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Abstract 

Although there has been increased interest in the application of the stable and 

geometric stable distributions in economics and finance, further application has 

been limited because their probability density function does not have an explicit 

solution. In this paper, we present three analytic approximation methods — 

homotopy perturbation method, Adomian decomposition method, and variational 

iteration method — to resolve this problem. 
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1  Introduction 

The family of stable distributions has received considerable interest by 

financial economists since the major empirical work in the early 1960s by 

Mandelbrot [20] and Fama [4,5] where asset return distributions were found to be 

better described as a stable non-Gaussian distribution (also referred to as the 

Paretian distribution).  Subsequently, empirical evidence reported by other 

researchers also suggests that some important economic variables such as stock 

price changes, interest rate changes, currency changes, and price expectations can 

be better described by stable non-Gaussian distributions (see [29]). The 

geometric-stable (henceforth geo-stable) distribution is particularly appropriate in 

modeling heavy-tailed (See [16]), when the variable of interest may be thought of 

as a result of a random number of independent innovations. One of the stylized 

facts observed for asset returns is that they are heavy tailed.  

The stable distribution is described by four parameters: (1) α, which 

determines the tail weight or the distribution’s kurtosis with 0<α≤2; (2) β, which 

determines the distribution’s skewness; (3) σ, a scale parameter, and; (4) μ, a 

location parameter. Except in two special cases — the exponential distribution (σ 

= 0) and Laplace distributions (α = 2 and μ = 0) — the densities and distribution 

functions of geo-stable laws are not known in closed form.  Other special cases 

include the Linnik distribution (symmetric geo-stable distribution, μ = 0 and β = 0) 

and Mittag-Leffler distribution (α < 1 and β = 1). The Laplace distribution is a 

special case of Linnik distribution (see [2,27]). 

The failure of these distributions to have a closed form has limited their 

application.  Several studies attempt to approximate the density function. 

Racheva-Iotova and Stoyanov [31] discuss the advantages and disadvantages of 

the different approximation methods.  The approach suggested by Zolotarev [33] 

is based on an integral representation of the density function. Nolan and Rajput 

[26]and Nolan [25], in addition to extending Zolotarev’s approach, implemented it 

by means of numerical integration methods. Bergstrom [3] and Feller [6] provide 

series expansions for the probability density function (pdf) and cumulative density 

function (cdf). A cdf approximation based on the Bergstrom’s series expansion 

and Zolotarev’s representation is developed by McCulloch [22]. Holt and Crow 

[13] combine four alternative procedures to approximate an inversion integral for 

computing pdf values from the characteristic function. McCulloch [23] derives an 

approximation for the symmetric case by interpolating between normal and 

Cauchy pdfs and fitting splines to the residuals. Rachev and Mittnik [30] 

expanded and examined the inverse Fourier approach. Using the appealing 

properties of the fast Fourier transform (FFT)-based density approximations, 

Rachev and Mittnik [30] (also see [24]) provide an algorithm which approximates 

the stable densities with a verified accuracy for a subset of the parameter space. 

Some researchers use indirect inference for estimation of stable distributions (see, 

for example, [7] and Lombardi and [19]). 



H. Fallahgoul, S.M. Hashemiparast, Y.S. Kim, S.T. Rachev and F.J. Fabozzi 

 

99  

In this paper, we provide a new strategy for obtaining an analytic 

approximation of the pdf for the stable and geo-stable distributions. (For the 

definitions and properties of these distributions, see [32] and [15,16]) Specifically, 

we employ three analytic approximation methods —homotopy perturbation 

method, Adomian decomposition method, and variational iteration method — to 

compute the fundamental solutions of a partial differential equation (PDE) of 

fractional order. These three methods offer efficient approaches for solving linear 

and nonlinear PDEs, integral equations, and integro-differential equations that 

have been applied to a wide class of problems in physics, biology, and chemical 

reaction. The key in our presentation is that stable and geo-stable distributions are 

linked to PDEs of fractional order. Despite the long history of fractional 

derivatives and integral equations in the fields of science, engineering, and 

business (see [8,9]) there have been only a few studies that have applied fractional 

derivatives to the stable and geo-stable distributions (see [17]). 

Our strategy for deriving an analytic approximation of the pdf of the stable and 

geo-stable distributions requires that we develop a clear link between fractional 

calculus and these two distributions. Basically, the motivation of this work is to 

generalize and extend the approach of [17] linking PDEs of fractional order with 

stable distributions. After introducing new PDEs of fractional order that are 

related to geo-stable distributions, we then derive analytical-numeric solutions for 

nearly all the pdfs of the stable and geo-stable distributions. These results are 

particularly interesting because they not only provide the analytic approximations 

for the pdf of the stable and geo-stable distributions, but they also connect two 

seemingly different fields. 

We have organized our presentation as follows. In Section 2, we interpret a 

PDE of fractional order, whose solution gives nearly all the stable and geo-stable 

distributions. In Sections 3 and 4, the analytic approximations of stable and 

geo-stable distributions are investigated using the homotopy perturbation, 

Adomian decomposition, and variational iteration methods.  Some numerical 

experiments and convergence analysis to clarify the methods are provided in 

Sections 5 and 6, respectively. 

 

 

2  LinkBetween Fractional PDE and Stable/Geo-Stable  

   Distributions 

2.1 Fractional PDE and Stable Distribution  

     In this section, we provide a brief review of the link between fractional PDE 

and stable distributions as presented by Li [17]. For 0 < 𝛼 < 3, 𝐷 ≤ 0, consider 

two PDEs that are symmetric 

                        
∂𝑢

∂𝑡
= 𝐷

∂𝛼

∂𝑥𝛼 𝑢 𝑥, 𝑡 ,    𝑥 ∈ 𝐑,      𝑡 > 0,     𝑢(𝑥, 0) = 𝑢0(𝑥), (1) 
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 and   

                                  
∂𝑢

 ∂𝑡
= 𝐷

∂𝛼

∂(−𝑥)𝛼
𝑢 𝑥, 𝑡 ,    𝑥 ∈ 𝐑,       𝑡 > 0,     𝑢(𝑥, 0) = 𝑢0(−𝑥),     (2) 

If 𝑢(𝑥, 𝑡) is the solution of equation (1), we see that 𝑢(−𝑥, 𝑡) solves equation (2). 

In the integral-order derivative case, we have a simple relation  

                                                        
∂𝑛

∂(−𝑥)𝑛
= (−1)𝑛 ∂𝑛

∂𝑥𝑛                                                      (3) 

so that we need not bother to call 
∂𝑛

∂(−𝑥)𝑛
 another derivative. However, in the case of 

fractional order, the relation given by equation (3) does not hold. Consequently, 

both derivatives are necessary. 

       Now consider a fractional PDE given by  

 
∂𝑢

∂𝑡
= −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼 𝑢 𝑥, 𝑡 −
1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢 𝑥, 𝑡 + 𝜇

∂

∂𝑥
𝑢 𝑥, 𝑡 ,            (4) 

where 0 < 𝛼 ≤ 2 , 𝛼 ≠ 1 , −1 ≤ 𝛽 ≤ 1  and −∞ < 𝜇 < ∞ , also 𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
.  Let 𝐻(𝜔, 𝑡) be the Fourier transform of 𝑢(𝑥, 𝑡) with respect to 𝑡. Then 

equation (4) converts to the following initial value problem  

        
∂𝐻

∂𝑡
= −

1+𝛽

2𝑐
(𝑖𝜔)𝛼𝐻 −

1−𝛽

2𝑐
(−𝑖𝜔)𝛼𝐻 + (𝑖𝜇𝜔)𝐻,                        (5) 

where the initial value is 𝛿(𝑥). If 𝑢(𝑥, 0) = 𝛿(𝑥), then 𝐻(𝜔, 0) = 1. Therefore, the 

solution to equation (5) can be obtained as  

𝐻(𝜔, 𝑡) = exp{−
1 + 𝛽

2𝑐
(𝑖𝜔)𝛼𝑡 −

1 − 𝛽

2𝑐
(−𝑖𝜔)𝛼𝑡 + (𝑖𝜇𝜔)}. 

