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An Arnoldi Based Algorithm for solving

coupled Sylvester matrix equations

Amer Kaabi1

Abstract

In the present paper, we present a numerical method for the compu-

tation of approximate solutions for coupled Sylvester matrix equations.

One advantage of the algorithm proposed is that can be used for large

coupled Sylvester matrix equations and it require less storage space in

implementation than existing numerical methods. Numerical examples

and comparisons with other method are given to illustrate the effective-

ness of the proposed method.
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1 Introduction

Many applications such as stability analysis of control systems and ro-

bust control [4] require the solution of the coupled Sylvester matrix equations.
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These matrix equations cab be written as

{
AX + Y B = C,

DX + Y E = F,
(1)

where A,D ∈ R
n×n, B, E ∈ R

p×p, and C, F ∈ R
n×p are given constant matri-

ces; X, Y ∈ R
n×p are the unknown matrices to be solved.

As we know, the coupled Sylvester matrix equations (1) can be written as

a big linear system of equations

AG = L, (2)

where

A =

[

Ip ⊗ A BT ⊗ In

Ip ⊗D ET ⊗ In

]

∈ R
(2np)×(2np),

G =
[

x1 . . . xp y1 . . . yp

]T

∈ R
2np,

L =
[

c1 . . . cp f1 . . . fp

]T

∈ R
2np,

and ⊗ denotes the Kronecker product. Also, xT
j , y

T
j , c

T
j , f

T
j , i = 1, ..., p denote

the jth column of the matrices X, Y, C, F , respectively. Thus the system (1)

has a unique solution [5]

G = A−1L

if and only if the matrix A is nonsingular and the corresponding homogeneous

matrix equation

{
AX + Y B = 0,

DX + Y E = 0,

has a unique solution: X = Y = 0. Many numerical methods has been pro-

posed for the solution of these matrix equations. When n and p are small, one

can used direct methods to solve (2). Other methods are base on matrix trans-

formations into forms for which solutions may be readily computed; examples

of such forms include the Jordan canonical form, the companion form, and the

Hessenberg-Schur form [1, 2, 3, 6]. However, the dimensions of the associated

matrix A are very high when n and p are large. In this case, iterative meth-

ods [7, 9, 10, 11] are preferred. In [12], Starke and Niethammer reported an

iterative method for solutions of coupled Sylvester matrix equations by using

the SOR technique. In [5], F. Ding and T. Chen, proposed the gradient-based
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iterative algorithms by using the gradient search principle and the hierarchi-

cal identification principle. In this paper, we focus on numerical solutions for

coupled Sylvester matrix equations (1) and we present an iterative method of

projection onto a matrix Krylov subspace to produce low rank approximate

solutions to the coupled Sylvester matrix equations. The proposed method is

based on the global Arnoldi process[8]. This new algorithm also, can be used

for the general coupled matrix equations

s
∑

j=1

AijXjBij = Ci, i = 1, ..., s,

where Xj ∈ R
n×p are the unknown matrices to be solved.

This paper is organized as follows. In Section 2, we give a brief description

the gradient-based iterative algorithms for solving coupled matrix equations.

In Section 3, we recall the global Arnoldi process with some properties and

show how to extract low rank approximate solutions to the coupled Sylvester

matrix equations. In Section 4 we give some numerical experiments. Finally,

Section 5 summarizes the main conclusion of this paper.

2 Gradient Based Iterative Method

In this section we give a brief description of the gradient based (GB) iter-

ative algorithm which using the gradient search principle and the hierarchical

identification principle. Define two matrices

L1 =

[

C − Y B

F − Y E

]

, (3)

L2 = [C − AX, F −DX]. (4)

Then from (1), we obtain two subsystems

[

A

D

]

X = L1,

Y
[

B, E
]

= L2.
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Let X(k) and Y (k) be the estimates or iterative solutions X and Y, associated

with subsystems (3) and (4). Then using the gradient search principle [4] to

(3) and (4) leads to following recursive equations:

X(k) = X(k − 1) + µ

[

A

D

]T

{L1 −

[

A

D

]

X(k − 1)}, (5)

Y (k) = Y (k − 1) + µ{L2 − Y (k − 1)
[

B,E
]

}
[

B,E
]T

. (6)

Here, µ > 0 is the iterative step size or convergence factor to be given later.

