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Abstract 

The present economic and financial crisis has underlined the importance to financial 

institutions and investors of having access to efficient methods of quantifying credit risk, 

or the probability of default. The logit models are among the techniques commonly used 

by large organizations and rating agencies for predicting insolvency. However, it should 

be borne in mind that some problems arise when using these models, such as the selection 

of the explanatory variables or the composition of the sample from which the model is 

obtained. These aspects have a decisive influence on the prediction models used to 

quantify companies’ credit risk. The present study describes the problems that arise with 

logit on a sample of Spanish companies and shows that the estimated prediction models 

are indeed modified by changes in the sample on which they are based. 
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1  Introduction  

The study of the probability of default and the creation of credit ratings existed even 

before 1909, when Moody’s, Fitch and Standard & Poor started to analyse the situation of 

US railway companies. However, the origin of this line of investigation is attributed to 

Beaver and Altman at the end of the nineteen sixties. Using univariate analysis on 30 

different ratios, Beaver [1] showed that the value of certain ratios varied significantly 

between healthy companies and those in financial difficulties. Altman [2] later used linear 

discriminant analysis on various financial ratios in a multivariant context to develop 

insolvency prediction models. This study encouraged other researchers to look for new 

statistical and econometric techniques that would provide a method of predicting defaults, 

including the famous Z-score created by de Altman et al. [3]. Without being exhaustive, 

among the pioneering papers we can include: Jensen [4], Gupta & Huefner [5], who used 

cluster analysis; Vranas [6] with a linear probability model; the work of Martin [7], 

Ohlson [8], Zavgren [9], Peel [10], Keasey et al. [11] and Westgaard & Wijst [12] on logit 

models; Zmijewski [13], Casey et al. [14] and Skogsvik [15] with probit models; Luoma 

& Laitinen’s study [16] based on survival analysis and the work of Scapens et al. [17] on 

catastrophe theory. In the last two decades, researchers have focused on artificial 

intelligence and non-parametric methods, including: mathematical programming, expert 

systems (Elmer y Borowski, [18]; Messier & Hansen, [19]), machine learning (Frydman 

et al., [20]), rough sets (Slowinski y Zopounidis, [21]; Dimitras et al., [22], McKee [23], 

neural networks (Wilson & Sharda, [24]; Boritz & Kennedy, [25]) and multicriteria 

decision analysis  – MCDA (Andenmatten, [26]; Dimitras et al., [27]; Zopounidis & 

Doumpos, [28]). In many of these studies a high degree of precision was achieved in 

classifying and predicting business defaults. 

It should be pointed out that although there are many methods of estimating the 

probability of a default, as stated above, at the present time the traditional methods, 

especially those based on the logit model, are still preferred by professionals in the field. 

In fact, they are the principal tool of the rating agencies and are often used as a 

benchmark in academic studies to quantify credit risks. However, one must be aware of 

certain robustness problems that can arise when using logit, especially in relation to the 

composition of the sample used to estimate the model. By this we do not mean that the 

use of logit models should be abandoned, but rather that researchers should pay close 

attention to three factors: the choice of variables to be used in the model, the influence of 

the sample on the model results and the cutoff point. Financial variables, especially 

accounting ratios, are normally used in this type of works and it is not usually advisable to 

mix absolute and relative variables. Since a choice can be made from a wide range of 

variables, a factor analysis is normally carried out to reduce their number, keep the 

degrees of freedom high and avoid multicollinearity problems, while ensuring that the 

principal financial dimensions (profitability, liquidity, solvency, etc.) are represented. 

Evidently, it is highly probable that the result of the factor analysis will be influenced by 

the sample of companies used; if these companies are changed, the variables selected after 

the factor analysis will also vary. 

Whatever the variables used, the logit model finally obtained will depend on the sample 

on which the model is based. This means that only some of the preselected variables will 

actually be used in the model, since both the selection and the weighting of the variables 

will depend on the sample of companies. 

