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Abstract

This paper deals the option pricing problem in the weighted frac-

tional Brownian motion model. Both the long-range dependence of the

weighted fractional Brownian motion and the European option pricing

formula are obtained. Figures are given to illustrate the effectiveness of

the result and show that the weighted-fractional model to option pricing

is a reasonable one.
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1 Introduction

Since it appeared in the 1970s, the Black-Scholes model [2] has become the
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most popular method for option pricing and its generalized version has pro-

vided mathematically beautiful and powerful results on option pricing. How-

ever, they are still theoretical adoptions and not necessarily consistent with

empirical features of financial return series, such as nonindependence, non-

linearity, self-similarity etc, which contradict to the traditional Black-Scholes

assumption. For example, Hsieth[8], Mariani et al.[11], Ramirez et al.[15] and

Willinger et al.[18] showed that returns are of long-range (or short-range) de-

pendence, which suggests strong time-correlations between different events at

different time scales (e.g., see Mandelbrot [10], and Cajueiro and Tabak [7, 17]).

In the search for better models for describing long-range dependence in finan-

cial return series, a fractional Brownian model (fBm) has been proposed as

an improvement of the classical Black-Scholes model, see Peters [14], Hu and

Øksendal [9], Ciprian Necula [13] and references therein.

As an extension of the Brownian motion, Bojdecki et al. [5] introduced

and studied a rather special class of self-similar Gaussian processes which pre-

serve many properties of the fractional Brownian motion. This process arises

from occupation time fluctuations of branching particle systems with Poisson

initial condition. This process is called weighted fractional Brownian motion

(weighted-fBm). More works for weighted-fBm can be found in Bojdecki et

al. [6], Yan-An [19] and references therein. It is well known that the fractional

Brownian motion is the only continuous Gaussian process which is self-similar

and has stationary increments. However, contrast to the extensive studies

on fractional Brownian motion, there has been little systematic investigation

on other self-similar Gaussian processes. The main reasons for this are the

complexity of dependence structures and the non-availability of convenient

stochastic integral representations for self-similar Gaussian processes without

stationary increments. On the other hand, many authors have proposed to use

more general self-similar Gaussian processes and random fields as stochastic

models, and such applications have raised many interesting theoretical ques-

tions about self-similar Gaussian processes and fields in general. There it seems

interesting to study the weighted-fractional Black-Scholes model.

We mainly use a probabilistic and actuarial approach for pricing option de-

veloped by M. Blat et al [4]. This approach is valid even when an equilibrium

price measure does not exist (arbitrage, non-equilibrium) or is not unique (in-

completeness). By selecting different asset as numeraire and the corresponding
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measure transformations, we generalize the classic measure transform methods

to weighted fractional Brownian motion market which not only enriches the

option pricing method of quasi-martingale, but also gives a new look to the

derivation of weighted fractional option pricing formula.

The remainder of this paper is organized as follows. Section 2 presents

the weighted-fBm version of the Black-Scholes model and investigates the

longe-range dependence of weighted-fBm. In Section 3, the weighted frac-

tional Black-Scholes formula is obtained, and figures are given to illustrate

the effectiveness of the result and show that the weighted fractional model to

option pricing is a reasonable one.

2 Merton weighted-fractional model

Since a financial system is a complex system with great flexibility, investors

do not make their decisions immediately after receiving the financial informa-

tion, but rather wait until information reaches to its threshold limit value. This

behavior can lead to the features of “asymmetric leptokurtic” and “long/short

memory”. The weighted fractional Brownian motion may be a useful tool for

capturing this phenomenon.

Whereas the original model assumes a Geometric Brownian motion for the

firm value, in this paper we consider the following dynamics for V :

dVt = µVtdt+ σVtdB
a,b
t , (1)

where B
a,b
t denotes a weighted fractional Brownian motion and the stochastic

integration is divergence-type. Let Ω = C0(0, T ;R) be the Banach space of

a real-valued continuous function on [0, T ] with the initial value zero and the

super norm. There is a probability measure P on (Ω,F ), where F is the Borel

σ-algebra on Ω such that on the probability space (Ω,F , P ), the process Ba,b
t

defined as

B
a,b
t = ω(t), ∀ω ∈ Ω,

is a (one dimensional) Gaussian process with mean

EB
a,b
t = EB

a,b
0 = 0, ∀t ∈ [0, T ],



90 A Weighted-fractional model ...

and covariance

E

[

B
a,b
t Ba,b

s

]

=

∫ s∧t

0

ua[(t− u)b + (s− u)b]du, ∀t, s ∈ [0, T ],

particularly,

E

[

(Ba,b
t )2

]

= 2

∫ t

0

ua(t− u)bdu, ∀t ∈ [0, T ].

The canonical process {Ba,b
t , t ∈ [0, T ]} is called a standard weighted-fBm if a

and b satisfy the conditions

a > −1, |b| < 1, |b| < a+ 1. (2)

For a = 0, the weighted-fBm reduces to the usual fractional Brownian motion

with Hurst parameter 1
2
(b + 1) , and the Brownian motion for a = b = 0 (up

to a multiplicative constant). The weighted fractional Brownian motion has

properties analogous to those of the fractional Brownian motion (self-similarity,

path continuity and it is neither a Markov process nor a semimartingale).