Substituting (3) into (5) and (4) into (6) gives

X(k) = X(k − 1) + µ

[

A

D

]T

{

[

C − Y B

F − Y E

]

−

[

A

D

]

X(k − 1)} =

X(k − 1) + µ

[

A

D

]T [

C − Y B − AX(k − 1)

F − Y E −DX(k − 1)

]

, (7)

Y (k) = Y (k − 1) + µ{[C − SX,F −DX]− Y (k − 1)[B,E]}[B,E]T =

Y (k − 1) + µ[C − AX − Y (k − 1)B,F −DX − Y (k − 1)E][B,E]T . (8)

Because the expressions on the right-hand sides of (7) and (8) contain the

unknown parameter matrices Y and X, it is impossible to realize the algorithm

in (7) and (8). According to the hierarchical identification principle, the un-

known variables Y in (7) and X in (8) are replaced by their estimates Y (k−1)

and X(k − 1) at time k − 1. Hence, the iterative solutions X(k) and Y (k) for

coupled Sylvester equation (1) are as follows:

X(k) = X(k − 1) + µ

[

A

D

]T [

C − AX(k − 1)− Y (k − 1)B

F −DX(k − 1)− Y (k − 1)E

]

, (9)

Y (k) = Y (k−1)+µ[C−AX(k−1)−Y (k−1)B,F−DX(k−1)−Y (k−1)E][B,E]T .

(10)

The convergence factor may be taken to satisfy

0 < µ <
2

λmax(ATA) + λmax(DTD) + λmax(BBT ) + λmax(EET )
.
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Theorem 2.1. If the coupled Sylvester matrix equation (1) has unique

solutions X and Y, then for any initial values X(0) and Y (0), the iterative

solutions X(k) and Y (k) given by the algorithm (gradient based) in (9)-(10)

converge to the solutions X and Y.

Proof. See [5].

3 Low Rank Approximate Solutions To Eq.(1)

In this section, we present an Arnoldi based (AB) algorithm for solving

the coupled Sylvester matrix equation (1). As we know, Eq.(1) has a unique

solution if and only if the matrix

A =

[

Ip ⊗ A BT ⊗ In

Ip ⊗D ET ⊗ In

]

∈ R
(2np)×(2np),

is nonsingular and the corresponding homogeneous matrix equation

AX + Y B = 0, DX + Y E = 0

has a unique solution:X = Y = 0. Throughout this paper, we suppose that

this condition is verified. Let S be the operator from R
2n×p onto R

2n×p defined

as follows:

S(

[

X

Y

]

) =

[

AX + Y B

DX + Y E

]

.

Thus, by this definition, the coupled Sylvester matrix equation (1) can be

expressed as following equivalent form

S(

[

X

Y

]

) =

[

C

F

]

.

Let
[

V

U

]

∈ R
2n×p

be a rectangular matrix, as we see in [8], the global Arnoldi process construct

an F-orthonormal basis
[

V1

U1

]

,

[

V2

U2

]

, ...,

[

Vm

Um

]
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of matrix Krylov subspace

Km(S,

[

V

U

]

) = {

[

V

U

]

,S(

[

V

U

]

), ...,Sm−1(

[

V

U

]

)},

i.e.

(

[

Vi

Ui

]

,

[

Vj

Uj

]

)F = δij, i, j = 1, ...,m,

where δij denotes the classical Kronecker symbol and S i(

[

V

U

]

) is defined

recursively as

S i(

[

V

U

]

) = S(S i−1(

[

V

U

]

)).

It is clear that, each
[

Z

W

]

∈ Km(S,

[

V

U

]

)

can be written by the following formula
[

Z

W

]

=
m−1
∑

i=0

αiS
i(

[

V

U

]

),

where αi, i = 0, 1, ...,m−1 are scalers. The modified global Arnoldi algorithm

for constructing an F-orthogonal basis
[

V1

U1

]

,

[

V2

U2

]

, ...,

[

Vm

Um

]

of the Krylov subspace

Km(S,

[

V

U

]

)

is as follows:

Algorithm 3.1 Modified global Arnoldi algorithm.