Also to be taken into account is the fact that whatever cutoff point is chosen, even though 
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it will not modify neither the selected variables nor their weights, this cutoff point will 

affect the discrimination process and thus also the percentage of correct and incorrect 

predictions. 

In the present study we will use the logit model to analyse credit risk on a sample of 

Spanish companies using financial information. Throughout the model estimation process 

we will see how the estimated models will in fact vary as the sample is modified. This 

point is of great importance for researchers and professionals, since it shows the high 

degree of dependence of the models on the sample used. A fundamental part of the 

process is therefore to ensure that the sample is appropriate to the case. 

The rest of the paper is structured as follows: the following section describes the data base 

of the companies used in the study. Section 3 deals with the selection of the independent 

variables. Section 4 describes the estimation of the logit model from different subsamples 

and how changes in the sample influence the models obtained. Finally, the main 

conclusions reached are presented in Section 5. 

 

 

2  Description of the Data Base 

The preliminary phase of the application of a statistical analysis focuses on identifying 

companies considered to be experiencing problems, or indications of companies in trouble. 

When using legal and financial information of the companies, there is no unique 

definition of which business situations should be taken as evidence of failing businesses; 

the most generally accepted is that of being involved in bankruptcy proceedings. Apart 

from the legal definition, there are other types of financial information that can be taken 

into account, such as technical bankruptcy, net negative worth or operating losses for two 

or more consecutive financial years. 

The present study considers both the legal situation (being su8bject to court proceedings) 

and net negative worth (technical bankruptcy) when classifying the financial situation of 

the companies in the sample. 

The data base for our study consisted of Spanish companies with total assets between €2m 

and €50m in 2007, and information for financial year 2007 was obtained for them from 

the SABI data base.5 The firms belonged to Group A (agriculture, stock-farming and 

forestry), Group C (manufacturing, food processing and soft drinks) as classified by the 

National Classification of Economic Activities (CNAE, 2009). 

A total of 49 companies from the sample were considered to be insolvent (Table 1 in the 

Appendix) as defined above. 

The financial information of the companies was then analysed and a comparison was 

made between the solvent and insolvent firms. This information is summed up in Table 2 

(in Appendix), which gives the mean values of their main assets and liabilities. 

From this information certain differences can be detected between healthy companies and 

those in difficulties as regards the process that sets active companies on the road to 

bankruptcy. The most striking aspect is that the firms experiencing default have very high 

ratios of both short and long term debts; the short-term are two and a half times greater 

than equity and the long term are even higher. This is clear evidence of financial 

                                                 

5
 Publisher of the SABI data base (Sistema de Análisis de Balances Ibéricos): Bureau van Dijk 
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difficulties and shows that part of the short term debt has been converted to long term in 

an effort to avoid collapse. 

An analysis of the ratio between equity and assets for both types shows that while solvent 

firms reach almost 50% of total assets, the insolvent only reach 1%, an indication of their 

difficult situation. It seems reasonable that over a number of years the bankruptcy process 

would involve capital being reduced to such an extent that it often reaches negative 

values.  

 

 

3  Selection of the Independent Variables  

A set of long-established financial and accounting ratios were selected from the firms’ 

balance sheets as independent variables, chosen both for their ease of computation and for 

having been frequently used in previous studies. 

The list, belonging to different categories such as liquidity, solvency, profitability and 

economic structure, is given in Table 3 (see in the Appendix). 

When working with a list of interrelated ratios, most studies that apply a regression model, 

as in the logit case, carry out a preliminary step using principal component factor analysis 

or similar techniques to reduce the number of variables and avoid statistical problems, 

such as multicollinearity. In this way the observable variables (the calculated ratios) are 

grouped into a set of non-observable variables or non-correlated factors. So the variables 

assigned to a factor will be closely related to each other but not to the variables assigned 

to other factors. 