     Another fractional PDE defined by Li (2003) that will be  helpful for solving 

equation (4) according to the Laplace definition of a fractional derivative is 

 
∂𝑢

∂𝑡
= −

𝛽

𝑐

∂𝛼

∂𝑥𝛼 + (1 − 𝛽)
∂𝛼

∂|𝑥|𝛼
𝑢(𝑥, 𝑡) + 𝜇

∂

∂𝑥
𝑢(𝑥, 𝑡),                 (6) 

where 𝑢(𝑥, 0) = 𝑢0(𝑥) , −∞ < 𝑥 < ∞  and 𝑡 > 0 . It is easily verified that this 

equation is equivalent to equation (4). The Fourier transform of the fundamental 

solution of equation (6) can be written as (see Li (2003))  

 𝐻(𝜔, 𝑡) = exp{−|𝜔|𝛼𝑡 − 𝑖𝛽𝑠𝑖𝑔𝑛(𝜔)tan
𝛼𝜋

2
|𝜔|𝛼𝑡 + 𝑖𝜇𝜔𝑡}.          (7) 

      If one compares equation (7) to the cdf of a stable distribution (see [32]), one 

would find that they are identical for the case of a stable distribution with 𝛼 ≠ 1. 

Consequently, 𝑢(𝑥, 𝑡) is the pdf of stable distribution (𝑆𝛼(𝑡
1

𝛼 ,𝛽, 𝜇𝑡)) according to 𝑥. 

This demonstates that there is a direct connection between stable distributions and a 

class of fractional PDEs. 
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2.2 Fractional PDE and Geo-Stable Distribution  

We now define a new PDE of fractional order and we will prove that the 

fundamental solution of this PDE gives all pdfs for the geo-stable distributions. For 

0 < 𝛼 < 3, 𝐶 ≠ 0 consider a fractional PDE  

∂𝑢

∂𝑡
= 𝐶

∂𝛼

∂𝑥𝛼
𝑢 𝑥, 𝑡 ,      𝑥 ∈ 𝐑,      𝑡 > 0,     𝑤𝑒𝑟𝑒   𝑢 𝑥, 0 = 𝑢0 𝑥 .             (8) 

Let 𝑢 (𝜔, 𝑡)  be the Fourier transform of 𝑢(𝑥, 𝑡)  with respect to 𝑥 . By the 

definition of a fractional derivative (see [28]), we will have 

                                                                
∂𝑢 

∂𝑡
= 𝐶(𝑖𝜔)𝛼𝑢 .                             (9)    

This can be viewed as an ordinary differential equation with independent variable 

𝑡.  

𝑢 (𝜔, 𝑡) = exp(𝐶(𝑖𝜔)𝛼𝑡)𝑢 (𝜔, 0),                                     (10) 

where 𝑢 (𝜔, 0) is the Fourier transform of the initial value 𝑢0(𝑥) = 𝑢(𝑥, 0). We 

call the inverse Fourier transform of equation (10) the fundamental solution                                     

                           𝑢(𝑥, 𝑡) = 𝐹−1{exp 𝐶 𝑖𝜔)𝛼𝑡 𝑢  𝜔, 0  } 

                                       = 𝐹−1{exp(𝐶(𝑖𝜔)𝛼𝑡)} ∗ 𝐹−1 𝑢  𝜔, 0    =  𝐾(𝑥, 𝑡) ∗ 𝑢0(𝑥) 

where 𝐾(𝑥, 𝑡) is the solution of equation (8) if 𝑢0(𝑥) = 𝛿(𝑥).   

Li [17] has proven that the fundamental solution 𝐾(𝑥, 𝑡) of equation (8) is the 

density of the stable distribution where 1 < 𝛼 ≤ 2, as 𝑆𝛼((−𝐶𝑡cos(
𝛼𝜋

2
))

1

𝛼 , 1,0). 

Now we provide two theorems for explaining the connection between geo-stable 

distributions and fractional PDEs. Our proof for both theorems is provided in the 

paper’s appendix. 

Theorem 2.1. The fundamental solution 𝐾1(𝑥, 𝑡) of the equation  

 
∂𝑢1

∂𝑡
= 𝑢1 𝑥, 𝑡 ∗ 𝐶

∂𝛼𝑢1

∂𝑥𝛼 ,        𝑥 ∈ ℝ, 𝑡 > 0,                                              (11) 

with the initial condition 𝑢1(𝑥, 0) = 𝛿(𝑥) , is the density of the geo-stable 

distribution 𝑆𝛼((−𝐶𝑡cos(
𝛼𝜋

2
))

1

𝛼 , 1,0).  Note that we assume 1 < 𝛼 ≤ 2  and the 

notation " ∗ " in equation (11) shows the convolution operator. Now we define a 

fractional PDE by  

∂𝑢1

∂𝑡
= 𝑢1 𝑥, 𝑡 ∗  −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼 𝑢1 𝑥, 𝑡 −
1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢1 𝑥, 𝑡 + 𝜇

∂

∂𝑥
𝑢1 𝑥, 𝑡  ,   (12) 

 where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1 and −∞ < 𝜇 < ∞, and also 𝑐 = cos
𝛼𝜋

2
 

and 𝑠 = sin
𝛼𝜋

2
.  If 𝐻1(𝜔, 𝑡) is the Fourier transform of 𝑢(𝑥, 𝑡) with respect to 𝑡, 

then equation (12) converts to the following initial value problem  
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∂𝐻1

∂𝑡
=

𝐻1(𝜔, 𝑡) ×  −
1+𝛽

2𝑐
(𝑖𝜔)𝛼𝐻1(𝜔, 𝑡) −

1−𝛽

2𝑐
(−𝑖𝜔)𝛼𝐻1(𝜔, 𝑡) + (𝑖𝜇𝜔)𝐻1(𝜔, 𝑡) ,  

where the initial value is 𝛿(𝑥). If 𝑢(𝑥, 0) = 𝛿(𝑥), then 𝐻1(𝜔, 0) = 1. 

Theorem 2.2 The fundamental solution 𝐾1(𝑥, 𝑡) of equation (12) is the density of 

all geo-stable distribution 𝑆𝛼(𝑡
1

𝛼 , 𝛽, 𝜇𝑡), for 𝛼 ≠ 1.  

 

 

3  PDFApproximation of Stable Distributions 

        In this section, we derive the pdf approximation of stable distributions by 

using the homotopy perturbation method (HPM) (see [10,12,18]), Adomian 

decomposition method (ADM) (see [1]), and variational iteration method (VIM) 

(see [11]). 

 

 

3.1 PDF Approximation of Stable Distribution Using the HPM 

We illustrate the applicability of the HPM for approximating the pdf of stable 

distributions. Below we derive the pdf approximation of stable distributions for the 

following three cases using the HPM:   

Case 1:  1 < 𝛼 ≤ 2 for equation (1).  

Case 2:  The proportion of the pdf approximation of stable distributions    

          according to 𝑥 

Case 3:  The pdf approximation of stable distributions for 0 < 𝛼 ≤ 2. 
 

     For case 2  we then obtain the proportion of the pdf approximation of stable 

distributions according to 𝑥. Finally, the pdf approximation of stable distributions 

for 0 < 𝛼 ≤ 2 is obtained by applying the HPM to equation (4).  

