
Journal of Computations & Modelling, vol.1, no.1, 2011, 115-130

ISSN: 1792-7625 (print), 1792-8850 (online)

International Scientific Press, 2011

Lainiotis filter implementation

via Chandrasekhar type algorithm

Nicholas Assimakis1 and Maria Adam2

Abstract

An implementation of the time invariant Lainiotis filter using a
Chandrasekhar type algorithm is presented and compared to the clas-
sical one. The size of model determines which algorithm is faster; a
method is proposed to a-priori decide, which implementation is faster.
In the infinite measurement noise case, the proposed method is always
faster than the classical one.

Mathematics Subject Classification : 93E11, 93C55, 68Q25

Keywords: Lainiotis filter, Chandrasekhar algorithm

1 Introduction

Estimation plays an important role in many fields of science. The estimation

problem has been solved by means of a recursive algorithm based on Riccati

1 Department of Electronics, Technological Educational Institute of Lamia, Lamia 35100,
Greece, e-mail: assimakis@teilam.gr

2 Department of Computer Science and Biomedical Informatics, University of Central
Greece, Lamia 35100, Greece, e-mail: madam@ucg.gr

Article Info: Revised : July 14, 2011. Published online : August 31, 2011

116 Lainiotis filter implementation via Chandrasekhar type algorithm

type difference equations. In the last decades, several authors have proposed

faster algorithms to solve the estimation problems by substituting the Riccati

equations by a set of Chandrasekhar type difference equations [1, 5, 7, 8, 9].

The discrete time Lainiotis filter [6] is a well known algorithm that solves the

estimation/filtering problem. In this paper, we propose an implementation

of the time invariant Lainiotis filter using Chandrasekhar type recursive al-

gorithm to solve the estimation/filtering problem. It is established that the

classical and the proposed implementations are equivalent with respect to their

behavior. It is also developed a method to a-priori (before the Lainiotis filter’s

implementation) decide which implementation is faster. This is very important

due to the fact that, in most real-time applications, it is essential to obtain

the estimate in the shortest possible time.

The paper is organized as follows: In Section 2 the classical implemen-

tation of Lainiotis filter is presented. In Section 3 the Chandrasekhar type

algorithm is presented and the proposed implementation of Lainiotis filter via

Chandrasekhar type algorithm is introduced. In Section 4 the computational

requirements both implementations of Lainiotis filter are established and com-

parisons are carried out. It is pointed out that the proposed implementation

may be faster than the classical one. In addition, a rule is established in order

to decide which implementation is faster.

2 Classical Implementation of Lainiotis filter

The estimation problem arises in linear estimation and is associated with

time invariant systems described for k ≥ 0 by the following state space equa-

tions:

xk+1 = Fxk + wk

zk = Hxk + vk

where xk is the n × 1 state vector at time k, zk is the m × 1 measurement

vector, F is the n×n system transition matrix, H is the m×n output matrix,

{wk} and {vk} are independent Gaussian zero-mean white and uncorrelated

random processes, respectively, Q is the n × n plant noise covariance matrix,

R is the m × m measurement noise covariance matrix and x0 is a Gaussian

N. Assimakis and M. Adam 117

random process with mean x̄0 and covariance P0. In the sequel, consider that

Q,R are positive definite matrices and denote Q, R > O.

The filtering problem is to produce an estimate at time L of the state vector

using measurements till time L, i.e. the aim is to use the measurements set

{z1, z2, . . . , zL} in order to calculate an estimate value xL|L of the state vector

xL. The discrete time Lainiotis filter [6] is a well known algorithm that solves

the filtering problem. The estimation xk|k and the corresponding estimation

error covariance matrix Pk|k at time k are computed by the following equations,

consisting the Lainiotis filter,

Pk+1|k+1 = Pn + Fn

[
I + Pk|kOn

]−1
Pk|kFT

n (1)

xk+1|k+1 = Fn

[
I + Pk|kOn

]−1
xk|k +

+ (Kn + Fn

[
I + Pk|kOn

]−1
Pk|kKm)zk+1 (2)

for k ≥ 0, with initial conditions P0|0 = P0 and x0|0 = x̄0, where the following

constant matrices are calculated off-line:

A =
[
HQHT + R

]−1
(3)

Kn = QHT A (4)

Km = F T HT A (5)

Pn = Q−KnHQ = Q−QHT AHQ (6)