1- Choose a nonzero matrix

[

V

U

]

∈ R
2n×p. Set

[

V1

U1

]

=

[

V

U

]

/ ‖

[

V

U

]

‖F .
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2- For j = 1, ...,m do:

[

Ṽ

Ũ

]

= S(

[

Vj

Uj

]

),

for i = 1, ..., j, do

hi,j = (

[

Vi

Ui

]

,

[

Ṽ

Ũ

]

),

[

Ṽ

Ũ

]

=

[

Ṽ

Ũ

]

− hij

[

Vi

Ui

]

,

end for

hj+1,j =‖

[

Ṽ

Ũ

]

‖F ,

[

Vj+1

Uj+1

]

=

[

Ṽ

Ũ

]

/hj+1,j

End for.

Let us collect the matrices

[

Vi

Ui

]

constructed by the Algorithm 3.1 in the

2n×mp and 2n× (m+ 1)p orthonormal matrices
[

Vm

Um

]

=

[ [

V1

U1

]

,

[

V2

U2

]

, ...,

[

Vm

Um

] ]

and
[

Vm+1

Um+1

]

=

[ [

Vm

Um

]

,

[

Vm+1

Um+1

] ]

and also we denote by Hm the upper m×m Hessenberg matrix whose entries

are the scalers hij and the (m+ 1)×m matrix H̄m is the same as Hm except

for an additional row whose only nonzero element is hm+1,m in the (m+1,m)

position. From Algorithm 3.1 we can prove following theorem:
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Theorem 3.1. The following relations are satisfied:

a.

[

S(

[

V1

U1

]

), ...,S(

[

Vm

Um

]

)

]

=

[

Vm

Um

]

(Hm⊗Ip)+hm+1,m[0n×p, ..., 0n×p, Vm+1].

b.

[

S(

[

V1

U1

]

), ...,S(

[

Vm

Um

]

)

]

=

[

Vm+1

Um+1

]

(H̄m ⊗ Ip).

Proof. See [8].

Let

[

X0

Y0

]

be an initial 2n×p matrix guess to the solution

[

X

Y

]

of equa-

tion (1) and

[

R0

R̃0

]

=

[

C

F

]

−S(

[

X0

Y0

]

) its associated residual. At the mth

iterate of global generalized minimal residual algorithm, a correction

[

Zm

Z̃m

]

is determined in the matrix Krylov subspace

Km = Km(S,

[

R0

R̃0

]

) = span{

[

R0

R̃0

]

,S(

[

R0

R̃0

]

), , ...,Sm(

[

R0

R̃0

]

)}

such that the new residual is F-orthogonal to Km, i.e.,
[

Xm

Ym

]

−

[

X0

Y0

]

=

[

Zm

Z̃m

]

∈ Km(S,

[

R0

R̃0

]

),

[

Rm

R̃m

]

=

[

R0

R̃0

]

− S(

[

Zm

Z̃m

]

) ⊥F Km(S,S(

[

R0

R̃0

]

)),

where

Km(S,S(

[

R0

R̃0

]

)) = span{S(

[

R0

R̃0

]

),S2(

[

R0

R̃0

]

), ...,Sm(

[

R0

R̃0

]

)}.

Therefore,

[

Xm

Ym

]

can be obtained as a solution of the following mini-

mization problem:

min





X

Y






−







X0

Y0






∈Km(S,







R0

R̃0






)

‖

[

C

F

]

− S(

[

X

Y

]

) ‖F .
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Any approximate solution

[

Xm

Ym

]

of the equation (1) in

[

X0

Y0

]

+Km can

be written as
[

Xm

Ym

]

=

[

X0

Y0

]

+

[

Vm

Um

]

∗ ym,

where ym ∈ R
m is the solution of the following small least squares problem

miny∈Rm ‖‖

[

R0

R̃0

]

‖F e1 − H̄my ‖2, (11)

and e1 is the first unit vector in R
m+1. By consideration the QR decomposition

of H̄m, we have: R̄m = QmH̄m, where R̄m is upper triangular andQm is unitary.

Thus, at step m, the residual Rm produced by the global generalized minimal

residual algorithm for for equation (1) has the following properties [8]:
[

Rm

R̃m

]

= γm+1

[

Vm+1

Um+1

]

(QT
mem+1 ⊗ Ip) (12)

and

‖

[

Rm

R̃m

]

‖F=| γm+1 |, (13)

where γm+1 is the last component of the vector gm =‖

[

R0

R̃0

]

‖F Qmem+1 and

em+1 is the last unit vector in R
m+1.

Thus, the restated global generalized minimal residual algorithm for solv-

ing coupled Sylvester matrix equation (1) can be summarized as follows:

Algorithm 3.2. Arnoldi based (AB) algorithm for Eq(1).