 

3.1.1 Case 1: 𝟏 < 𝛂 ≤ 𝟐 for equation (1) 

    Consider the following space-fractional PDE  

 
∂𝑢

∂𝑡
= 𝐷

∂𝛼

∂𝑥𝛼
𝑢 𝑥, 𝑡 ,    𝑥 ∈ 𝐑,     𝑡 > 0,    0 < 𝛼 < 2,             (13) 

subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥), and 𝐷  is a positive coefficient. To 

solve equation (13) with initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) by applying the HPM, 

we construct the following homotopy:  

 (1 − 𝑝)  
∂𝑣

∂𝑡
−

∂𝑢0

∂𝑡
 + 𝑝  

∂𝑣

∂𝑡
− 𝐷

∂𝛼𝑣

∂𝑥𝛼 = 0.                     (14) 
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Suppose the solution of equation (16) has the form  

 𝑣 = 𝑣0 + 𝑣1𝑝
1 + 𝑣2𝑝

2 + 𝑣3𝑝
3 + ⋯.                          (15) 

Substituting equation (15) into equation (14), and comparing coefficients of terms 

with identical powers of 𝑝, leads to:  

𝑝0 :    
∂𝑣0

∂𝑡
−

∂𝑢0

∂𝑡
= 0 

                                                                      (16) 

                                         𝑝𝑛 :         
∂𝑣𝑛

∂𝑡
= 𝐷

∂𝛼𝑣𝑛−1

∂𝑥𝛼
,        𝑣𝑛(𝑥, 0) = 0. 

For simplicity, we take 𝑣0(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) = 𝛿(𝑥). According to equation (16) 

and the fractional derivative’s definition of the Dirac delta, we derive the following 

recurrent relation 

𝑣1 =   

𝑡

0

 𝐷
∂𝛼𝑣0

∂𝑥𝛼
−

∂𝑢0

∂𝑡
 𝑑𝑡 =   

𝑡

0

𝐷
∂𝛼𝑣0

∂𝑥𝛼
𝑑𝑡 =

𝐷

Γ(−𝛼)
𝑥−𝛼−1 × 𝑡, 

⋮ 

 𝑣𝑛 =  
𝐷𝑛

Γ(−𝑛𝛼)
𝑥−𝑛𝛼−1  

1

2 × 3 × ⋯ × 𝑛
 𝑡𝑛 =

𝐷𝑛

Γ(−𝑛𝛼)
𝑥−𝑛𝛼−1

1

Γ(𝑛 + 1)
𝑡𝑛 . 

The solution is  

                   𝑢0(𝑥, 𝑡) = 𝑣0(𝑥) = 𝛿(𝑥),  

 𝑢1(𝑥, 𝑡) = 𝑣0 + 𝑣1 = 𝛿(𝑥) +
𝐷

Γ(−𝛼)
𝑥−𝛼−1 × 𝑡,  

⋮ 
 so    

                 𝑢𝑛(𝑥, 𝑡) = 𝛿(𝑥) +   

𝑛

𝑘=1

 
𝐷𝑘

Γ(−𝑘𝛼)
𝑥−𝑘𝛼−1 ×  

1

Γ(𝑘 + 1)
𝑡𝑘 . 

Therefore,   

𝑢 𝑥, 𝑡 = lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡 = 𝛿 𝑥 +   ∞
𝑘=1  

𝐷𝑘

Γ −𝑘𝛼 
𝑥−𝑘𝛼−1 ×  

1

Γ 𝑘+1 
𝑡𝑘 .              (17) 

Equation (17) appears quite similar to the series representations for the stable 

density (see Feller (1966)).  

 

3.1.2 Case 2: The proportion of the pdf approximation of stable    

     distributions according to𝐱 

Consider the fractional PDE  
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∂𝑉

∂𝑡
= 𝐷

∂𝛼

∂(−𝑥)𝛼
𝑉 𝑥, 𝑡 ,    𝑥 ∈ 𝐑,    𝑡 > 0,    0 < 𝛼 < 2,           (18) 

subject to initial condition 𝑉(𝑥, 0) = 𝛿(−𝑥), and 𝐷 is a positive coefficient. It is 

obvoius that if 𝑢(𝑥, 𝑡)  is the solution to equation (14), then 𝑢(−𝑥, 𝑡) solves the 

fractional PDE given by (14).  Then the solution of equation (18) can be obtained 

as   

 𝑉(𝑥, 𝑡) = 𝑢(−𝑥, 𝑡) = 𝛿(−𝑥) +   ∞
𝑘=1  

𝐷𝑘

Γ(−𝑘𝛼 )
(−𝑥)−𝑘𝛼−1 ×  

1

Γ(𝑘+1)
𝑡𝑘 . 

 

3.1.3 Case 3 The pdf approximation of stable distributions  

     for 𝟎 < 𝛂 ≤ 𝟐  

Consider the fractional PDE  

∂𝑢

∂𝑡
= −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼 𝑢(𝑥, 𝑡) −
1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢(𝑥, 𝑡) + 𝜇

∂

∂𝑥
𝑢(𝑥, 𝑡),             (19) 

where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1 and −∞ < 𝜇 < ∞, and 𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
, subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥). For simplicity, we take 

𝑣0(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) = 𝛿(𝑥). Consequently, solving the HPM related to equation 

(19), then the first few components of the homotopy perturbation solution for 

equation (19) are derived as follows  

 𝑣1 𝑥, 𝑡 =  
𝑑1+(−1)𝛼𝑑2

2Γ −𝛼 
 𝑥−𝛼−1 × 𝑡,                                                         

 𝑣2(𝑥, 𝑡) =   
𝑑1

2+(−1)𝛼𝑑1𝑑2+𝑑2
2

2Γ(−2𝛼)
 𝑥−2𝛼−1 +  

𝑑1+(−1)𝛼𝑑2

2Γ(−𝛼−1)
 𝑥−𝛼−2 

1

2
𝑡2 . 

So we derive the following recurrent relation   

  

 𝑣𝑗 =   
𝑡

0
 𝑑1

∂𝛼𝑣𝑛−1

∂𝑥𝛼 + 𝑑2
∂𝛼𝑣𝑛−1

∂(−𝑥)𝛼
+ 𝜇

∂𝑣𝑛−1

∂𝑥
 𝑑𝑡,    

 for 𝑗 = 3, 4, 5, … 

 𝑢0 𝑥, 𝑡 = 𝑣0 𝑥 = 𝛿 𝑥 ,                                                                                                                                       

 𝑢1 𝑥, 𝑡 = 𝑣0 + 𝑣1 = 𝛿 𝑥 +  
𝑑1+(−1)𝛼𝑑2

2Γ −𝛼 
 𝑥−𝛼−1 × 𝑡,                    

 𝑢2 𝑥, 𝑡 = 𝑣0 + 𝑣1 + 𝑣2 = 𝛿 𝑥 +  
𝑑1+(−1)𝛼𝑑2

2Γ −𝛼 
 𝑥−𝛼−1 × 𝑡          

                        +   
𝑑1

2+(−1)𝛼𝑑1𝑑2+𝑑2
2

2Γ(−2𝛼)
 𝑥−2𝛼−1 +  

𝑑1+(−1)𝛼𝑑2

2Γ(−𝛼−1)
 𝑥−𝛼−2 

1

2
𝑡2 , 
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and so on. In this manner, the rest of the components of the homotopy perturbation 

solution can be obtained. If 𝑢(𝑥, 𝑡) = lim𝑛→∞𝑢𝑛(𝑥, 𝑡)  and we compute more 

terms, then we can show that 𝑢(𝑥, 𝑡) is the pdf of the stable distribution with 

respect to 𝑥, or 𝑝 𝑥 = lim𝑛→∞𝑢𝑛 𝑥, 𝑡 = 𝑆𝛼(𝑡
1

𝛼 , 𝛽, 𝜇𝑡) where 𝑝 𝑥  is the pdf of 

the stable distribution. 

 

 

3.2  Stable Distribution pdf Appoximation Using ADM and VIM 

Here we obtain the analytic approximation of the pdf of stable distributions by 

using the ADM and VIM for the three cases solved in Section 3.1.  