Fn = F −KnHF = F −QHT AHF (7)

On = KmHF = F T HT AHF (8)

with Fn is a n × n matrix, while Kn,Km are n × m matrices. The n × n

matrices Pn and On are symmetric. Also, the m × m matrix HQHT + R is

nonsingular, since R > O, which means that no measurement is exact; this

is reasonable in physical problems. Moreover, since Q, R > O, A is a well

defined m×m symmetric and positive definite matrix as well as On is positive

definite. Furthermore, since Q > O using the matrix inversion Lemma3 and

substituting the matrix A by (3) in (6) we may rewrite Pn as

Pn = Q−QHT
[
HQHT + R

]−1
HQ =

[
Q−1 + HT R−1H

]−1
(9)

3Let A,C be nonsingular matrices, then holds:

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1

118 Lainiotis filter implementation via Chandrasekhar type algorithm

from which it is clear that the symmetric Pn is a positive definite matrix.

Equation (1) is the Riccati equation emanating from Lainiotis filter.

In the case of infinite measurement noise (R → ∞), we have A = O,

Kn = O, Km = O, Pn = Q, Fn = F , On = O and the Lainiotis filter becomes:

Pk+1|k+1 = Pn + FnPk|kFT
n = Q + FPk|kF

T (10)

xk+1|k+1 = Fnxk|k = Fxk|k (11)

Equation (10) is the Lyapunov equation emanating from Lainiotis filter.

3 Implementation of Lainiotis filter via Chan-

drasekhar type algorithm

For time invariant systems, it is well known [2] that if the signal process model

is asymptotically stable (i.e. all eigenvalues of F lie inside the unit circle),

then there exists a steady state value P of the estimation error covariance

matrix. The steady state solution P is calculated by recursively implementing

the Riccati equation emanating from Lainiotis filter (1) for k = 0, 1, . . ., with

initial condition P0|0 = P0. The steady state or limiting solution of the Riccati

equation is independent of the initial condition [2]. The discrete time Riccati

equation emanating from the Lainiotis filter equations has attracted enormous

attention. In view of the importance of the Riccati equation, there exists

considerable literature on its recursive solutions [4, 7], concerning per step or

doubling algorithms. The Chandrasekhar type algorithm has been used [7, 8]

to solve the Riccati equation (1). The Chandrasekhar type algorithm consists

of the recursion

Pk+1|k+1 = Pk|k + YkSkY
T
k

using recursions for the suitable quantities Yk and Sk. Hence, the algorithm is

based on the idea of defining the difference equation

δPk = Pk+1|k+1 − Pk|k, (12)

and its factorization

δPk = YkSkY
T
k , (13)

N. Assimakis and M. Adam 119

where Yk is an n× r matrix and Sk is an r × r matrix, with

0 ≤ r = rank(δP0) ≤ n.

For every k = 0, 1, . . . , denoting

Ok = Pk|k +O−1
n (14)

we note that Ok is a n× n symmetric and positive definite matrix due to the

presence of On, (recalling that On in (8) is a positive definite matrix and Pk|k

is a positive semidefinite as estimation error covariance matrix). Also, since

Ok is a nonsingular matrix for every k = 0, 1, . . . , the equation (14) may be

written:

Pk|kO
−1
k = I −O−1

n O−1
k (15)

Using the above notations and substituting the equations of the Lainiotis

filter by a set of Chandrasekhar type difference equations, a recursive filtering

algorithm is proposed, as established in the following theorem, which presents

computational advantage compared to the classical filtering algorithm, (see 4

and 5 statements in the next Section 4).

Theorem 3.1. Let the measurement noise R be a positive definite matrix, the

plant noise Q be a positive definite matrix and Pk|k is a nonsingular matrix,

for every k = 0, 1, 2, . . . The set of the following recursive equations compose

the new algorithm for the solution of the discrete time Lainiotis filter,

Ok+1 = Ok + YkSkY
T
k (16)

Yk+1 = FnO−1
n O−1

k Yk (17)

Sk+1 = Sk − SkY
T
k O−1

k+1YkSk (18)

Pk+1|k+1 = Pk|k + YkSkY
T
k (19)

xk+1|k+1 = FnO−1
n O−1

k xk|k +
(
Kn + FnO−1

n O−1
k Pk|kKm

)
zk+1, (20)

with initial conditions:

P0|0 = P0

x0|0 = x̄0

O0 = P0 +O−1
n (21)

Y0S0Y
T
0 = Pn + Fn[I + P0On]−1P0FT

n − P0 (22)

where Fn,On,Kn,Km,Pn are the matrices in (3)-(8).