For simplicity throughout this paper we use the notation x∨y := max{x, y}
and F � G with the meaning that there are positive constants c1 and c2 so

that

c1G(x) ≤ F (x) ≤ c2G(x)

in the common domain of F and G.

Theorem 2.1. Under the condition (2) we have

E

[

(

B
a,b
t − Ba,b

s

)2
]

� (t ∨ s)a|t− s|b+1 (3)

for s, t ≥ 0. In particular, we have

E

[

(

B
a,b
t − Ba,b

s

)2
]

≤ Ca,b|t− s|a+b+1 (4)

for a ≤ 0.

Proof. For all t > s > 0 we have

Q(t, s) : =

[

(

B
a,b
t − Ba,b

s

)2
]

= 2

∫ t

s

ua(t− u)bdu

= 2ta+b+1

∫ 1

s
t

ra(1− r)bdr.
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Consider the function

x 7→ f(x) =

∫ 1

x

ra(1− r)bdr, x ∈ [0, 1]

for all a, b > −1. We have

lim
x→1

f(x)

(1− x)1+b
=

1

1 + b

for all a, b > −1, which gives

∫ 1

x

ra(1− r)bdr � (1− x)1+b, x ∈ [0, 1].

In particular, for a ≤ 0 we have (1− x)1+b ≤ (1− x)1+a+b. This completes the

proof.

Thus, Kolmogorov’s continuity criterion implies that weighted - fBm is

Hölder continuous of order δ for any δ < 1 + b.

Recall that a process X is the long-range dependence if

∑

n≥α

ρn(α) = ∞, (5)

for any α > 0, and it is short-range dependence if

∑

n≥α

|ρn(α)| < ∞. (6)

where

ρn(α) = E [(Xα+1 −Xα)(Xn+1 −Xn)] , α > 0.

Theorem 2.2. Let Ba,b be a weighted-fBm with a > −1,−1 < b < 1 and

|b| < 1 + a.

(i) If b > 0, then Ba,b is long-range dependence;

(ii) If b < 0, then Ba,b is short-range dependence.
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Proof. For any α > 0 and n ≥ α + 1 we have

ρn(α) = E
[

(Ba,b
α+1 −Ba,b

α )(Ba,b
n+1 −Ba,b

n )
]

=

∫ α+1

α

ua
[

(n+ 1− u)b − (n− u)b
]

du.

If b > 0, we have

0 < (n+ 1− u)b − (n− u)b = (n+ 1− u)b

[

1−
(

1− 1

n+ 1− u

)b
]

∼ (n+ 1− u)b−1

for all α ≤ u ≤ α + 1, and

ρn(α) ∼
∫ α+1

α

ua(n+ 1− u)b−1du ≥ 1

1 + a

(

(α + 1)1+a − α1+a
)

(n+ 1− α)b−1,

which deduces the seises
∑

n≥α

ρn(α) = ∞.

If b < 0, we have

0 < (n− u)b − (n+ 1− u)b = (n− u)b

[

1−
(

1 +
1

n− u

)b
]

∼ (n− u)b−1

for all α ≤ u ≤ α + 1, and

|ρn(α)| ∼
∫ α+1

α

ua(n− u)b−1du ≤ 1

1 + a

(

(α + 1)1+a − α1+a
)

(n− α− 1)b−1,

which deduces the seises
∑

n≥α

|ρn(α)| < ∞.

This completes the proof.

In what follows we model long-range dependence of financial assets under

the assumption b > 0, and denote by Φ(·) the cumulative probability distribu-

tion function of a standard normal random variable:

Φ(x) =
1√
2π

∫ x

−∞

exp

(

−1

2
u2

)

du

and by ϕ(·) = Φ′(·) the density function.
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3 Pricing using Fair Premium

Consider a financial market in which we have two securities: a bond (Se-

curity 1) with (instantaneous) interest rate which is also interpreted as the

risk-free rate of interest, and a stock (Security 2) which is described by the

stochastic price process (pay-out) Vt at time t. A time interval [0, T ]is consid-

ered with 0 being the initial or present time and T being the terminal time.

The price of Security 2 is denoted by V0. We are interested in calculating the

pricing of a European call option C(K,T ), say, written on Security 2 with

strike price K and time to maturity T .

Definition 3.1. The value {Vt} results in an expected (instantaneous) rate of

return µ and T is defined as

eµT =
E[VT ]

V0

(7)

Since nothing has been assumed about the process {Vt}, µ will in general

depend on T .

Lemma 3.1. (M. Bladt et al [4]) The fair premium, and hence the call option

price, C(K,T ), of a European call option with time to maturity T and strike

price K is given by

C(K,T ) = E[(e−µTVT − e−rTK)1{e−µTVT>e−rTK}] (8)

and the put option price, P (K,T ), of a European put option with time to

maturity T and strike price K is given by

C(K,T ) = E[(e−rTK − e−µTVT )1{e−µTVT<e−rTK}]. (9)

According to Alós et al [1] (see also Yan-An [19]), we have the following.