 

3.2.1 Case 1: 𝟏 < 𝜶 ≤ 𝟐 for equation (1):  

Consider the space-fractional PDE  

 
∂𝑢

∂𝑡
= 𝐷

∂𝛼

∂𝑥𝛼 𝑢 𝑥, 𝑡 ,    𝑥 ∈ 𝐑,    𝑡 > 0,    0 < 𝛼 < 2,                              (20) 

subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥), and 𝐷 is a positive coefficient. First we 

will solve equation (38) with initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) using the ADM. To 

do so, we construct the following recurrence relation: 

𝑢0 = 𝑢(𝑥, 0) = 𝛿(𝑥), 𝑢𝑘+1 =   

𝑡

0

 𝐷
∂𝛼𝑢𝑘

∂𝑥𝛼
 𝑑𝑡,   𝑘 ≥ 0. 

So, the solution is obtained as:  

 𝑢1 =   
𝑡

0
 𝐷

∂𝛼𝛿 𝑥 

∂𝑥𝛼  𝑑𝑡 =
𝐷

Γ −𝛼 
𝑥−𝛼−1 × 𝑡,                                                                                                         

  

𝑢𝑛 =  
𝐷𝑛

Γ(−𝑛𝛼)
𝑥−𝑛𝛼−1 ×  

1

Γ(𝑛 + 1)
𝑡𝑛 , 

 Therefore,  

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) = 𝛿(𝑥) +   

∞

𝑘=1

 
𝐷𝑘

Γ(−𝑘𝛼)
𝑥−𝑘𝛼−1 ×  

1

Γ(𝑘 + 1)
𝑡𝑘 . 

To solve equation (20) using VIM instead, we set  

 𝑢𝑛+1 = 𝑢𝑛 +   
𝑡

0
𝜆  

∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑣𝑛

∂𝑥𝛼  𝑑𝑠,                                        (21) 

 So    
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𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿   

𝑡

0

𝜆  
∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑣𝑛

∂𝑥𝛼
 𝑑𝑠 

                          = 𝛿𝑢𝑛 + 𝜆𝛿𝑢𝑛 +   
𝑡

0
 −

𝑑𝜆

𝑑𝑠
 𝛿𝑢𝑛𝑑𝑠 = 0,            (22) 

 the stationary conditions of equation (22) are:  

 1 + 𝜆 = 0, 𝜆′ = 0.                                           (23) 

The Lagrange multiplier turns out to be 𝜆 = −1. 

       Using the new recently developed algorithm for the Lagrange multiplier (see 

[14]), for 𝑚 = 1 we obtain:  

 1 + (−1)𝑚−1𝜆 𝑚−1 = 0 ⇒ 1 + 𝜆 = 0.                      (24) 

The extremum of the functional (21) is given by:   

 
∂(𝜆𝑓 )

∂𝑦
−

𝑑

𝑑𝑠
 
∂(𝜆𝑓 )

∂𝑦 ′
 ⇒ 𝜆′ = 0,                                   (25) 

Using equations (24) and (25), we get the same 𝜆 as  equation (23). Substituting 

𝜆 = −1 into equation (21), we get the following variational iteration formula:  

 𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 −   
𝑡

0
 
∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑢𝑛

∂𝑥𝛼  𝑑𝑠,                                                        (26) 

where 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝛿(𝑥). 

Therefore, 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) = 𝛿(𝑥) +   

∞

𝑘=1

 
𝐷𝑘

Γ(−𝑘𝛼)
𝑥−𝑘𝛼−1 ×  

1

Γ(𝑘 + 1)
𝑡𝑘 . 

 

3.2.2 Case 2: The proportion of the pdf approximation of stable  

      distributions according to 𝒙:  

Consider the fractional PDE  

∂𝑉

∂𝑡
= 𝐷

∂𝛼

∂(−𝑥)𝛼
𝑉 𝑥, 𝑡 ,    𝑥 ∈ 𝐑,   𝑡 > 0,     0 < 𝛼 < 2,                  (27) 

subject to initial condition 𝑉(𝑥, 0) = 𝛿(−𝑥), and 𝐷 is a positive coefficient. It is 

obvious that if 𝑢(𝑥, 𝑡) is the solution of equation (20), then 𝑢(−𝑥, 𝑡) solves the 

fractional PDE given by equation (27). So 

𝑉(𝑥, 𝑡) = 𝑢(−𝑥, 𝑡) = 𝛿(−𝑥) +   

∞

𝑘=1

 
𝐷𝑘

Γ(−𝑘𝛼)
(−𝑥)−𝑘𝛼−1 ×  

1

Γ(𝑘 + 1)
𝑡𝑘 . 
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3.2.3 Case 3: The pdf approximation of stable distributions  

     for 𝟎 < 𝜶 ≤ 𝟐 

Consider the fractional PDE  

∂𝑢

∂𝑡
= −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼 𝑢 𝑥, 𝑡 −
1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢 𝑥, 𝑡 + 𝜇

∂

∂𝑥
𝑢 𝑥, 𝑡 ,                        (28) 

where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1 and −∞ < 𝜇 < ∞, and 𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
,  subject to the initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) .  The recurrence 

relation of ADM for equation (28) can be constructed as  

𝑢0 = 𝑢(𝑥, 0) = 𝛿(𝑥), 𝑢𝑘+1 =   
𝑡

0
 𝐷1

∂𝛼𝑢𝑘

∂𝑥𝛼 + 𝐷2
∂𝛼𝑢𝑘

∂(−𝑥)𝛼
+ 𝜇

∂𝑢𝑘

∂𝑥
𝑢𝑘 𝑑𝑡,        𝑘 ≥ 0.  

 where 𝐷1 = −
1+𝛽

2𝑐
  and  𝐷2 = −

1−𝛽

2𝑐
. 

So we derive the following recurrent relation   

 𝑢𝑗 =   
𝑡

0
 𝐷1

∂𝛼𝑢𝑗−1

∂𝑥𝛼 + 𝐷2
∂𝛼𝑢𝑗−1

∂(−𝑥)𝛼
+ 𝜇

∂𝑢𝑗−1

∂𝑥
 𝑑𝑡,   

 for 𝑗 = 3, 4, 5, ….  To solve equation (28) by means of the VIM, we set  

𝑢𝑛+1 = 𝑢𝑛 +   
𝑡

0
𝜆  

∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑣𝑛

∂𝑥𝛼 − 𝐷2
∂𝛼𝑣𝑛

∂(−𝑥)𝛼
− 𝜇

∂𝑣𝑛

∂𝑥
 𝑑𝑠,            (29) 

where 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝛿(𝑥). So we derive the following recurrent relation  

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) −   

𝑡

0

 
∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑢𝑛

∂𝑥𝛼
− 𝐷2

∂𝛼𝑢𝑛

∂(−𝑥)𝛼
− 𝜇

∂𝑢𝑛

∂𝑥
 𝑑𝑠. 

       In this manner the rest of the components of the VIM can be obtained. If 

𝑢(𝑥, 𝑡) = lim𝑛→∞𝑢𝑛(𝑥, 𝑡) and we compute more terms, then we can show that 

𝑢(𝑥, 𝑡) is the pdf of the stable distribution with respect to 𝑥, as 𝑆𝛼  𝑡
1

𝛼 ,𝛽, 𝜇𝑡  (the 

solution converges to the stable distribution’s pdf). 

 

 

4  PDF Approximation of Geo-Stable Distributions 

      We repeat in this section the derivation of the approximation for the pdfs as  

in Section 3 but do so for the geo-stable pdfs rather than the stable distributions. We 

use the same three analytic approximation methods (HPM, ADM, and VIM).  