120 Lainiotis filter implementation via Chandrasekhar type algorithm

Proof. Combining (14) and (12) we write

Ok+1 = Pk+1|k+1 +O−1
n = Pk+1|k+1 + Ok − Pk|k = Ok + δPk,

i.e., for every k = 0, 1, 2, . . . , holds

δPk = Ok+1 −Ok, (23)

in which substituting δPk by (13) the recursion equation in (16) is obvious.

Moreover, using elementary algebraic operations and properties we may write

M + N = N(M−1 + N−1)M, M−1 −N−1 = N−1(N −M)M−1, (24)

when M, N are n× n nonsingular matrices, as well as[
I + Pk|kOn

]−1
Pk|k =

[
Pk|k(P

−1
k|k +On)

]−1

Pk|k = [P−1
k|k +On]−1, (25)

due to the nonsingularity of Pk|k for every k = 0, 1, Combining (12), (1),

(25), the first equality in (24), (14) and (15), we derive:

δPk+1 = Pk+2|k+2 − Pk+1|k+1

= Fn

(
[I + Pk+1|k+1On]−1Pk+1|k+1 − [I + Pk|kOn]−1Pk|k

)
FT

n

= Fn

(
[P−1

k+1|k+1 +On]−1 − [P−1
k|k +On]−1

)
FT

n

= Fn

([
On(Pk+1|k+1 +O−1

n)P−1
k+1|k+1

]−1

−
[
On(Pk|k +O−1

n)P−1
k|k

]−1
)
FT

n

= Fn

(
Pk+1|k+1[Pk+1|k+1 +O−1

n]−1O−1
n − Pk|k[Pk|k +O−1

n]−1O−1
n

)
FT

n

= Fn

(
Pk+1|k+1[Pk+1|k+1 +O−1

n]−1 − Pk|k[Pk|k +O−1
n]−1

)
O−1

n FT
n

= Fn

(
Pk+1|k+1O

−1
k+1 − Pk|kO

−1
k

)
O−1

n FT
n

= FnO−1
n

(
O−1

k −O−1
k+1

)
O−1

n FT
n

Using the second equality of (24) and (23) the last equation may be written

as:

δPk+1 = FnO−1
n O−1

k+1 (Ok+1 −Ok) O−1
k O−1

n FT
n

= FnO−1
n

(
O−1

k Ok

)
O−1

k+1 (δPk) O−1
k O−1

n FT
n

= FnO−1
n O−1

k (Ok+1 − δPk) O−1
k+1 (δPk) O−1

k O−1
n FT

n

= FnO−1
n O−1

k (δPk) O−1
k O−1

n FT
n −FnO−1

n O−1
k (δPk) O−1

k+1 (δPk) O−1
k O−1

n FT
n

N. Assimakis and M. Adam 121

From (13) the last equation yields

δPk+1 = FnO−1
n O−1

k YkSkY
T
k O−1

k O−1
n FT

n −FnO−1
n O−1

k YkSkY
T
k O−1

k+1YkSkY
T
k O−1

k O−1
n FT

n

in which setting the matrix Yk+1 = FnO−1
n O−1

k Yk by (17) immediately arises

δPk+1 = Yk+1SkY
T
k+1 − Yk+1SkY

T
k O−1

k+1YkSkY
T
k+1. (26)

By (13) we have δPk+1 = Yk+1Sk+1Y
T
k+1, thus the equation in (26) may be

formulated as :

Yk+1Sk+1Y
T
k+1 = Yk+1

(
Sk − SkY

T
k O−1

k+1YkSk

)
Y T

k+1

Multiplying with Y T
k+1 on the left and Yk+1 on the right the last equality the

recursion equation in (18) is derived.