The Kaiser criterion was used in the application of the principal components analysis to 

the data base of the firms. This consists of selecting components with an eigenvalue 

higher than 1, i.e. with greater explanatory capacity than the average single factor. Nine 

components were extracted with a cumulative percentage of explained variance of 

78.50%.  

Table 4 in the Appendix gives the varimax orthogonal rotation of the factor matrix to 

facilitate the interpretation of the non-correlated factors so as to achieve a better 

assignation of the variables. 

Each variable is assigned a single factor, the one that presents the highest factor weighting, 

as shown in Table 5 (see in the Appendix). 

As can be seen, certain groups of variables are closely related to each other and thus were 

grouped into their corresponding factors. For example, Factor 1 groups the variables 

related with profitability and earnings. Factor 2 is related to cash, 3 to productivity, 4 to 

covering financial expenses and 7 to liquidity. 

The logistic regression model is formulated after assigning the different variables to the 

appropriate factors. The dependent variable is solvency or default and the independent 

variables are selected by a method that combines stepwise variable selection according to 

the Wald variable selection algorithm with the criterion of choosing a single variable from 

each factor. 

 

 

4  Applying the Logit Model to the Prediction of Business Failures 

Given a dichotomous dependent variable, logistic regression constructs a predictive 
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model that will forecast the group to which an observation belongs using one or more 

independent variables. Like the ratios described above, in this case the independent 

variables are quantitative. In other words, the logit technique provides a linear 

combination of independent variables (financial ratios) that makes it possible to estimate 

the likelihood of a firm belonging to either of two previously defined sub-populations or 

groups (the dependent variable in this case will be default and will take the value 0 if the 

firm has been defined as solvent, while it will take the value 1 if the firm has been defined 

to be in default). Each firm can only belong to one group. The model calculates the 

probability “p” of the firm belonging to the second (insolvent) subpopulation by 

expression (1): 

p 
1

1 e
   0  1

 1  2 2    k k 
 

(1) 

 i being the independent variables (ratios) included in the model and   the estimated 

coefficients for each of the ratios used. If this probability is equal to or greater than 0.5, 

the firm is classified as belonging to this subpopulation, and if not, it is placed in the first 

group (defaulted companies). In the samples used in the present study the independent 

variables for the model were selected from the factors obtained from the factor analysis 

shown in Table 6 (in the Appendix): 

To obtain the prediction model for the firms’ future financial state, different analyses 

were carried out by logistic regression, firstly for the initial sample of firms and then for 

different subsamples within the set of initial companies. The model results are given 

below for each case. Later they are analysed and interpreted. When the model was being 

constructed, due to the fact that around 8% of the firms in the original sample were 

insolvent (49 out of 622), different initial probabilities of belonging to one group or the 

other and different cutoff points were considered. 

The Forward method (a new variable is introduced in each step) and the Wald statistic 

were used in all the models to select the subset of variables to be included.  

Table 7 gives the model estimated by logit regression for the sample of 622 firms from 

the Spanish food and agriculture sector using financial information as of 2007. 

As can be seen on Table 7 in the Appendix, the calculation was repeated, changing only 

the cutoff point from 0.5 to 0.2. In this case, when the model assigns a value greater than 

0.2 the firm is classified as insolvent. Another result to be borne in mind is that the 

probability of being in the first group (non insolvent firms) is reduced, but on the other 

hand the probability of correctly predicting insolvency is increased. 

The analysis was then repeated again, dividing the sample into two groups at random. 

These results are shown in Tables 8 and 9 (see in the Appendix). 

For the first half of the sample in Table 8, the percentage of correct predictions has 

improved in both the 50% (from global 95.30% to 97.10%) and 20% cutoff points 

(91.20% to 92.90%). However, in the second half prediction accuracy in the overall 

classifications was slightly worse at the first cutoff point (0.5) and improved slightly at 

the second (0.2). The percentage of correct classifications was reduced in the group of 

insolvent firms in the second half. 