 

 

4.1  PDF Approximation of Geo-Stable Distributions Via HPM 

      We shall illustrate the applicability of HPM to geo-stable pdfs for the three 

cases in Section 3.  
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4.1.1 Case 1: 𝟏 < 𝜶 ≤ 𝟐 for equation (11):  

Consider the space-fractional PDE  

                     
 ∂𝑢

∂𝑡
= 𝑢 𝑥, 𝑡 ∗ 𝐶

∂𝛼𝑢

∂𝑥𝛼
,        𝑥 ∈ 𝐑,      𝑡 > 0,                 (30) 

subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) and 𝐶  is a positive coefficient. To 

solve equation (30) with initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) using HPM, we construct 

the following homotopy:  

𝐻(𝑣, 𝑝) = (1 − 𝑝)  
∂𝑣

∂𝑡
−

∂𝑢0

∂𝑡
 + 𝑝  

∂𝑣

∂𝑡
− 𝑣(𝑥, 𝑡) ∗ 𝐶

∂𝛼𝑣

∂𝑥𝛼 = 0.         (31) 

According  to equation (31), we will have  

 𝑣1(𝑥, 𝑡) = 𝐶
𝑥−𝛼−1

22Γ(−𝛼)
× 𝑡, 

 𝑣2 𝑥, 𝑡 =  
𝐶2

23

𝑥−2𝛼−1

Γ −2𝛼 
×

1

2
𝑡2  

                                  +   
𝑡

0
   

𝑠

0
 𝐶

(𝑠−𝑥)−𝛼−1

22Γ(−𝛼)
× 𝑡 × 𝐶

∂𝛼

∂𝑥𝛼 𝛿(𝑥) 𝑑𝑥 𝑑𝑡,  

𝑣𝑛+1 𝑥, t =   

𝑡

0

   

𝑛

𝑖=0

  

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝐶
∂𝛼𝑣𝑗

∂𝑥𝛼
 , 𝑖 + 𝑗 = 𝑛 − 1, 𝑝 = 1. 

Therefore, the solution is  

  𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) 

= 𝛿 𝑥 +   

∞

𝑘=1

   

𝑡

0

   

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝐶
∂𝛼𝑣𝑗

∂𝑥𝛼
  ,                   

for 𝑖 + 𝑗 = 𝑘 − 1, 𝑝 = 1.                                                                          

 

4.1.2 Case 2: The pdf approximation of geo-stable distributions  

     for 𝟎 < 𝜶 ≤ 𝟐 

Consider the fractional PDE  

∂𝑢

∂𝑡
= 𝑢(𝑥, 𝑡) ∗  −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼
𝑢(𝑥, 𝑡) −

1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢(𝑥, 𝑡) + 𝜇

∂

∂𝑥
𝑢(𝑥, 𝑡)   (32) 

where 0 < 𝛼 ≤ 2 , 𝛼 ≠ 1 , −1 ≤ 𝛽 ≤ 1  and −∞ < 𝜇 < ∞  and 𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
. Given the defintion for the HPM, the homotopy for equation (32) can be 

constructed as  
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𝐻 𝑣, 𝑝 =  1 − 𝑝  
∂𝑣

∂𝑡
−

∂𝑢0

∂𝑡
                                                                             

                       +𝑝  
∂𝑣

∂𝑡
+ 𝑣(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣

∂𝑥𝛼
+ 𝑣(𝑥, 𝑡) ∗ 𝑑2

∂𝛼𝑣

∂(−𝑥)𝛼
+ 𝜇𝑣(𝑥, 𝑡) ∗

∂𝑣

∂𝑥
 = 0,  

where 𝑑1 = −
1+𝛽

2𝑐
  and  𝑑2 = −

1−𝛽

2𝑐
. 

For simplicity, taking 𝑣0 𝑥, 𝑡 = 𝑢0 𝑥, 𝑡 = 𝛿 𝑥 ,  we derive the following 

recurrent relation   

𝑣𝑛+1 =   

𝑡

0

    

𝑛

𝑖=0

  

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂𝑥𝛼
                  

        +   

𝑛

𝑖=0

  

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂(−𝑥)𝛼
 +    

𝑛

𝑖=0

  

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝜇
∂𝑣𝑗

∂𝑥
  𝑑𝑡, 

 where 𝑖 + 𝑗 = 𝑛 − 1 and 𝑝 = 1. 

 𝑢𝑛+1(𝑥, 𝑡) = 𝑣0 + 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑛+1,                         

𝑢𝑛+1 𝑥, 𝑡 = 𝛿 𝑥 +   

𝑛

𝑘=1

  

𝑡

0

    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝑑1

∂𝛼𝑣𝑗

∂𝑥𝛼
                 

+     

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂(−𝑥)𝛼
    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝜇
∂𝑣𝑗

∂𝑥
  𝑑𝑡, 

 𝑖 + 𝑗 = 𝑘 − 1,   𝑝 = 1,                                          

and so on. In this manner, the rest of the components of the homotopy perturbation 

solution can be obtained. If 𝑢(𝑥, 𝑡) = lim𝑛→∞𝑢𝑛(𝑥, 𝑡)  and we compute more 

terms, then we can show that 𝑢(𝑥, 𝑡) is the  stable distribution’s pdf with respect 

to 𝑥, as 𝑆𝛼(𝑡
1

𝛼 , 𝛽, 𝜇𝑡) (the solution converges to the  of geo-stable distribution’s 

pdf). Therefore,  

𝑢 𝑥, 𝑡 = lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡                                                   

             = 𝛿(𝑥) +   

∞

𝑘=1

  

𝑡

0

    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂𝑥𝛼
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+     

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝑑1

∂𝛼𝑣𝑗

∂(−𝑥)𝛼
 +    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝜇
∂𝑣𝑗

∂𝑥
  𝑑𝑡, 

 where 𝑖 + 𝑗 = 𝑘 − 1and 𝑝 = 1. 

 

4.2  PDF Approximation of Geo-Stable Distributions Via ADM 

4.2.1 Case 1: 𝟏 < 𝜶 ≤ 𝟐 for equation (11) 

Consider the space-fractional PDE  

                 
∂𝑢

∂𝑡
= 𝑢 𝑥, 𝑡 ∗ 𝐶

∂𝛼𝑢

∂𝑥𝛼
,        𝑥 ∈ 𝐑,           𝑡 > 0,                 (33) 

subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) and 𝐶  is a positive coefficient. To 

solve equation (33) with initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) using the ADM, we 

construct the following recurrence relation:  

𝑢0 = 𝑢(𝑥, 0) = 𝛿(𝑥), 𝑢𝑘+1 =   

𝑡

0

   

𝑘

𝑖=0

𝐴𝑖 𝑑𝑡:        𝑘 = 0,1,2, ⋯, 

 where  

𝐴𝑖 =
1

𝑖!
 
𝑑𝑖

𝑑𝜆𝑖
    

𝑖

𝑗=0

𝜆𝑖𝑢𝑖 ∗ 𝐶
∂𝛼

∂𝑥𝛼
   

𝑖

𝑗=0

𝜆𝑖𝑢𝑖   

𝜆=0

:        𝑛 = 0,1, 2, ⋯. 

Therefore,  

𝑢 𝑥, 𝑡 = lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡  

= 𝛿 𝑥 +   

∞

𝑘=1

   

𝑡

0

   

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝐶
∂𝛼𝑣𝑗

∂𝑥𝛼
  , 

 where 𝑖 + 𝑗 = 𝑘 − 1 and 𝑝 = 1. 

 

4.2.2 Case 2: pdf approximation of geo-stable distributions  

     for 𝟎 < 𝜶 ≤ 𝟐  

Consider the fractional PDE  

∂𝑢

∂𝑡
= 𝑢 𝑥, 𝑡 ∗  −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼
𝑢 𝑥, 𝑡 −

1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢 𝑥, 𝑡 + 𝜇

∂

∂𝑥
𝑢 𝑥, 𝑡  ,  (34) 
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where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1 and −∞ < 𝜇 < ∞ and  𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
. To solve equation (34) with initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) using the 

ADM, we construct the following recurrence relation: 

𝑢0 = 𝑢 𝑥, 0 = 𝛿 𝑥 ,   

𝑢𝑘+1 =   

𝑡

0

   

𝑘

𝑖=0

𝐴𝑖 𝑑𝑡:        𝑘 = 0,1,2, ⋯, 

where 

  𝐴𝑖 =
1

𝑖!
 

