping matrix W . Further a MCMC algorithm is applied for posterior inference

of parameters.

3 Bayesian Model of PCA

The main goal in probabilistic PCA is to determine the insignificant columns

ofW . In the other hand, whether or not wi is zero, by considering a continuous

prior for wi, the probability of wi = 0 become zero. Because of this problem

we use the below prior distribution over the columns of matrix W

wi|αi, p ∼ (1− p) δ0 (wi) + p (1− δ0 (wi))N

(

0,
1

αi

Id

)

, i = 1, 2, 3, ..., q.

In this distribution α = (α1, α2, α3, ..., αq) and p are hyper parameters, where
1
αi

(αi > 0) is the specific variance of column wi and p (0 < p < 1) is the

proportion of insignificant columns of matrix W . In what follows we adopt a

fully Bayesian model with assuming prior distribution for µ, σ2, p, α :

αi ∼ Gamma (aαi
, bα) , i = 1, 2, ..., q

p ∼ Beta (cp, dp)

µ|β ∼ N

(

0,
1

β
Id

)

β ∼ Gamma (aβ, bβ)

τ ∼ Gamma (aτ , bτ ) , where τ =
1

σ2
. (3)
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Note that we assume independence among the priors. If we assume all unknown

parameters of model as

Θ = {µ, β, τ, p, {wi; i = 1, 2, ..., q} , {αi; i = 1, 2, ..., q} , {xn; n = 1, 2, ..., N}} ,

then the joint posterior distribution over the parameters is given by

f (Θ| {tn}) =
f ({tn} |Θ) f (Θ)

f ({tn})

∝ f ({tn} |Θ) f (Θ)

∝
N
∏

n=1

{

( τ

2π

) d
2

exp
[

−
τ

2
(tn − µ−Wxn)

′ (tn − µ−Wxn)
]

}

×

q
∏

i=1

{

(1− p) δ0 (wi) + p (1− δ0 (wi))
( αi

2π

) d
2

exp
[

−
αi

2
w′

iwi

]

}

×
N
∏

n=1

{

(

1

2π

)
q

2

exp−
x′
nxn

2

}

×

(

β

2π

) d
2

exp

[

−
β

2
µ′µ

]

×pcp−1 (1− p)dp−1 ×

q
∏

i=1

{

α
aαi

−1

i exp (−bααi)
}

×τaτ−1 exp (−bτ )× βaβ−1 exp (−bββ) . (4)

In order to determine insignificancy of the columns of matrix W , we must

marginalized this model over wi which is analytically intractable a numeric ap-

proximation algorithm MCMC. One of the attractive methods for setting up

an MCMC algorithm is Gibbs sampling. The Gibbs sampler does this by suc-

cessively and repeatedly simulating from the conditional distributions of each

component given the other components. Also this procedure is particularly

useful where we have conditional conjugacy, so that the resulting conditional

distributions are from standard distributions.

3.1 Conditional Posterior Distributions of Gibbs Sam-

pling Procedure

The conditional posterior distribution of each parameter given all the other
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parameters given as follow

µ|others ∼ N

(

τ

nτ + β

N
∑

n=1

(tn −Wxn) ,
1

nτ + β
Id

)

τ |others ∼ Gamma

(

nd

2
+ aτ , bτ +

1

2

N
∑

n=1

(tn − µ−Wxn)
′ (tn − µ−Wxn)

)

xn|others ∼ N

(

M−1W ′ (tn − µ) ,
1

τ
M−1

)

β ∼ Gamma

(

d

2
+ aβ, bβ +

1

2
µ′µ

)

.

For the other parameters, corresponding conditional posterior distributions

are computed by considering two case wi = 0 , wi 6= 0. So the conditional

distribution of p can be derived as follow

• wi = 0 ⇒ p|others ∼ Beta (cp, dp + q) .

• wi 6= 0 ⇒ p|others ∼ Beta (cp + q, dp) .

By mixing these two cases the conditional posterior distribution is given as

p|others ∼ Beta

(

cp +

q
∑

i=1

γi, dp + q −

q
∑

i=1

γi

)

,

where γi =

{

1 wi 6= 0,

0 wi = 0.