Finally, the third balanced sample (subsample), dealing with an equal number of insolvent 

and non-insolvent firms, gave the results for a 0.5 cutoff point as shown in Table 10 in the 

Appendix. Both the overall and group classifications have improved, reaching 97.60% in 

all cases. 

It can also be inferred from Tables 7-10 that the coefficients of the variables are 
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significant in all the samples except in the last, in which, even though it has two variables, 

only the one representing equity over total assets is significant, at 90% (0.1). We can also 

see that most of the beta coefficients have negative signs except when the DPC variable 

appears (cash and realizable assets over short-term debts). It should be noted that this is 

caused because the insolvent firms are assigned to the second group (giving them a value 

of 1 and healthy firms a value of 0). If the coding of the dichotomous variable were to be 

modified, with insolvent firms in the first group (0) and solvent in the second (1), the 

signs of the coefficients would change, but not their values. 

Exp ( ) indicates whether or not a variable influences the probability of default. In the 

variables in which this value is higher than 1, the influence is in proportion to the value; if 

the values are less than 1, the influence on the result is reduced. 

The only variable present in all the models is the ratio of equity over assets, perhaps 

because the firms classified as technically bankrupt were included in the insolvent group, 

even if their legal situation had not been modified. In second place is short-term debt 

coverage over disposable and realizable assets. 

 

 

5  Conclusion 

There is no doubt about the critical importance, especially for the financial sector, of 

identifying and managing credit risk. A large number of models have been developed in 

recent decades that use financial data to differentiate between healthy and troubled 

companies, of which those based on logistic regression are among the most widely used 

by rating agencies, financial organizations and academic researchers. In spite of the fact 

that this model is unquestionably useful and is even taken as a benchmark to measure the 

performance of new methods, it is not completely free of difficulties, such as the selection 

of the appropriate sample to estimate the model. This question should be borne in mind by 

researchers and those active in the professional field, who very often do not give it the 

attention it deserves.        

The present paper describes the credit risk analysis of a number of Spanish business 

companies by means of the logit model. An analysis is made of the causal relationship 

between a classification variable and different independent variables based on information 

from the firms’ balance sheets, with the aim of predicting their classification into solvent 

and insolvent firms 12 months in the future. After carrying out a factor analysis to select 

the explanatory variables, various logit models were estimated by Wald’s forward method 

on four different samples of business companies. The first sample contained the entire 

population of selected companies, the second only 50% of the total number selected at 

random, the third contained the remaining 50% and the fourth a balanced sample made up 

of one half insolvent and one half solvent companies. Since the same logit model was 

estimated by Wald’s forward method but on different samples, we were able to show how 

the variables that finally appear in the models had undergone changes, as did the 

weighting of each one, and how the predictive ability was also modified as the sample or 

cutoff point varied. The best prediction results were obtained from the final sample, 

which was the smallest and also the most balanced. 

The main conclusion that can be drawn from this work is the importance of the influence 

on the models of the sample from which the estimations are obtained. The selected 

database may have a big impact on the models obtained to calculate the probability of 

default. Indeed, together with the problems mentioned in this paper, there are other 
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important problems the researcher must face, as the quality and reliability of the data, the 

fact that financial data for most companies are only published once a year and regarding a 

situation which occurred several months ago, and the survival bias. 

All this aspect is important due to the large number of studies that make use of these 

models and the importance in the present economic situation, especially to financial 

organizations and investors, of being able to distinguish between financially healthy 

companies and those in distress. 
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Appendix 
 

 

Table 1: Causes for the insolvency of companies included in the sample 

 Subject to court proceedings Net negative worth 

   

Number of insolvent companies 22 27 

 

 

Table 2: Mean values of main assets and liabilities of firms included in the sample 

 

Solvent firms (€) Insolvent firms (€) 

