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Abstract 

This paper investigates the forecasting ability of several volatility specifications 

that aim to quantify market risk. Using an options’ trading strategy on volatility 

the comparison is implemented in a dynamic approach, applying the standardized 

prediction error criterion. The empirical findings of the paper suggest that the 

SPEC criterion outperforms all volatility models that assume normality on the data 

and exhibits similar forecasting ability with most of the models that assume 

skewed distributions of asset returns. 

JEL classification numbers: G11, G13, G17 

Keywords: SPEC; option trading; straddle; market risk; volatility forecasting; 

Black-Scholes. 

 

1  Introduction 

Forecasting time series data and volatility has is one of the cornerstones for 

finance and for that reason has attracted the interest of researchers. While most of 

the research focuses on the determination of models based on the minimization of 

the mean squared error or the maximization of the likelihood, this paper focuses 
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on the maximization of the profitability of a hypothetical investor. This is 

motivated strongly by the work of Engle (1993) who applied a straddle technique 

with options that expire in one day and for which the payoff is directly linked with 

the volatility of the underlying asset. In that framework the maximization of a 

hypothetical investor’s payoff would indicate an optimal volatility forecasting 

model. 

The aim of this paper is the investigation of the optimum algorithm for choosing 

models, in terms of predictability power, for quantifying market risk. For that 

reason I examine the payoff of several volatility specifications that aim to forecast 

the payoff of a straddle options trading strategy. Among the volatility 

specification, which could be assumed as passive trading strategies on volatility, I 

also apply a dynamic approach that dictates a dynamic active trading approach 

according to which the volatility specification which is applied at each week is 

allowed to be different. 

The main findings of the paper are in favour of an active trading strategy 

according to which investors benefit from choosing alternative volatility models in 

each period. This dynamic approach results in a profitable payoff for these 

investors who obtain similar rewards with those investors who base their 

expectations on skewed distributions and complicated volatility specifications. 

The second chapter of the paper explains the simulation process of the necessary 

data, while the third one the methodology. The fourth chapter discusses the results 

and finally the fifth concludes the paper. 

 

2   Data 

For the purposes of the analysis of the paper two options are available; either to 

use real traded data or simulated data as was the case for Engle (1993) and 
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Degiannakis and Xekalaki (2005). Engle (1993) focused on the NYSE stock 

index simulating the corresponding option prices and applying many competitive 

models such as the MA variance in the squared residuals in order to forecast daily 

forecasts of volatility. While the former case (real data) offers a more realistic 

approach for developing forecasting criteria, the latter is more preferable as it 

overcomes several issues such as the autocorrelation of option prices, the bid-ask 

spread and the non-synchronous trading.  The option prices of the Athens 

Derivatives Exchange exhibit autocorrelations because traders have the 

opportunity to trade options at their closing price for a short period of time after 

the closing time of the Derivatives Exchange each day. Another limitation for 

using real data is that the execution of the options at the Athens Derivatives 

Exchange takes place every third Friday of each month, resulting in a single 

observation over a period of 20 days for options with maturity term of one day. 

This consequently is very likely to rise many econometric questions when 

applying GARCH models; see among others Drost and Nijman (1992). 

The data consists of daily spot prices for the ATHEX/FTSE-20 during the period 

form 03/01/2000 to 30/06/2005. The simulated option prices are derived from the 

Black-Scholes (1973) model assuming normality on our data: 
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St: Spot Prices at t, Κ: exercise price, σ: variance of the underlying asset, r: the 

risk free interest rate (Euribor), and τ: time to maturity. From the descriptive 

analysis of Figure 1 of the appendix, it seems that the Jarqua-Bera statistic casts 

doubt on the normality assumption mainly because of the leptokurtic and skewed 

distribution of asset returns. 

 

3  Methodology 

The future call and put option price at t+1, conditional on the available 

informational set up to t, with τ days to expiration (τ=T-t) is denoted with 
 

1|t t
C




 

and 
 

1|t t
P




 and can be quantified according to the B-S formula by the following 

equations: 
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Each passive strategy or agent adopts a forecast method for variance and trades 

options for a unique day investing 1€ on ATHEX/FTSE-20. Assuming that the 

option is at-the-money and that the exercise price is equal to St*exp(rt) then the 

price for for an option that expires in a day (τ=1) would become: 
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Then at expiration, the long straddle position that is the volatility trader would 

obtain a payoff equal to T T
S K         (8) 

Consequently, the payoff of the straddle long position at any t would be equal to: 
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t t
at the money S e            (9) 