Similarly the corresponding distribution for elements of hyper parameters

vector α is achieved as follow

• wi = 0 ⇒ αi ∼ Gamma (aαi
, bα) .

• wi 6= 0 ⇒ αi ∼ Gamma
(

aαi
+ ||wi||

2

2
, bα + d

2

)

.

Therefore

αi|others ∼ Gamma

(

aαi
+

γi||wi||
2

2
, bα +

γid

2

)

, i = 1, 2, ..., q.

The conditional posterior distribution of wj also can be derived in two

following steps;
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• In case where wi = 0

p (wi|others) =
p (t|αi, β, τ, µ,X,W (−i) , wi = 0)× p (wi = 0)

∫

p (t|αi, β, τ, µ,X,W ) dwi

. (5)

p (t|αi, β, τ, µ,X,W (−i) , wi = 0)× p (wi = 0) = (1− p)C1i, (6)

where C1i is :

( τ

2π

)nd
2

exp

{

−
τ

2

N
∑

n=1

(

tn −W (−i) xn(−i) − µ
)′ (

tn −W (−i) xn(−i) − µ
)

}

also

W (−i) = (W (1) ,W (2) , ...,W (i+ 1) , ...,W (q))

and

xn(−i) = (xn,1, xn,2, ..., xn,i+1, ..., xn,q)
′
.

The marginal distribution of wi from the joint distribution of observations

f ({tn} |Θ) is given by
∫

p (t|αi, β, τ, µ,X,W ) dwi = (1− p)C1i + pC2i, (7)

where C2i is
∫

wi 6=0

( τ

2π

)nd
2

exp

{

−
τ

2
(tn −Wxn − µ)′ (tn −Wxn − µ)

( αi

2π

) d
2

exp(−
w′

iwi

2
)

}

.

Substituting (6) and (7) in (5)

p (wi|others) =
C1i (1− p)

C1i (1− p) + C2ip
. (8)

• In case where wi 6= 0

p (wi|others) =
p (t|αi, β, τ, µ,X,W )× p (wi)
∫

p (t|αi, β, τ, µ,X,W ) dwi

∝ exp

{

−
τ

2

N
∑

n=1

(tn −Wxn − µ)′ (tn −Wxn − µ)

}

× exp
{

−
αi

2
w′

iwi

}

. (9)
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By using equation (tn − µ−Wxn) =
(

tn − µ−W (−i) xn(−i)

)

− wixni,

C2i = C1i

(

αi

ηi

) d
2

exp{
ηi

2
ξ′iξi},

and (9) derives as

p (wi|others) ∝ C1i ×

(

αi

ηi

) d
2

exp
{ηi

2
ξ′iξi

}

×N

(

ξi,
1

ηi
Id

)

∝ N

(

ξi,
1

ηi
Id

)

,

where ηi and ξi, are the forms

ηi = τ

N
∑

n=1

xni
2 + αi,

ξi =
τ

ηi

N
∑

n=1

xni

(

tn − µ−W (−i) xn(−i)

)

.

So the conditional posterior distribution of wi can be derived as

wi|others ∼ δ0 (wi) p
∗
i. + (1− δ0 (wi))N

(

ξi,
1

ηi
Id

)

,

where the posterior probability of wi = 0, p∗i. is

p∗i. = p (wi = 0|others)

=
C1i (1− p)

C1i (1− p) + C2ip

=







C1i (1− p) + pC1i

(

αi

ηi

) d
2

exp(ηi
2
ξ′iξi)

C1i (1− p)







−1

=

(

1 +
p

1− p

(

αi

ηi

) d
2

exp(
ηi

2
ξ′iξi)

)−1

, i = 1, 2, 3, ..., q.

Now by using a Gibbs sampling algorithm, random samples of Θ from (4)

can be driven.
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4 Simulation Study

We generate now a data set of 20 points in 10-dimensional space with µ = 0;

where the standard deviation is taking the values 1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.01,

0.02, 0.03, 0.04. By applying the mixture priors which are proposed in this

article, we run a Gibbs sampling algorithm in 40000 iterates, and discard

35000 samples. Then the average of remaining samples for each parameter have

been considered as it’s estimation. Note that, the dimensionality of principal

components is initially set to d− 1.