Furthermore, rewriting xk+1|k+1 in (2) with different way and due to (14)

we conclude

xk+1|k+1 = FnO−1
n On

[
I + Pk|kOn

]−1
xk|k +

+
(
Kn + FnO−1

n On

[
I + Pk|kOn

]−1
Pk|kKm

)
zk+1

= FnO−1
n

[
(I + Pk|kOn)O−1

n

]−1
xk|k +

+
(
Kn + FnO−1

n

[
(I + Pk|kOn)O−1

n

]−1
Pk|kKm

)
zk+1

= FnO−1
n

[
Pk|k +O−1

n

]−1
xk|k +

(
Kn + FnO−1

n

[
Pk|k +O−1

n

]−1
Pk|kKm

)
zk+1

= FnO−1
n O−1

k xk|k +
(
Kn + FnO−1

n O−1
k Pk|kKm

)
zk+1

showing thus the equation (20).

Moreover, P0|0 = P0 and x0|0 = x̄0 are given as the initial conditions of

the problem; by (14) O0 is computed for k = 0 and the matrices Y0, S0 are

computed by the factorization of the matrix Pn + Fn[I + P0On]−1P0FT
n − P0

in (22) in order to used as initial conditions.

Remark 3.1. 1. For the boundary values of r = rank(δP0) we note that:

• If r = 0, then, from (12) arises that the estimation covariance

matrix remains constant, i.e. Pk|k = P0, and equation (23) yields

Ok = O0, for every k = 0, 1, 2, . . . Thus the algorithm of Theorem 3.1

computes iteratively only the estimation xk+1|k+1 taking the form:

xk+1|k+1 = FnO−1
n O−1

0 xk|k +
(
Kn + FnO−1

n O−1
0 P0Km

)
zk+1

122 Lainiotis filter implementation via Chandrasekhar type algorithm

• If r = n and P0|0 = P0 = O, then we are able to use the initial

conditions Y0 = I and S0 = Pn.

2. For the zero initial condition P0|0 = P0 = O, by (1) we derive P1|1 = Pn;

recalling that by (9) holds Pn > O, it is evident that for every k = 1, 2, . . .

arises Pk|k > O, that guarantees Pk|k be a nonsingular matrix. Hence

Theorem 3.1 is applicable for initial condition P0|0 = P0 = O; in this case

by (21)-(22) we are able to use the following initial conditions: O0 = O−1
n

and Y0S0Y
T
0 = Pn.

3.1 Infinite measurement noise R →∞

In the following, the special case of infinite measurement noise is presented. In

this case Pn = Q, Fn = F and On = O, then the Riccati equation (1) becomes

the Lyapunov equation (10). Using (12) and combining (10) with (13) we have

δPk+1 = Pk+2|k+2 − Pk+1|k+1 = F
(
Pk+1|k+1 − Pk|k

)
F T = F (δPk) F T

= FYkSkY
T
k F T ,

where setting Yk+1 = FYk the above equality is formulated Yk+1Sk+1Y
T
k+1 =

δPk+1 = Yk+1SkY
T
k+1 and after some algebra arises :

Sk+1 = Sk

Since the last equality of the matrices holds for every k = 1, 2, . . . , without

loss of generality, we consider an arbitrary r × r symmetric matrix

Sk = S, (27)

with rank(S) = r and 0 < r ≤ n. Thus, using (19), (11) and (27) the following

filtering algorithm, which is based on the Chandrasekhar type algorithm, is

established.

Yk+1 = FYk

Pk+1|k+1 = Pk|k + YkSY T
k

xk+1|k+1 = Fxk|k,

and with initial conditions:

P0|0 = P0, x0|0 = x̄0,

Y0SY T
0 = Q + FP0F

T − P0

N. Assimakis and M. Adam 123

Since in (27) the matrix S can be arbitrarily chosen, we propose as S the r× r

identity matrix; thus we are able to establish the proposed algorithm, which

is formulated in the next theorem.

Theorem 3.2. Let R be the infinite measurement noise (R → ∞), the plant

noise Q be a positive definite matrix and F be a transition matrix. The set of

the following recursive equations compose the algorithm for the solution of the

discrete time Lainiotis filter, for k = 1, 2, . . . ,

Yk+1 = FYk (28)

Pk+1|k+1 = Pk|k + YkY
T
k (29)

xk+1|k+1 = Fxk|k, (30)

with initial conditions:

P0|0 = P0, x0|0 = x̄0,

Y0Y
T
0 = Q + FP0F

T − P0 (31)

Remark 3.2. In the special case P0|0 = P0 = O, then equation (31) becomes

Y0Y
T
0 = Q.