1. Choose an initial approximate solution

[

X0

Y0

]

and a tolerance ε.

2. Compute

[

R0

R̃0

]

=

[

C

F

]

− S(

[

X0

Y0

]

), β =‖

[

R0

R̃0

]

‖F and

[

V1

U1

]

=

[

R0

R̃0

]

/β.

3. If ‖

[

R0

R̃0

]

‖F< ε then exit.
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4. For j = 1, ...,m apply Algorithm 1 to compute the F- orthonormal basis of

Km(S,

[

R0

R̃0

]

).

5. Determine ym the minimizer of the least square problem (11).

6. Compute

[

Xm

Ym

]

=

[

X0

Y0

]

+

[

Vm

Um

]

(ym ⊗ Ip).

7. Compute the residual

[

Rm

R̃m

]

and ‖

[

Rm

R̃m

]

‖F using relations (12) and

(13).

8. If ‖

[

Rm

R̃m

]

‖F< ε stop; else set

[

X0

Y0

]

=

[

Xm

Ym

]

, β =‖

[

R0

R̃0

]

‖F ,

[

V1

U1

]

=

[

R0

R̃0

]

/β and Go to 4.

4 Numerical Experiments

In this section, we present the results of numerical experiments. Com-

putations were carried out using MATLAB 6.5 codes on a personal computer

Pentium 3-800EB MHs. The tests were stopped as soon as ‖

[

Rk

R̃k

]

‖F≤ 10−9,

or the maximum number of iterations reached to 100000. For all the experi-

ments, the initial guess was

[

X0

Y0

]

=

[

0

0

]

. The matrix

[

C

F

]

is defined so

that a true solution of equation (1) is the matrix of all one. For the Arnoldi

based(AB) and gradient based(GB) algorithms, we used the matrices

A = [(2−1−1)In+diag(1, 2, ..., n)+UT
n ]+[(2−1−1)In+diag(1, 2, ..., n)+UT

n ]
T ,

B = [Ip + 2−1Up] + [Ip + 2−1Up]
T ,

D = [(2−2−1)In+diag(1, 2, ..., n)+UT
n ]+[(2−2−1)In+diag(1, 2, ..., n)+UT

n ]
T

and E = [Ip + 2−2Up] + [Ip + 2−2Up]
T

where, Un and Up are the n× n and p× p matrices respectively with unit en-

tries below the diagonal and all other entries zero. The results were reported

in Table 1 and Table 2 with m = 2,

µ =
2

1 + tr(AAT ) + tr(BBT ) + tr(DDT ) + tr(EET )
,

and different values of n, p.



Amer Kaabi 161

Table 1: Number of iterations and CPU times for AB algorithm.

n p=100 p=200 p=300 p=400 p=500

500 3(0.797) 3(1.929) 3(3.373) 3(5.282) 5(13.45)

1000 3(2.703) 5(10.51) 4(13.73) 3(14.21) 9(50.65)

1500 5(9.656) 8(34.18) 5(33.67) 4(37.87) 9(123.5)

2000 5(16.42) 7(49.37) 3(31.29) 9(146.7) 8(172.4)

2500 3(14.61) 9(98.27) 7(117.4) 7(164.7) 7(217.7)

Table 2: Number of iterations and CPU times for AB and GB algorithms.

n Method p=10 p=15 p=20 p=25

50 AB 2(0.011) 2(0.012) 2(0.015) 2(0.018)

GB 23456(12.2) 10119(7.53) 5911(6.04) 3960(5.3)

100 AB 3(0.025) 3(0.031) 2(0.015) 3(0.038)

GB 95656(149.11) 4622(90.938) † †

† = No solution has been obtained after 100000 iterations.

5 Conclusion

In this paper, we have presented an Arnoldi based algorithm for solving

coupled Sylvester matrix equations. This algorithm have extracted from the

global generalized minimal residual method. The experiments presented in

this paper showed that the solution of the coupled Sylvester matrix equations

can be obtained with high accuracy by using this new algorithm. Table 1 and

Table 2 showed that this algorithm is more robust and more efficient than the

gradient-based iterative algorithm which has been presented by F. Ding and

T. Chen [5]. Also, it reduced the computer storage, time and arithmetic work

required and can be used for large coupled Sylvester matrix equations.
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