𝑑 𝑖

𝑑𝜆𝑖
 

   𝑖
𝑗=0 𝜆𝑖𝑢𝑖 ∗ 𝑑1

∂𝛼

∂𝑥𝛼
   𝑖

𝑗=0 𝜆𝑖𝑢𝑖 

+   𝑖
𝑗=0 𝜆𝑖𝑢𝑖 ∗ 𝑑2

∂𝛼

∂(−𝑥)𝛼
   𝑖

𝑗=0 𝜆𝑖𝑢𝑖 
   

 

        +      

𝑖

𝑗=0

𝜆𝑖𝑢𝑖 ∗ 𝜇
∂

∂𝑥
   

𝑖

𝑗=0

𝜆𝑖𝑢𝑖   

𝜆=0

:        𝑛 = 0,1,2, ⋯. 

 and 𝑑1 = −
1+𝛽

2𝑐
 and 𝑑2 = −

1−𝛽

2𝑐
.  

Therefore,  

  𝑢 𝑥, 𝑡 = lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡                                                              

                           = 𝛿 𝑥 +   

∞

𝑘=1

  

𝑡

0

    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂𝑥𝛼
   

               +    𝑘
𝑖=0   𝑘

𝑗=0 𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝑑1
∂𝛼𝑣𝑗

∂(−𝑥)𝛼
  

              +    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝜇
∂𝑣𝑗

∂𝑥
  𝑑𝑡, 

 where 𝑖 + 𝑗 = 𝑘 − 1 and 𝑝 = 1. 

 

 

4.3  PDF Approximation of Geo-Stable Distributions Via VIM 

4.3.1 Case 1: 𝟏 < 𝜶 ≤ 𝟐 for equation (11) 

      Consider the space-fractional PDE 

                    
∂𝑢

∂𝑡
= 𝑢 𝑥, 𝑡 ∗ 𝐶

∂𝛼𝑢

∂𝑥𝛼 ,        𝑥 ∈ 𝐑,     𝑡 > 0,               (35) 
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subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥), and 𝐶  is a positive coefficient. To 

solve equation (35) by means of the VIM, we set  

𝑢𝑛+1 = 𝑢𝑛 +   

𝑡

0

𝜆  
∂𝑢𝑛

∂𝑠
− 𝑣𝑛(𝑥, 𝑡) ∗ 𝐶

∂𝛼𝑣𝑛

∂𝑥𝛼
 𝑑𝑠. 

Therefore,  

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) = 𝛿(𝑥) +   

∞

𝑘=1

   

𝑡

0

   

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑣𝑖(𝑥, 𝑡) ∗ 𝐶
∂𝛼𝑣𝑗

∂𝑥𝛼
  , 

where 𝑖 + 𝑗 = 𝑘 − 1 and 𝑝 = 1. 

 

4.3.2 Case 2: pdf approximation of geo-stable distributions  

      for 𝟎 < 𝜶 ≤ 𝟐  

Consider the fractional PDE  

∂𝑢

∂𝑡
= 𝑢 𝑥, 𝑡 ∗  −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼 𝑢 𝑥, 𝑡 −
1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢 𝑥, 𝑡 + 𝜇

∂

∂𝑥
𝑢 𝑥, 𝑡  ,  (36) 

where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1 and −∞ < 𝜇 < ∞, also 𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
, and  subject to initial condition 𝑢(𝑥, 0) = 𝛿(𝑥) . To solve equation 

(36)using the VIM, we set  

𝑢𝑛+1 = 𝑢𝑛 +   

𝑡

0

𝜆  
∂𝑢𝑛

∂𝑠
− 𝑢𝑛 𝑥, 𝑡 ∗ 𝑑1

∂𝛼𝑢𝑛

∂𝑥𝛼
          

                       −𝑢𝑛(𝑥, 𝑡) ∗ 𝑑2

∂𝛼𝑢𝑛

∂(−𝑥)𝛼
− 𝑢𝑛(𝑥, 𝑡) ∗ 𝜇

∂𝑢𝑛

∂𝑥
 𝑑𝑠. 

So we derive the following recurrent relation   

𝑣𝑛+1 =   

𝑡

0

(   

𝑛

𝑖=0

  

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝑑1

∂𝛼𝑣𝑗

∂𝑥𝛼
  

+   

𝑛

𝑖=0

 

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖 𝑥, 𝑡 ∗ 𝑑1

𝜕𝛼𝑣𝑗

𝜕(−𝑥)𝛼
  

+    

𝑛

𝑖=0

  

𝑛

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝜇
∂𝑣𝑗

∂𝑥
 )𝑑𝑡, 

where 𝑖 + 𝑗 = 𝑘 − 1 and 𝑝 = 1. 
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      In this manner, the rest of the components of the VIM can be obtained. If 

𝑢(𝑥, 𝑡) = lim𝑛→∞𝑢𝑛(𝑥, 𝑡) and we compute more terms, then we can show that 

𝑢(𝑥, 𝑡) is the stable distribution’s pdf with respect to 𝑥, as 𝐺𝑆𝛼  𝑡
1

𝛼 , 𝛽, 𝜇𝑡  (the 

solution converges to the pdf of geo-stable distribution  

  𝑢 𝑥, 𝑡 = lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡   

= 𝛿 𝑥 +   

∞

𝑘=1

  

𝑡

0

    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂𝑥𝛼
   

+    

𝑘

𝑖=0

  

𝑘

𝑗=0

𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝑑1

∂𝛼𝑣𝑗

∂(−𝑥)𝛼
  

 +    𝑘
𝑖=0   𝑘

𝑗=0 𝑝𝑖+𝑗𝑣𝑖(𝑥, 𝑡) ∗ 𝜇
∂𝑣𝑗

∂𝑥
  dt,                     

 where 𝑖 + 𝑗 = 𝑘 − 1 and 𝑝 = 1. 

 

 

5  Numerial Experiments 

The numerical solutions we derived (the truncated series of equations in the 

prior two sections) can contain large errors which are not always acceptable in 

real-world applications. Such errors raise some basic issues with regard to the 

properties of the analytic approximation of the pdf for stable and geo-stable 

distributions. Large errors are attributable  to the effect of the precision used in 

the calculations, the convergence of the method, and the effect of the initial 

conditions. By increasing the precision (8 digits, 16 digits, etc), the absolute error 

will decrease because the truncation error is decreased.  
Convergence is a condition that may be imposed on the numerical solution 

which ensures that the output of the simulation is a correct representation of the 

model we solve; that is, the numerical solution must tend towards the exact 

solution of the mathematical model when n (the number of terms in the obtained 

series) tends to infinity. Figure 1 demonstrates that by increasing the value of n 

(i.e., increasing the terms of analytic approximation (truncated series)), the 

analytic approximation tends to the stable distribution’s pdf. Also, the HPM 

results are improved by using of the Padé approximation (PA). More details about 

Figure 1 are provided in Figure 2 where we show the pdf of stable distributions for 

different values of 𝛼 and 𝑡. 
To demonstrate why the initial conditions are important in the numerical 

scheme, we changed the initial conditions to assess the impact on the 

approximation solutions. In Figure 3 the pdf of geo-stable distributions is obtained 
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via the HPM for different values of 𝛼, 𝑡 = 1, and 𝑡 = 5. It is clear from an 

examination of  Figure 2 that the results of the analytic approximation with PA 

are better than the results of the analytic approximation without PA. Moreover, if 

the values of 𝛼  exceed 1, then HPM with PA is very suitable. All of the 

computations for the analytic approximation of the pdf of the stable and geo-stable 

distributions will be done by three terms of the  truncated series; if we calculate 

the additional terms of analytic solution, the results will be better. 

 

 

 
Figure 1: The analytic approximation of pdf of stable distributions with HPM for      

        different values of 𝑣𝑖s (𝑣1 and 𝑣2) (left). The analytic approximation  

        of pdf of stable distributions with HPM and PA for different values  

        of 𝑣𝑖s (𝑣1and𝑣2) (right) 𝛼 = 0.8 

 

 

6  Convergance Analysis 

     In this section, we study the convergence of two  perturbation methods when 

applied to a space-fractional PDE. The two perturbation methods we study are the 

HPM and the homotopy analysis method (HAM). Because the results obtained  by 

applying the HPM, ADM, and VIM applied  to the  space-fractional PDE 

produced the same result, for convergence of the methods, it is sufficient to 

demonstrate the convergence of just one of them. 