In this example the prior distribution of β and γ in (3) are defined as follows.

Since the results are not sensitive for different choice of cp and dp, a non

informative prior is used to p (cp = dp = 1). By considering aτ = 0.5 and

aα = (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.2, 1.5, 2.0); the simulations are carried out by

taking several values of bα = bτ = b. As it shown in Figure 4 and Table 1;

increasing b leads to decreasing of the variances of columns of matrix W and

increases the error variance.

Table 1: Estimation of posterior parameters given different values for b.

b p̂ q̂ σ̂2

0.10 0.56 5.00 1.25× 10−4

0.50 0.54 5.00 1.43× 10−4

1.00 0.51 5.00 1.75× 10−4

1.50 0.48 4.00 2.33× 10−4

2.00 0.45 4.00 3.02× 10−4

3.00 0.37 3.00 3.15× 10−4

Our data in this study has 5 components with large variance; this value

of the variance is achieved when the values of b are decreased. In addition,

we obtain the reconstruction of the original data and 5-dimensional principal

components. The image plots of original data, reconstruction data and prin-

cipal components are shown in Figure 1. The variability of error variance for

several sample size is checked in Figure 2 and Figure 3.

Posterior inferences about p, σ2 and variance of each column of matrix W

are investigated for different choice of parameters cp and dp. As it can be seen

in Figures 4 and 5; the results are not sensitive for different values of cp and

dp.
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Figure 1: Variability of error variance
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Figure 3: Hinton diagram of the mapping matrix

5 Conclusion

The main issue in PCA is to determine the number of effective dimension.

In common strategy, PCA does not apply any external information about the

data, since it is not based on the probability model [1, 3]. With regards to the

probabilistic for PCA, we can consider a Bayesian approach and utilize prior

information about the parameters of model. The Bayesian modeling frame-

work basically proves to be very exible, allowing simultaneous estimation of

model parameters, in particular in PCA [1, 3, 5]. Noting that the aforemen-

tioned abilities of the Bayesian modeling framework in PCA, the first Bayesian

method is introduced by [1, 3], with defining a continuous hierarchical prior

distribution over the mapping matrix.

In this view, we use the mixture priors to investigate the Bayesian PCA in

this paper. Specifically, we extend this method by introducing a mixture prior

for mapping matrix which the continuous part of it, for significant columns, is

Bishop’s hierarchical prior. Also the posterior inferences on the parameters of

model have been done via MCMC algorithm. In the procedure of the MCMC

algorithm, we realized that the error variance decreases by increasing the sam-
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Figure 4: Variability of p by using the different choice of cp, dp

1 2 3 4 5

3.
0

4.
0

5.
0

va
ria

nc
e 

of
 fi

rs
t c

ol
um

n

1 2 3 4 5

10
12

14

va
ria

nc
e 

of
 s

ec
on

d 
co

lu
m

n

1 2 3 4 5

15
17

19

va
ria

nc
e 

of
 th

ird
 c

ol
um

n

1 2 3 4 5

20
22

24

va
ria

nc
e 

of
 fo

ur
th

 c
ol

um
n

1 2 3 4 5

20
24

28

va
ria

nc
e 

of
 fi

fth
 c

ol
um

n

1 2 3 4 5

30
34

38

va
ria

nc
e 

of
 s

ix
th

 c
ol

um
n

1 2 3 4 5

30
34

38

va
ria

nc
e 

of
 s

ev
en

th
 c

ol
um

n

1 2 3 4 5

36
40

44

va
ria

nc
e 

of
 e

ig
ht

h 
co

lu
m

n

1 2 3 4 5

40
44

48

va
ria

nc
e 

of
 n

in
th

 c
ol

um
n
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ple size N . We obtained the posterior probability for insignificant columns of

mapping matrix. More important, our findings have shown that the results are

not sensitive for different values of cp and dp. This can be specifically proven by

the sensitivity analysis in further research. This might also be due to mixture

priors that we employed. In addition, the variability of posterior inferences

has been checked with several choices for parameters of defined priors.
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