4 Computational comparison of algorithms

The two implementations of the Lainiotis filter presented above are equiv-

alent with respect to their behavior: they calculate theoretically the same

estimates, due to the fact that equations (1)-(2) are equivalent to equations in

Theorem 3.1 (i.e. (16)-(20)) and equations (10)-(11) are equivalent to equa-

tions (28)-(30) for the case of infinite measurement noise. Then, it is reason-

able to assume that both implementations of the Lainiotis filter compute the

estimate value xL|L of the state vector xL, executing the same number of re-

cursions. Thus, in order to compare the algorithms, we have to compare their

per recursion calculation burden required for the on-line calculations; the cal-

culation burden of the off-line calculations (initialization process) is not taken

into account.

The computational analysis is based on the analysis in [3]: scalar opera-

tions are involved in matrix manipulation operations, which are needed for the

implementation of the filtering algorithms. Table 1 summarizes the calculation

burden of needed matrix operations.

124 Lainiotis filter implementation via Chandrasekhar type algorithm

Table 1. Calculation burden of matrix operations

Matrix Operation Calculation Burden

A(n×m) + B(n×m) = C(n×m) nm

A(n× n) + B(n× n) = S(n× n) S : symmetric 1
2
(n2 + n)

I(n× n) + A(n× n) = B(n× n) I : identity n

A(n×m) ·B(m× k) = C(n× k) 2nmk − nk

A(n×m) ·B(m× n) = S(n× n) S : symmetric n2m + nm− 1
2
(n2 + n)

[A(n× n)]−1 = B(n× n) 1
6
(16n3 − 3n2 − n)

The per recursion calculation burden of the Lainiotis filter implementations

are summarized in Table 2. The details are given in the Appendix.

Table 2. Per recursion calculation burden of algorithms

Implementation Noise Per recursion calculation burden

Classical R > O CBc,1 = 1
6
(64n3 − 4n) + 2n2m + 2nm

Classical R →∞ CBc,2 = 3n3 + 2n2 − n

Proposed R > O
CBp,1 = 1

6
(56n3 − 3n2 − 5n) + 3nr2

− 2nr + 7n2r + 2n2m + 2nm

Proposed R →∞ CBp,2 = 3n2r + 2n2 − n

From Table 2, we derive the following conclusions:

1. The per recursion calculation burden of the classical implementation de-

pends on the state vector dimension n.

2. The per recursion calculation burden of the proposed implementation

depends on the state vector dimension n and on r = rank(δP0).

3. Concerning the non-infinite measurement noise case (R > O) and defin-

ing q(n, r) = CBc,1 − CBp,1, from Table 2 the respective calculation

burdens yield the relation:

q(n, r) =
1

6
(8n3 + 3n2 + n)− 3nr2 + 2nr − 7n2r (32)

From Remark 3.1 the case r = 0 gives degenerated algorithm; thus con-

sider r ≥ 1 we investigate two cases : (a) r = n, and (b) r < n.

(a) 1 ≤ r = n. In this case, it is obvious that q(n, n) = 1
6
(−52n3 +

15n2 + n) and since q(n, n) is a decreasing function, we compute

q(n, n) ≤ q(1, 1) = −6 < 0. Hence, if r = n, then the classical

implementation is faster than the proposed one.

N. Assimakis and M. Adam 125

(b) 1 ≤ r < n. In this case, we rewrite the equality in (32) as

q(n, r) =
n

6
(−18r2 + (−42n + 12)r + 8n2 + 3n + 1) =

n

6
f(r, n),(33)

with f(r, n) = −18r2+(−42n+12)r+8n2+3n+1. The discriminant

of f(r, n) is

∆(n) = 2340n2 − 792n + 216 > 0,

and its zeros are :

r1(n) =
−42n + 12−

√
∆(n)

36
, r2(n) =

−42n + 12 +
√

∆(n)

36
(34)

Hence, the factorization of f(r, n) is f(r, n) = −18(r − r1(n))(r −
r2(n)), thus, the equality of q(n, r) in (33) can been written as

q(n, r) = −3n(r − r1(n))(r − r2(n)). (35)

Also, it is easily proved that for n = 1, 2, . . . holds
√

∆(n) > 42n−
12, from which immediately arises r1(n) < 0 and r2(n) > 0; thus,

due to the fact r ≥ 1, it is obvious

r − r1(n) > 0.