     To investigate the convergence of solutions obtained using the HAM and 

HPM, we must consider convergence in two ways: (1) the convergence of the series 

solutions we obtain to some fixed and finite value for each 𝑥 in the domain of the 

nonlinear problem and (2) whether or not such a convergent series converges to the 

solution of the nonlinear problem. Let’s first look at  the convergence of the series 

solutions we obtain to some fixed and finite value for each 𝑥 in the domain of the 

nonlinear problem. The answer to this convergence is provided by Liao [18] who 

demonstrated that a convergent series solution obtained via HAM exists. 



H. Fallahgoul, S.M. Hashemiparast, Y.S. Kim, S.T. Rachev and F.J. Fabozzi 

 

115  

 

Figure 2: The plot of analytic approximation of pdf of stable distributions by HPM and  

          HPM with PA for different values of 𝛼 and 𝑡 (red is HPM and blue is HPM               

          with PA) 

 

Figure 3: (Left to Right)The plot of analytic approximation of pdf of geo-stable             

          distribution by HPM different values of 𝛼 and 𝑡 = 1 and  t = 5 
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In practice, a series may not converge over the whole domain of the problem. In 

such cases, the following result may be useful. If the partial sum 𝑆𝑘(𝑥) is defined 

as follow  

𝑆0(𝑥) = 𝑢0(𝑥), … 𝑆𝑘(𝑥) = 𝑢0(𝑥) +   𝑘
𝑚=1 𝑢𝑚 (𝑥),                      (37) 

then the following necessary and sufficient conditions for the convergence of the 

series solution in the HAM are proven by Liao [18]:   

Necessary conditions for convergence: For a specific nonlinear differential 

equation𝑁[𝑢] = 0, let 𝑢(𝑥) and 𝑢𝑚 (𝑥) be the terms of HAM and 𝑢 𝑥 =
  ∞

𝑚=1 𝑢𝑚 (𝑥), respectively, and let 𝑋 be the domain of interest. Then, in 

order for 𝑢(𝑥) to converge, lim𝑚→∞|𝑢𝑚(𝑥)| = 0 for all 𝑥 ∈ Ω, and there 

must exist a positive integer 𝑟 such that |𝑢𝑚 (𝑥)| ≤ |𝑢𝑚−1| for all 𝑚 > 𝑟, 

and all 𝑥 ∈ Ω.  

Sufficient conditions for convergence: For a specific nonlinear differential 

equation 𝑁[𝑢] = 0 , let 𝑢 𝑥 =   ∞
𝑚=1 𝑢𝑚  𝑥 ,  and 𝑆𝑘(𝑥)  is as equation 

(37), and let Ω be the domain of interest. If for any real 𝛿 > 0 there exists 

a positive integer 𝑟 such that |𝑢(𝑥) − 𝑆𝑘(𝑥)| < 𝛿  for all 𝑘 > 𝑟 and all 

𝑥 ∈ Ω, then the series solution 𝑢(𝑥) converges.  

The second way to consider convergence is to determine whether or not such a 

convergent series converges to the solution of the nonlinear problem. The series 

obtained via HPM (the series solutions) are convergent for most cases. However, 

the convergent rate depends on the nonlinear operator 𝑁(𝑢). Moreover, He [10] 

made the following suggestions: (1)  the second derivative of 𝑁(𝑢) with respect 

to 𝑢 must be small because the parameter may be relatively large, i.e. 𝑝 → 1, and 

(2) the norm of 𝐿−1 ∂𝑁

∂𝑣
 must be smaller than one so that the series converges. 

For a convergent series to the solution (the analytic approximation of the pdf for 

the stable and geo-stable distributions), we present conditions where the series 

solutions will be convergent. The series solution   ∞
𝑘=0 𝑢𝑘 , defined by the HPM, 

converges if ∃ 0 < 𝛾 < 1  such that ∥ 𝑣𝑘+1 ∥≤ 𝛾 ∥ 𝑣𝑘 ∥ , ∀𝑘 ≥ 𝑘0 , for some 

𝑘0 ∈ 𝑁 . Also, suppose that the 𝑆𝑘  is the partial sum of sequence {𝑢𝑖}𝑖=0
∞  (as 

equation (37)). If we can show that {𝑆𝑘}0
∞ is a Cauchy sequence, then the sequence 

{𝑆𝑘}0
∞ is convergent. This is because 𝐑 is the complete space and any Cauchy 

sequence in a complete space is convergent. 

For every 𝑚, 𝑛 ∈ 𝑁, 𝑛 ≥ 𝑚 > 𝑘0, we have 

∥ 𝑆𝑛 − 𝑆𝑚 ∥≤
1 − 𝛾𝑛−𝑚

1 − 𝛾
𝛾𝑚−𝑘0+1 ∥ 𝑣0 ∥, 

and since 0 < 𝛾 < 1 , we get lim
𝑛 ,𝑚→

∥ 𝑆𝑛 − 𝑆𝑚 ∥= 0.   Therefore, {𝑆𝑘}0
∞  is a 

Cauchy sequence. It is known that the convergence region for the obtained 

truncated series solution in HPM may be limited and needs enhancements to 

enlarge the region of convergence (see Figure 4). We use the PA for increasing the 

convergence region of the HPM analytical solution. Figures 5 and 6 show that the 

HPM with the enhancement of PA is very effective, convenient, and quite accurate 
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for such types of space-fractional PDEs. Application of PA to the truncated series 

solution obtained by HPM, ADM, and VIM will be an effective tool to increase the 

region of convergence and accuracy of the approximate solution even for large 

values of 𝑡. The rational approximations [𝑁/𝑀] can be obtained by applying PA 

with respect to 𝑡  to the obtained series solution such that 𝑁 + 𝑀 ≤  {highest 

power of the variable 𝑡 in the truncated series solution}. 

 

 

7  Conclusions 

    In this paper, we provide a new strategy for obtaining an analytic approximation 

for the pdf of the stable and geo-stable distributions by studying the space-fractional 

PDEs, the fundamental solutions of which are the pdf of tthese distributions. We 

show that three analytic approximation methods — homotopy perturbation method, 

Adomian decomposition method, and variational iteration method — can be used 

successfully for finding the solutions of a space-fractional PDE and that these 

solutions are the pdf of stable and geo-stable distributions. This suggests that these 

three analytic approximation methods are very powerful and efficient methods for 

finding the analytical solutions of the pdf for the stable and geo-stable distributions 

for a large class of them. One disadvantage of these methods is that the region of 

convergence is not large. However, by applying the Padé approximation method to 

the truncated series solution obtained by the HPM, we obtain an effective tool to 

increase the region of convergence and accuracy of the approximate solution even 

for large values of 𝑡. 

 

 

Figure  4: The plots of analytic approximation for pdf of geo-stable distribution   

           with HPM, where 𝛼 = 0.2 and 𝛼 = 0.8, from left to right,        

           respectively (both of left); The plots of analytic approximation for pdf of  

           geo-stable distribution with HPM, where 𝛼 = 1.2 and 𝛼 = 1.8, from  

           left to right, respectively (both of right)  
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Figure  5: The plots of analytic approximation for pdf of stable distributions with  

           HPM and HPM with PA, where 𝛼 = 0.2, from left to right, respectively  

           (green and brown from left); The plots of analytic approximation of the  

           pdf for stable distributions with HPM and HPM with PA, where  

           𝛼 = 0.9, from left to right, respectively (blue an green from right) 

 

 

 

Figure  6: The plots of analytic approximation for pdf of stable distributions with   

           HPM and HPM with PA, where 𝛼 = 1.2, from left to right, respectively  

           (up); The plots of analytic approximation for pdf of stable distributions  

           with HPM and HPM with PA, where 𝛼 = 1.9, from left to right,  

           respectively (down) 
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Another disadvangage is that, in the small neighborhood of zero these methods do 

not exhibit good performance. By demonstrating that the terms of the series by 

HPM, ADM, and VIM hold true for a contraction, then the convergence of the 

analytic approximation of the pdf for the stable and geo-stable distributions will be 

guaranteed. In addition, an algorithm for evaluating the analytic approximation of 

the pdf  for these distributions can be obtained. 