Lemma 3.2. The solution to Equation (1) is given by

Vt = V0 exp

(

µt− σ2

∫ t

0

ua(t− u)bdu+ σB
a,b
t

)

. (10)
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Theorem 3.1. The fair premium, and hence the call option price, C(K,T ),

of a European call option with time to maturity T and strike price K, is given

by

C(K,T ) = V0Φ(d1)−Ke−rTΦ(d2), (11)

where

d1 =
ln V0

K
+ rT + σ2

∫ T

0
ua(T − u)bdu

σ

√

2
∫ T

0
ua(T − u)bdu

, (12)

and

d2 =
ln V0

K
+ rT − σ2

∫ T

0
ua(T − u)bdu

σ

√

2
∫ T

0
ua(T − u)bdu

. (13)

Proof. Fix T > 0, for t ∈ [0, T ], the weighted fractional Brownian motion B
a,b
t

is a centered Gaussian process with variance 2
∫ T

0
ua(T − u)bdu. According to

(10), we have

Vt

V0

= exp

(

µt− σ2

∫ t

0

ua(t− u)bdu+ σB
a,b
t

)

.

Then

log
Vt

V0

= µs− σ2

∫ t

0

ua(t− u)bdu+ σB
a,b
t ), (14)

which means log VT

V0
is a Gaussian process with mean µs − σ2

∫ t

0
ua(t − u)bdu

and variance 2σ2
∫ t

0
ua(t − u)bdu. The distribution of VT at T is in fact the

only thing we need since only the price at the terminal date matters. Then

noticing that e−µTVT > e−rTK is equivalent to

ST >
log K

V0
+ σ2

∫ T

0
ua(T − u)bdu− rT

σ
.

From the Lemma 3.1, the call option price, C(K,T ), of a European call option

with time to maturity T and strike price K is given by

C(K,T ) = E[(e−µTVT − e−rTK)1{e−µTVT>e−rTK}]. (15)



X. Sun, L. Yan and H. Jing 95

First get that with y =
log K

V0
+σ2

∫ T

0 ua(T−u)bdu−rT

σ
,

E[eµTVT1{e−µT VT>e−rTK}]

= e−µT

∫ ∞

y

V0e
µT−σ2

∫ T

0 ua(T−u)bdu+σx 1
√

4π
∫ T

0
ua(T − u)bdu

e
− x2

4
∫T
0 ua(T−u)bdudx

= V0

∫ ∞

y

1
√

4π
∫ T

0
ua(T − u)bdu

e
−

(x−2σ
∫T
0 ua(T−u)bdu)2

4
∫T
0 ua(T−u)bdu dx

= V0P (Z > y),

where Z ∼ N(2σ
∫ T

0
ua(T − u)bdu, 2

∫ T

0
ua(T − u)bdu). Furthermore

P (Z > y) = Φ(
ln V0

K
+ rT + σ2

∫ T

0
ua(T − u)bdu

σ

√

2
∫ T

0
ua(T − u)bdu

).

On the other hand

E[e−rTK1{e−µTVT>e−rTK}]

= e−rTKΦ(
ln V0

K
+ rT − σ2

∫ T

0
ua(T − u)bdu

σ

√

2
∫ T

0
ua(T − u)bdu

).

Then the proof of this theorem is complete.

Corollary 3.1. The put option price, P (K,T ), of a European put option with

time to maturity T and strike price K is given

P (K,T ) = Ke−rTΦ(−d2)− V0Φ(−d1). (16)

In Figure 1, 2, 3, 4, we plot the prices of the call option and the put option at

time zero as a function of time to maturity for three values of σ ∈ {0.2, 0.3, 0.5}
and three values of the parameter a ∈ {−0.2, 0.0, 0.2} with a fixed b = 0.4.
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Figure 1: Price of call option at time zero resulting in the weighted-fractional

Merton model against maturity time T when r = 0.06, a = 0.2, b = 0.4,

K = 60, V0 = 100 and 0 < T < 50.
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Figure 2: Price of call option at time zero resulting in the weighted-fractional

Merton model against maturity time T when b = 0.4, r = 0.06, σ = 0.2,

K = 60, V0 = 100 and 0 < T < 50.
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Figure 3: Price of put option at time zero resulting in the weighted-fractional

Merton model against maturity time T when r = 0.06, a = 0.2, b = 0.4,

K = 60, V0 = 100 and 0 < T < 50.
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Figure 4: Price of put option at time zero resulting in the weighted-fractional

Merton model against maturity time T when b = 0.4, r = 0.06, σ = 0.2,

K = 60, V0 = 100 and 0 < T < 50.



98 A Weighted-fractional model ...

In the above four Figures, for fixed T , we see that the price of European

call option is increasing with respect to σ and a.
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