Consequently, in (35) the sign of q(n, r) depends on the sign of

r − r2(n), with r2(n) in (34), i.e., the choice of implementation of

the suitable algorithm is related to the comparison of quantities

r, r2(n);

• if r > r2(n) ⇒ q(n, r) < 0, thus the classical implementation is

faster than the proposed one.

• if r < r2(n) ⇒ q(n, r) > 0, thus the proposed implementation

is faster than the classical one.

4. Figure 1 depicts the relation between n and r that may hold in order to

decide, which implementation is faster. In fact r is plotted as function of

n using r2(n) in (34). Then, we are able to establish the following Rule of

Thumb: the proposed Lainiotis filter implementation via Chandrasekhar

type algorithm is faster than the classical implementation if the following

relation holds:

r < 0.18n (36)

126 Lainiotis filter implementation via Chandrasekhar type algorithm

Figure 1: Proposed algorithm may be faster than the classical one.

Thus, we are able to choose in advance the implementation of the faster

algorithm comparing only the quantities r and n by (36).

5. Concerning the infinite measurement noise case (R → ∞), the calcu-

lation burden of the classical implementation is greater than or equal

to the calculation burden of the proposed implementation; the equality

holds for r = n. Thus, the proposed implementation is faster than the

classical one.

ACKNOWLEDGEMENTS. The authors are deeply grateful to referees for

suggestions that have considerably improved the quality of the paper.

References

[1] Abdelhakim Aknouche and Fayçal Hamdi, Calculating the autocovari-

ances and the likelihood for periodic V ARMA models, Journal of Statis-

tical Computation and Simulation, 79(3), (2009), 227-239.

[2] B.D.O. Anderson, J.B. Moore, Optimal Filtering, Prentice Hall inc., 1979.

[3] N. Assimakis, M. Adam, Discrete time Kalman and Lainiotis filters com-

parison, Int. Journal of Mathematical Analysis (IJMA), 1(13-16), (2007),

635-659.

[4] N.D. Assimakis, D.G. Lainiotis, S.K. Katsikas, F.L. Sanida, A survey of

recursive algorithms for the solution of the discrete time Riccati equation,

Nonlinear Analysis, Theory, Methods and Applications, 30, (1997), 2409-

2420.

[5] J.S. Baras and D.G. Lainiotis, Chandrasekhar algorithms for linear time

varying distributed systems, Information Sciences, 17(2), (1979), 153-167.

[6] D.G. Lainiotis, Discrete Riccati Equation Solutions: Partitioned Algo-

rithms, IEEE Transactions on AC, AC-20, (1975), 555-556.

N. Assimakis and M. Adam 127

[7] D.G. Lainiotis, N.D. Assimakis, S.K. Katsikas, A new computationally

effective algorithm for solving the discrete Riccati equation, Journal of

Mathematical Analysis and Applications, 186(3), (1994), 868-895.

[8] S. Nakamori, A. Hermoso-Carazo, J. Jiménez-López and J. Linares-Pérez,

Chandrasekhar-type filter for a wide-sense stationary signal from uncer-

tain observations using covariance information, Applied Mathematics and

Computation, 151, (2004), 315-325.

[9] S. Nakamori, Chandrasekhar-type recursive Wiener estimation technique

in linear discrete-time stochastic systems, Applied Mathematics and Com-

putation, 188(2), (2007), 1656-1665.

128 Lainiotis filter implementation via Chandrasekhar type algorithm

Appendix

Calculation burdens of algorithms

A Measurement noise is a positive definite ma-

trix (R > O)

A.1 Classical implementation of Lainiotis filter

Matrix Operation Matrix Dimensions
Calculation

Burden

Pk|kOn (n× n) · (n× n) 2n3 − n2

I + Pk|kOn (n× n) + (n× n)‡ n

[I + Pk|kOn]−1 n× n 1
6(16n3 − 3n2 − n)

[I + Pk|kOn]−1Pk|k (n× n) · (n× n)∗ n3 + 1
2(n2 − n)

Fn[I + Pk|kOn]−1Pk|k (n× n) · (n× n) 2n3 − n2

Fn[I + Pk|kOn]−1Pk|kFT
n (n× n) · (n× n)∗ n3 + 1

2(n2 − n)

Pk+1|k+1 = Pn + Fn[I + Pk|kOn]−1Pk|kFT
n (n× n) + (n× n)∗ 1

2(n2 + n)