 

 

Appendix: Proofs of Theorems 2.1 and 2.2 

Proof of Theorem 2.1:  

 Based on the relation between the geo-stable and stable distributions, we have  

𝜓(𝑡) = [1 − log𝜙 𝑡 ]−1, 

or     

                     𝜙 𝑡 = exp  
𝜓 𝑡 −1

𝜓 𝑡 
 .                            (38) 

However,  𝜙(𝑡) is the fundamental solution of equation (6), if 𝑢0(𝑥) = 𝛿(𝑥), then 

𝐾(𝑥, 𝑡) = 𝜙(𝑡)  (see [17]). So 
∂𝐾

∂𝑡
= 𝐶(𝑖𝜔)𝛼𝐾(𝑥, 𝑡).   According to the relation 

(38),  

 
∂

∂𝑡
 exp  

𝐾1(𝑥 ,𝑡)−1

𝐾1(𝑥 ,𝑡)
  = 𝐶(𝑖𝜔)𝛼exp  

𝐾1(𝑥 ,𝑡)−1

𝐾1(𝑥 ,𝑡)
 .                (39) 

 the left side of relation (39) is  

∂

∂𝑡
 exp  

𝐾1 𝑥, 𝑡 − 1

𝐾1 𝑥, 𝑡 
  =

∂

∂𝑡
 
𝐾1 𝑥, 𝑡 − 1

𝐾1 𝑥, 𝑡 
 × exp  

𝐾1 𝑥, 𝑡 − 1

𝐾1 𝑥, 𝑡 
 , 

                                             =

∂𝐾1

∂𝑡
. 𝐾1 −

∂𝐾1

∂𝑡
𝐾1 +

∂𝐾1

∂𝑡

(𝐾1(𝑥, 𝑡))2
× exp  

𝐾1(𝑥, 𝑡) − 1

𝐾1(𝑥, 𝑡)
  

                                      =  
∂𝐾1

∂𝑡
×

1

(𝐾1(𝑥, 𝑡))2
 × exp  

𝐾1(𝑥, 𝑡) − 1

𝐾1(𝑥, 𝑡)
 , 

 so,  

∂𝐾1

∂𝑡
=  𝐾1(𝑥, 𝑡) ×  𝐶(𝑖𝜔)𝛼𝐾1(𝑥, 𝑡) . 

By the definition of the inverse Fourier transform, we have  

 
∂𝐾1

∂𝑡
 = 𝐹−1  𝐾1 𝑥, 𝑡  ×  𝐶(𝑖𝜔)𝛼𝐾1(𝑥, 𝑡)  ,

∂𝐹−1 𝐾1 

∂𝑡
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= 𝐹−1{ 𝐾1 𝑥, 𝑡  } ∗ 𝐹−1{𝐶(𝑖𝜔)𝛼𝐾1(𝑥, 𝑡)}, 

∂𝑢1 𝑥, 𝑡 

∂𝑡
= 𝑢1 𝑥, 𝑡 ∗ 𝐶

∂𝛼

∂𝑥𝛼
𝑢1 𝑥, 𝑡 ,                                                

where 𝐹−1{𝐾1(𝑥, 𝑡)} = 𝑢1(𝑥, 𝑡). 

Now, we can obtain the initial condition. Since   

𝐾1(𝑥, 𝑡) = [1 − log𝐾(𝑥, 𝑡)]−1,   and   𝐾(𝑥, 0) = 1, 

then  

𝐾1(𝑥, 0) = [1 − log1]−1 = 1. 

Also, 

𝐹−1 𝐾1 𝑥, 0  = 𝛿 𝑥 .                                                                                                         ■ 

 

Proof of Theorem 2.2:  

If 𝐻{𝑢(𝑥, 𝑡)} is the Fourier transform of 𝑢(𝑥, 𝑡) , where 𝑢(𝑥, 𝑡) is probability 

density function of the stable distribution, then  

∂𝑢

∂𝑡
= −

1+𝛽

2𝑐

∂𝛼

∂𝑥𝛼 𝑢 𝑥, 𝑡 −
1−𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢 𝑥, 𝑡 + 𝜇

∂

∂𝑥
𝑢 𝑥, 𝑡 ,                        (40) 

where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1, and −∞ < 𝜇 < ∞, also 𝑐 = cos
𝛼𝜋

2
 and 

𝑠 = sin
𝛼𝜋

2
.  If 𝐻(𝜔, 𝑡) is the Fourier transform of 𝑢(𝑥, 𝑡) with respect to 𝑡, then 

equation (40) converts to the following initial value problem  

∂𝐻

∂𝑡
= −

1+𝛽

2𝑐
(𝑖𝜔)𝛼𝐻 −

1−𝛽

2𝑐
(−𝑖𝜔)𝛼𝐻 + (𝑖𝜇𝜔)𝐻,                                         (41) 

 where the initial value is 𝛿(𝑥). If 𝑢(𝑥, 0) = 𝛿(𝑥), then 𝐻(𝜔, 0) = 1, the solution 

of equation (41) can be obtained as  

𝐻(𝜔, 𝑡) = exp{−
1+𝛽

2𝑐
(𝑖𝜔)𝛼𝑡 −

1−𝛽

2𝑐
(−𝑖𝜔)𝛼𝑡 + (𝑖𝜇𝜔)}.               (42) 

Also, the connection between 𝐻(𝜔, 𝑡) and 𝐻(𝜔, 𝑡) is  

𝐻1(𝜔, 𝑡) = [1 − log𝐻(𝜔, 𝑡)]−1,                                       (43) 

 or    

𝐻(𝜔, 𝑡) = exp(
𝐻1(𝜔, 𝑡) − 1

𝐻1(𝜔, 𝑡)
), 

where 𝐻1(𝜔, 𝑡) = 𝐹{𝑢1(𝑥, 𝑡)} and 𝑢1(𝑥, 𝑡) is the pdf of geo-stable distributions. 

From relation (42) and (43), we have  

∂𝐻1

∂𝑡
×

1

(𝐻1(𝜔, 𝑡))2
= −

1 + 𝛽

2𝑐
(𝑖𝜔)𝛼 −

1 − 𝛽

2𝑐
(−𝑖𝜔)𝛼 + (𝑖𝜇𝜔) 
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or   

  
∂𝐻1

∂𝑡
=  𝐻1 𝜔, 𝑡  × (−

1+𝛽

2𝑐
(𝑖𝜔)𝛼𝐻1 𝜔, 𝑡 −

1−𝛽

2𝑐
 −𝑖𝜔)𝛼𝐻1 𝜔, 𝑡   

               +(𝑖𝜇𝜔)𝐻1(𝜔, 𝑡).  

By the definition of the inverse Fourier transform, we will have  

∂𝑢1

∂𝑡
= 𝑢1(𝑥, 𝑡)

∗  −
1 + 𝛽

2𝑐

∂𝛼

∂𝑥𝛼
𝑢1(𝑥, 𝑡) −

1 − 𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢1(𝑥, 𝑡) + 𝜇

∂

∂𝑥
𝑢1(𝑥, 𝑡) , 

where 𝐹−1{𝐻1(𝜔, 𝑡)} = 𝑢1(𝑥, 𝑡). 

Now, we are going to get the initial condition. Since 

𝐻1(𝜔, 𝑡) = [1 − log𝐻(𝜔, 𝑡)]−1, 

and 𝐻(𝜔, 0) = 1, then 𝐻1(𝜔, 0) = [1 − log1]−1 = 1. Also, 

                        𝐹−1 𝐻1 𝑥, 0  = 𝛿 𝑥 .                                   ■ 
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