The transaction between two agents (i and i*) is executed at the median bid/ask 
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Hence, whenever the i agent overestimates the future volatility compared to agent 

i*, then this agent (i) would overprice the option resulting at a long position 

trading position expecting a profit equal to: 
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This equation at expiration would become: 
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For the volatility forecasting process I use the GARCH family models with several 

extensions in order to account for the asymmetries on both the volatility 

specification and the distribution of the time series as shown in Table 1 of the 

appendix: 
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Adopting a GARCH(1,1) model, the one-step ahead conditional variance forecast 

equals: 



Vasilios Sogiakas                                                                                                    71 

 

   2
1| 0, 1, 1, 11

| | |t t t t tt t t t t t
h E h a a E E h  

             (16) 

which at expiration turns to: 

   2
1| 1 0 1 1

|T T T T T T
h E h a a E E h  

             (17) 

For increasing the accuracy of the volatility forecast I adopt also the 

APARCH(1,1) model using either symmetric distributions such as the Normal, the 

t-student and the GED or the skewed distribution of Giot and Laurent (2000) 

according to the following equations: 
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Following Engle (1993) we adopt the standardized prediction error criterion 

(SPEC) for choosing models. SPEC is defined as the sum of the squared 

deviations of forecasted and observed returns as shown below: 
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where burn: is the sample which is used for making in-sample forecasts, q: is the 

number of one-step-ahead in-sample forecasts that are used when applying the 

SPEC. As q decreases, then the investor’s flexibility for using different models is 

increased. At t (t=burn+k*q) according to SPEC the m
th

 model will be chosen that 

minimized the sum of the squared standardized one-step-ahead prediction errors. 

 

4  Empirical Findings 

The implementation of the straddle trading strategy with maturity of one day is 

presented in Figure 2 of the Appendix. There are 23 agencies and the payoffs are 

estimated for 74 weeks. According to this figure it is shown that the first ten 

agencies exhibit the higher payoffs. 

The SPEC criterion is applied for the examined series and it is represented in 

Figure 3 of the appendix. According to SPEC it is obvious that the rest agencies 

(10-23) are those that reward investors with the minimum prediction error. 

 

5  Conclusion 

This paper in strongly motivated by the work of Engle (1993) and investigates a 

model choice process that should be adopted when the predictive power matters 
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instead of the model fit per se. I applied the afore-mentioned criterion using data 

from a relatively small Stock Exchange, the Athens Stock Exchange. The 

importance of this choice is that during the examined time period the Greek 

economy experienced a major development because of the Athens 2004 Olympic 

Games that were accommodated at Greece, having attracted many investors 

during the first half of the first decade of this century. 

According to Figure 4, active trading on volatility which is the implication of 

adopting the SPEC criterion seems to be an important rule for maximizing the 

predictive power and thus the profitability of investors. This rule outperformed 

passive volatility trading strategies that are based on symmetric models, while it 

rewarded investors with high profitability similar to that of more advanced 

econometric approaches that account for asymmetries in the volatility and the 

returns’ distributions. 
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Appendix 

List of Tables 

Table 1. The definition of the applied volatility models. 

MODELS 

Model 1: GARCH(1,1)_AR(0)_Normal 

Model 2: GARCH(1,1)_AR(1)_Normal 

Model 3: GARCH(1,1)_AR(2)_Normal 

Model 4: GARCH(1,2)_AR(0)_Normal 

Model 5: GARCH(2,1)_AR(0)_Normal 

Model 6: GARCH(2,2)_AR(0)_Normal 

Model 7: GARCH(1,2)_AR(1)_Normal 

Model 8: GARCH(2,1)_AR(1)_Normal 

Model 9: GARCH(2,2)_AR(1)_Normal 

Model 10: GARCH(1,2)_AR(2)_Normal 

Model 11: GARCH(2,1)_AR(2)_Normal 

Model 12: GARCH(2,2)_AR(2)_Normal 

Model 13: GARCH(1,1)_AR(0)_T-Student 

Model 14: GARCH(1,1)_AR(2)_T-Student 

Model 15: AP-GARCH(1,1)_AR(0)_T-Student 

Model 16: AP-GARCH(1,1)_AR(1)_T-Student 

Model 17: AP-GARCH(1,1)_AR(2)_T-Student 

Model 18: GARCH(2,2)_AR(0)_T-Student 

Model 19: GARCH(2,2)_AR(1)_T-Student 

Model 20: GARCH(1,1)_AR(0)_GED 

Model 21: GARCH(1,1)_AR(0)_Skewed-T-Student 

Model 22: GARCH(1,1)_AR(1)_Skewed-T-Student 

Model 23: AP-GARCH(1,1)_AR(0)_Skewed-T-Student 
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Figure 1. Histogram of the ATHEX/FTSE-20 returns 
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Figure 2. Cumulative weekly payoff for the different volatility forecasting approaches. 
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Figure 3. SPEC criterion over the whole period for each volatility model. 
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Figure 4. Cummulative annual profitability of the different volatility specifications. 