Fn[I + Pk|kOn]−1Pk|kKm (n× n) · (n×m) 2n2m− nm

Kn + Fn[I + Pk|kOn]−1Pk|kKm (n×m) + (n×m) nm(
Kn + Fn[I + Pk|kOn]−1Pk|kKm

)
zk+1 (n×m) · (m× 1) 2nm− n

Fn[I + Pk|kOn]−1 (n× n) · (n× n) 2n3 − n2

Fn[I + Pk|kOn]−1xk|k (n× n) · (n× 1) 2n2 − n

xk+1|k+1 = Fn[I + Pk|kOn]−1xk|k +
+

(
Kn + Fn[I + Pk|kOn]−1Pk|kKm

)
zk+1

(n× 1) + (n× 1) n

Total CBc,1 = 1
6(64n3 − 4n) + 2n2m + 2nm

‡ I identity matrix ∗ symmetric matrix

N. Assimakis and M. Adam 129

A.2 Proposed implementation via Chandrasekhar type

algorithm

Matrix Operation Matrix Dimensions
Calculation

Burden

YkSk (n× r) · (r × r) 2nr2 − nr

YkSkY
T
k (n× r) · (r × n)∗ n2r + nr − 1

2(n2 + n)

Ok+1 = Ok + YkSkY
T
k (n× n) + (n× n)∗ 1

2(n2 + n)

O−1
k n× n 1

6(16n3 − 3n2 − n)

O−1
k Yk (n× n) · (n× r) 2n2r − nr

Yk+1 = FnO−1
n O−1

k Yk (n× n) · (n× r) 2n2r − nr

O−1
k+1 n× n 1

6(16n3 − 3n2 − n)

O−1
k+1YkSk (n× n) · (n× r) 2n2r − nr

SkY
T
k O−1

k+1YkSk (r × n) · (n× r)∗ r2n + rn− 1
2(r2 + r)

Sk+1 = Sk − SkY
T
k O−1

k+1YkSk (r × r) + (r × r)∗ 1
2(r2 + r)

Pk+1|k+1 = Pk|k + YkSkY
T
k (n× n) + (n× n)∗ 1

2(n2 + n)

FnO−1
n O−1

k (n× n) · (n× n) 2n3 − n2

FnO−1
n O−1

k xk|k (n× n) · (n× 1) 2n2 − n

FnO−1
n O−1

k Pk|k (n× n) · (n× n) 2n3 − n2

FnO−1
n O−1

k Pk|kKm (n× n) · (n×m) 2n2m− nm

Kn + FnO−1
n O−1

k Pk|kKm (n×m) + (n×m) nm(
Kn + FnO−1

n O−1
k Pk|kKm

)
zk+1 (n×m) · (m× 1) 2nm− n

xk+1|k+1 = FnO−1
n O−1

k xk|k +
+

(
Kn + FnO−1

n O−1
k Pk|kKm

)
zk+1

(n× 1) + (n× 1) n

Total CBp,1 = 1
6(56n3 − 3n2 − 5n) + 3nr2 − 2nr + 7n2r + 2n2m + 2nm

∗ symmetric matrix

130 Lainiotis filter implementation via Chandrasekhar type algorithm

B Infinite measurement noise R →∞

B.1 Classical implementation of Lainiotis filter

Matrix Operation Matrix Dimensions
Calculation

Burden

FPk|k (n× n) · (n× n) 2n3 − n2

FPk|kF
T (n× n) · (n× n)∗ n3 + 1

2
(n2 − n)

Pk+1|k+1 = Q + FPk|kF
T (n× n) + (n× n)∗ 1

2
(n2 + n)

xk+1|k+1 = Fxk|k (n× n) · (n× 1) 2n2 − n

Total CBc,2 = 3n3 + 2n2 − n
∗ symmetric matrix

B.2 Proposed implementation via Chandrasekhar type

algorithm

Matrix Operation Matrix Dimensions
Calculation

Burden

Yk+1 = FYk (n× n) · (n× r) 2n2r − nr

YkY
T
k (n× r) · (r × n)∗ n2r + nr − 1

2
(n2 + n)

Pk+1|k+1 = Pk|k + YkY
T
k (n× n) + (n× n)∗ 1

2
(n2 + n)

xk+1|k+1 = Fxk|k (n× n) · (n× 1) 2n2 − n

Total CBp,2 = 3n2r + 2n2 − n
∗ symmetric matrix