   Total assets 18 530 112.00 20 514 654.57 

Current assets 9 555 091.30 7 738 751.14 

Non-current assets 8 975 020.70 12 775 903.43 

Current assets / Total assets 0.52 0.38 

Fixed assets / Total assets 0.48 0.62 

Equity 8 186 022.40 -236 171.53 

Current liabilities 6 918 850.83 8 747 684.69 

Fixed liabilities 3 425 238.77 12 003 141.41 

Current liabilities / Equity + Liabilities 0.37 0.43 

Non-current assets / Equity + Liabilities 0.18 0.59 

Equity / Equity + Liabilities 0.45 -0.02 
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Table 3: Ratios used in the empirical analysis 

ROA Operating income / Total assets 

RAI Pre-tax profits / Total assets 

RE Ordinary profits / Total assets 

RRF Financial results / Total assets 

REV Ordinary results / Sales 

AU Equity /Creditors  

C1 Total assets / Creditors 

C2 Assets / Creditors – Cash – Temporary investments)  

L1 Cash / Short term creditors       

L2 Cash / Assets 

L3 Current assets / Short term creditors  

L4 Operating income / Current liabilities 

L5 Creditors / Short term creditors 

ROAGF Operating income / Financial expenses 

FA Sales / Total assets 

P1 Operating income / Sales 

P2 Sales / Personnel expenses 

P3 Sales / Financial expenses 

P4 Pre-tax profits / Financial expenses  

P5 Sales / (Financial expenses + Personnel expenses ) 

BAIIGF Profits before tax and interest / Financial expenses 

DPC (Cash + Realizable assets) / Short term debt 

FPAT Equity / Total assets 
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Table 4: Rotated component matrix 

 Component 

 1 2 3 4 5 6 7 8 9 

          

RAI 0.935 0.004 -0.076 0.030 0.062 0.230 -0.044 0.003 -0.092 

RE 0.930 -0.012 -0.056 0.032 0.069 0.224 -0.084 0.023 -0.062 

ROA 0.912 -0.025 -0.037 0.047 0.063 -0.183 -0.043 -0.071 -0.135 

L4 0.594 -0.137 -0.160 0.068 0.086 -0.401 0.101 0.306 0.208 

FPAT 0.472 0.298 0.092 -0.013 -0.002 0.247 -0.089 -0.235 0.307 

L2 0.345 0.283 0.007 0.088 0.008 0.297 0.009 -0.069 0.010 

L3 0.055 0.907 0.013 -0.011 -0.009 -0.086 0.060 0.277 0.100 

DPC 0.057 0.905 0.010 -0.009 -0.006 -0.089 0.052 0.281 0.094 

L1 -0.036 0.800 0.070 0.025 0.051 0.196 0.044 -0.216 -0.059 

C1 -0.069 0.797 0.241 -0.052 -0.014 0.194 -0.099 -0.322 -0.093 

P5 -0.058 0.090 0.987 -0.043 -0.034 -0.013 0.021 -0.026 0.024 

P2 -0.035 0.134 0.844 -0.125 -0.016 0.130 -0.040 -0.150 -0.053 

P3 -0.066 0.003 0.817 0.075 -0.044 -0.186 0.088 0.136 0.109 

BAIIGF 0.066 -0.008 -0.056 0.992 0.047 -0.010 -0.007 0.020 -0.007 

ROAGF 0.058 -0.002 -0.026 0.992 0.038 -0.003 -0.012 0.003 -0.015 

P1 0.086 -0.024 -0.021 0.042 0.991 -0.022 0.000 0.022 0.015 

REV 0.091 0.047 -0.063 0.043 0.989 0.026 -0.011 0.005 0.003 

RRF 0.193 0.059 -0.090 -0.028 0.009 0.860 -0.009 0.148 0.070 

L5 -0.150 0.062 0.068 -0.016 0.000 0.008 0.739 0.064 0.079 

AU 0.050 -0.017 -0.025 0.003 -0.014 -0.036 0.733 -0.089 -0.128 

C2 -0.041 0.061 -0.006 0.013 0.019 0.103 -0.046 0.813 -0.106 

FA 0.156 -0.100 -0.181 0.060 -0.084 -0.173 -0.297 0.057 -0.656 

P4 -0.012 -0.032 -0.051 0.018 -0.034 -0.064 -0.203 -0.043 0.651 
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Table 5: Variables assigned to the different factors 

Factor 1: RAI, RE, ROA, L4, FPAT, L2 

Factor 2: L3, DPC, L1, C1 

Factor 3: P5, P2, P3 

Factor 4: BAIIGF, ROAGF 

Factor 5: P1, REV 

Factor 6: RRF 

Factor 7: L5, AU 

Factor 8: C2 

Factor 9: FA, P4 

 

 

Table 6: Variables assigned to the different factors 

Factor 

1 

Factor 

2 

Factor 

3 

Factor  

4 

Factor 

5 

Factor 

6 

Factor 

7 

Factor 

8 

Factor 

9 

         

FPAT DPC P5 BAIIGF P1 RRF L5 C2 FA 

\ 

 

Table 7: Summary of the model of the complete sample (622 firms) 

p 
1

1 e (0,502 10,1 2FPAT 0,09 DPC 0,  9P5   , 05RRF 0,6 1FA)
 

Variable Coefficient   Wald statistic Significance Exp ( ) 

     

FPAT - 10.132 46.579 0.000 0.000 

DPC 0.098 25.822 0.000 1.062 

P5 - 0.389 5.502 0.019 0.678 

RRF - 33.405 15.671 0.000 0.000 

FA - 0.681 5.936 0.015 0.506 

 0.5 cutoff point:  % of correctly classified cases: 95.30% 

                                 Non insolvent firms: 99.70% 

                                 Insolvent firms: 44.90% 

0.2 cutoff point:  % of correctly classified cases: 91.20% 

                                 Non insolvent firms: 93.20% 

                                 Insolvent firms: 67.30% 

 

 

 

 

 



Credit Risk Analysis: Reflections on the Use of the Logit Model 13  

 

Table 8: Summary of the model obtained from the first random half of the sample (311 

firms) 

p 
1

1 e (0, 50 20,270FPAT)
 

Variable Coefficient   Wald statistic Significance Exp ( ) 

     

FPAT - 20.270 27.181 0.000 0.000 

0.5 cutoff point:  % of correctly classified cases: 97.10% 

                                 Non insolvent firms: 99.00% 

                                 Insolvent firms: 76.00% 

0.2 cutoff point:  % of correctly classified cases: 92.90% 

                                 Non insolvent firms: 94.10% 

                                 Insolvent firms: 80.00% 

 

 

Table 9: Summary of the model obtained from the second random half of the simple (311 

firms) 

p 
1

1 e ( 1, 20 5, 06FPAT 0,052DPC 16,21 RRF)
 

Variable Coefficient   Wald statistic Significance Exp ( ) 

     

FPAT - 5.806 17.382 0.000 0.003 

DPC 0.052 13.120 0.000 1.054 

RRF -16.214 6.131 0.013 0.000 

0.5 cutoff point:  % of correctly classified cases: 92.90% 

                                 Non insolvent firms: 99.30% 

                                 Insolvent firms: 16.70% 

0.2 cutoff point:  % of correctly classified cases: 92.00% 

                                 Non insolvent firms: 95.50% 

                                 Insolvent firms: 50.00% 

 

Table 10: Summary of balanced simple model (82 firms: 41 insolvent and 41 non 

insolvent) 

p 
1

1 e (10,2    1,  0FPAT 2,  1DPC)
 

Variable Coefficient   Wald statistic Significance Exp ( ) 

     

FPAT - 81.340 3.147 0.076 0.000 

DPC 2.341 1.298 0.255 10.394 

0.5 cutoff point:  % of correctly classified cases: 97.60% 

                                 Non insolvent firms: 97.60% 

                                 Insolvent firms: 97.60% 

 


